No time limit. A handwritten 3” x 5” note card is allowed. No books. Student calculators allowed. All problems equal weight.

Constants/Materials parameters:

- \[g = 9.8 \text{ m/s}^2 \]
- \[G = 6.67 \times 10^{-11} \text{ N-m}^2/\text{kg}^2 \]
- \[k_B = 1.381 \times 10^{-23} \text{ J/K} \]
- \[N_A = 6.022 \times 10^{23} \]
- \[R = k_B N_A = 8.314 \text{ J/mol-K} \]
- \[\sigma = 5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4 \]
- Mass of Sun = 1.991 \times 10^{30} \text{ kg}
- Mass of Earth = 5.98 \times 10^{24} \text{ kg}
- Radius of Earth = 6.38 \times 10^6 \text{ m}
- Radius of Earth's orbit = 1 A.U. = 1.496 \times 10^{11} \text{ m}
- Density of water: 1000 kg/m3
- Density of air (standard conditions): 1.29 kg/m3
- Linear exp. coeff. of copper: 17 \times 10^{-6} ^{\circ}\text{C}
- Linear exp. coeff. of steel: 11 \times 10^{-6} ^{\circ}\text{C}
- Specific heat of water: 4186 \text{ J/kg-}^{\circ}\text{C}
- Specific heat of ice: 2090 \text{ J/kg-}^{\circ}\text{C}
- Specific heat of steam: 2010 \text{ J/kg-}^{\circ}\text{C}
- Specific heat of alum.: 900 \text{ J/kg-}^{\circ}\text{C}
- Latent heat of melting (water): 3.33 \times 10^5 \text{ J/kg}
- Latent heat of boiling (water): 2.26 \times 10^6 \text{ J/kg}
- Thermal conduct. of alum.: 238 \text{ J/s-m-}^{\circ}\text{C}
- \[v_{sound} = 343 \text{ m/s at } 20^{\circ}\text{C} \]

Conversion factors:

- 1 inch = 2.54 cm
- 1 foot = 0.3048 m
- 1 mile = 1.609 km
- 1 mi/hr = 1 mph = 0.44704 m/s
- 1 lb = 4.448 N
- 1 m3 = 1000 L
- 1 gallon = 3.785 L = 3785 cm3
- 1 atm = 1.013 \times 10^5 \text{ Pa} = 14.7 psi

Instructions:

- Write your CID at the top of the page, otherwise you may not get this exam booklet back.
- Circle your answers in this booklet if you wish to record them, but be sure to mark your answers on the bubble sheet. (You will not get the bubble sheet back.)
- Unless otherwise specified, ignore air resistance in all problems.
- Use \[g = 9.8 \text{ m/s}^2 \].

Some notes on the answer ranges:

If a set of answers is given like this

- a. Less than 30 N
- b. 30 – 40
- c. 40 – 50
- d. 50 – 60
- e. More than 60 N

you can generally consider choice (a) to mean “20 – 30 N”, and choice (e) to mean “60 – 70 N”. I often write them like that so that if I’ve made a mistake when making up the answer ranges, and the answer is really less than 20 N, or larger than 70 N, then there is still an answer that is correct.

I randomize the answer choices, so the first and last choices should receive their statistical fair share of answers.

Any units and/or exponents given in the first and last answer choices also apply to the middle choices.
1. A spring is slowly stretched out, and the force required to stretch the spring is recorded at each instant. The result is shown in the graph to the right. How much work was done in stretching out the spring?
 a. Less than 0.5 J
 b. 0.5 - 0.6
 c. 0.6 - 0.7
 d. 0.7 - 0.8
 e. 0.8 - 0.9
 f. 0.9 - 1.0
 g. 1.0 - 1.1
 h. More than 1.1 J

2. A particular comet passes the Earth, a distance from the sun of 1 “A.U.” (astronomical unit), traveling at a speed of 38 km/s. One month later it is half the distance to the sun, 0.5 A.U. How fast will it be traveling then? (Hint: this is a conservation of energy problem. Consider its potential energy relative to the sun.)
 a. Less than 49 km/s
 b. 49 - 51
 c. 51 - 53
 d. 53 - 55
 e. 55 - 57
 f. 57 - 59
 g. 59 - 61
 h. More than 61 km/s

3. A car goes around a corner as shown above, while speeding up. At the point labeled “here”, in what general direction is the car's acceleration, as indicated by the arrows on the right?
 a. A
 b. B
 c. C
 d. D
 e. E
 f. F
 g. G
 h. H
 i. None; the car is not accelerating.

4. A 45 kg ballet dancer jumps during a performance, with her toes making 48 cm² of contact area with the floor. Her upwards acceleration as she springs is 2.5 m/s². How much pressure do her toes exert on the floor?
 a. Less than 105 kPa
 b. 105 - 110
 c. 110 - 115
 d. 115 - 120
 e. 120 - 125
 f. 125 - 130
 g. 130 - 135
 h. More than 135 kPa

Physics 105 – Fall 2014 – Exam 3 – pg 2
5. In class we did a demo which I called a “reverse tug of war”. Two people pushed on opposite horizontal hydraulic (water filled) pistons which were connected together internally. See the figure. Suppose the diameter of the left piston was 6.2 cm and the diameter of the right one was 1.4 cm. If the student on the left applied a force of 700 N, how much of a force would the student on the right have to apply in order to balance it? (i.e. neither side moves)
 a. Less than 32 N
 b. 32 – 33
 c. 33 – 34
 d. 34 – 35
 f. 36 – 37
 h. More than 38 N
 e. 35 – 36
 g. 37 – 38

6. Khaavren loads cannonballs onto a raft, as shown. The raft is floating in a pond of water. What will happen to the amount of cannonballs it can support if he changes the water to oil (having a lower density)?
 a. increase
 b. decrease
 c. stay the same

7. An open beaker of water is resting on a spring scale, with a metal block hanging from a string immersed in the water. See the figure. The hanging block is a 6 kg cube of metal, 11 cm on each edge. What will be the tension in the wire supporting the mass?
 a. Less than 33 N
 b. 33 – 35
 c. 35 – 37
 d. 37 – 39
 e. 39 – 41
 f. 41 – 43
 g. 43 – 45
 h. More than 45 N

8. Water in a closed pipe (7 cm in radius) flows at a speed of 3 m/s. How long will it take for 5 m³ of water to flow past a given point on the pipe?
 a. Less than 85 s
 b. 85 – 90
 c. 90 – 95
 d. 95 – 100
 f. 105 – 110
 g. 110 – 115
 h. More than 115 s

9. Bernoulli’s Equation arises because of:
 a. conservation of energy
 b. conservation of (regular) momentum
 c. conservation of angular momentum
 d. conservation of volume
 e. equilibrium in forces and torques
10. Water is poured into a “U-Tube”, open on both ends, as shown in the figure on the left. Air is then blown across the top of the left end. This causes the water to rise on the left and lower on the right, as shown in the figure on the right. If the difference between the heights on the two sides is 3.3 cm, how fast was the air going? (Densities you may need are given on page 1 of the exam.)

\[P_i + \rho g h = P_o \]

\[\rho g \Delta h = \rho g \frac{1}{2} \rho a V^2 \]

\[V = \sqrt{\frac{2gh}{\rho}} \]

\[\Delta T = L \alpha \Delta t \]

\[\Delta T = (440 \text{ m})(1.11 \times 10^{-5}/\text{mC}) (400 \text{ C} - (-8 \text{ C})) \]

\[\Delta T = 23.2 \text{ m} \]

11. The Empire State building (440 m tall) has a steel frame. If the lowest temperature for a given year in New York City was -8 °C, and the highest temperature was 40 °C, what was the change in height of the building over the year? You may assume the given height is the height for cold temperatures.

\[\Delta L = L \alpha \Delta T \]

\[\Delta L = (440 \text{ m})(1.11 \times 10^{-5}/\text{mC}) (400 \text{ C} - (-8 \text{ C})) \]

\[\Delta L = 23.2 \text{ m} \]

12. Which takes more energy: to turn 1 kg of ice at 0 °C into liquid water or to turn 1 kg of water at 100 °C into steam?

\[m_{\text{ice}} \rightarrow m_{\text{water}} \]

\[m_{\text{water}} \rightarrow m_{\text{steam}} \]

\[3.33 \times 10^{-5} \text{ J/kg} \]

13. Clara takes a 90 g piece of ice out of her freezer (at -18 °C) and adds it to 300 g of water in an insulated cup (at 30 °C). The insulated cup itself has negligible mass. How cold does the water get after the ice melts? (Note: The specific heat of ice is 2.09 J/g°C, and the specific heat of water is 4.18 J/g°C.)

\[m_{\text{ice}} \rightarrow m_{\text{water}} \]

\[m_{\text{water}} \rightarrow m_{\text{steam}} \]

\[T_f = \frac{m_{\text{water}} \cdot 30 + m_{\text{ice}} \cdot 18 - m_{\text{ice}} \cdot L_f}{m_{\text{water}} + m_{\text{ice}}} \]

\[T_f = \frac{300 \cdot 4.186 \cdot 30 + 90 \cdot 2090 \cdot 18 - 90 \cdot 33300}{90 \cdot 4.186 + 300 \cdot 4.186} \]

\[T_f = 2.645 °C \]
14. You very foolishly decide to build the walls of your new house out of solid aluminum, 8 cm thick. As a result, in the wintertime heat leaks out like a sieve. How much money does this cost you each day? The inside temp is 70°F (21.1°C), the average outside temperature is 25°F (-3.9°C), and your new house has a surface area of 230 m². The gas company charges you $0.89 per “therm” (1.055 x 10^8 J). Ignore heat loss through the ground and through radiation & convection effects.

\[Q = k A \Delta T \]

\[Q = \frac{k A}{\alpha} \frac{1}{\alpha} \]

\[Q = \frac{230}{2.58 \times 10^5} \times \frac{2.30 \times 10^{-3}}{21.1 - (-3.9)} \times 86400 \text{ sec} \]

\[= 1.4 \times 10^5 \times 10^{-3} \times \frac{2.65 \times 10^{-3}}{1.55 \times 10^{-3}} \]

\[= \$12 \text{,}000 \]

15. A certain incandescent light bulb puts out 40 W of radiation power. The tungsten filament is at a temperature of 2800 K, and the emissivity of the filament is 0.45. What is the surface area of the filament?

a. Less than 2.0 \times 10^{-5} m²
b. 2.0 - 2.1

c. 2.1 - 2.2

d. 2.2 - 2.3

e. 2.3 - 2.4

f. 2.4 - 2.5

g. 2.5 - 2.6

h. More than 2.6 \times 10^{-5} m²

\[P = \frac{\sigma A T^4}{\alpha} \]

\[= \frac{4 \times 10^{-8}}{0.45} (5.47 \times 10^8 \mu \text{W/m}^2) \times (2800 K)^4 \]

16. In my lab, I have a vacuum pump which can get my vacuum chamber to a pressure of 0.1 milliPascal. That’s about 250 million times less pressure than 1 atm! The vacuum chamber has a volume of 20 L. How many gas molecules are still inside the chamber when it reaches that very low pressure? (The chamber is at 300K.)

a. Less than 1.4 \times 10^{15} molecules
b. 1.4 - 1.5
c. 1.5 - 1.6
d. 1.6 - 1.7
e. 1.7 - 1.8
f. 1.8 - 1.9
g. 1.9 - 2.0

h. More than 2.0 \times 10^{15} molecules

\[PV = n k T \rightarrow n = \frac{PV}{k T} \]

\[= \frac{(4 \times 10^{-3} \text{ Pa}) (0.2 \text{ m}^2)}{(1.58 \times 10^{-25} \text{ kg}) (300 \text{ K})} \]

\[= 1 \times 10^{15} \]

17. Greg seals an “empty” (still has air inside) glass bottle at room temperature (20°C). He then throws it into a campfire at 90°C. What is the final pressure in the bottle?

a. Less than 2.3 atm
b. 2.3 - 2.5
c. 2.5 - 2.7
d. 2.7 - 2.9
e. 2.9 - 3.1
f. 3.1 - 3.3
g. 3.3 - 3.5
h. More than 3.5 atm

\[P = \frac{\gamma P_1 T_1}{T_2} \]

\[= (1 \text{ atm}) \left(\frac{763 \text{ K}}{293 \text{ K}} \right) = 2.604 \text{ atm} \]

18. A cylinder contains a mixture of helium and argon gas in equilibrium at a temperature of 35 °C. Helium molecules are lighter than argon; both are monatomic. How do the average kinetic energies compare?

a. KE_{helium} > KE_{argon}
b. KE_{helium} < KE_{argon}
c. KE_{helium} = KE_{argon}
19. Same situation. How do the molecules’ average (rms) speeds compare?
 a. \(v_{\text{helium}} > v_{\text{argon}} \)
 b. \(v_{\text{helium}} < v_{\text{argon}} \)
 c. \(v_{\text{helium}} = v_{\text{argon}} \)

20. Processes 1 and 2 are indicated on the PV diagram, see the figure. They both begin and end at the same volumes. In which process will the gas do more work?
 a. process 1
 b. process 2
 c. same

21. A gas undergoes the cyclic processes shown on the PV diagram. For the section from A to B is \(W_{\text{on gas}} \) positive, negative, or zero?
 a. positive
 b. negative
 c. zero

22. Same situation. For the section from B to C is \(W_{\text{on gas}} \) positive, negative, or zero?
 a. positive
 b. negative
 c. zero

23. Choose the PV diagram which best represents this situation: First, a gas is compressed while heat is carefully removed to cause the temperature to remain constant during the process. Next, the gas is expanded again back to its original volume, but so quickly that no heat has time to enter the gas during the process.
 a)
 b)
 c)
 d)
 e)
 f)
 g)
 h)

24. A gas is compressed at a constant pressure of 0.3 atm from a volume of 7.5 L to 4.3 L. In the process, 410 J of heat energy flows out of the gas. What is the change in the gas’s internal energy? The answer will be negative; the answer choices below refer to magnitudes (absolute values) of the answer. Note: this particular gas does not fit either our monatomic or diatomic models.
 a. Less than 210 J in magnitude?
 b. 210 – 230
 c. 230 – 250
 d. 250 – 270
 e. 270 – 290
 f. 290 – 310
 g. 310 – 330
 h. More than 330 J in magnitude
25. A gas (1.3 moles) expands isothermally at a temperature of 350 K. The high and low pressures during the process were 4.0×10^5 Pa and 1.5×10^5 Pa. How much heat was added to the gas?
 a. Less than 3600 J
 b. 3600 – 3700
 c. 3700 – 3800
 d. 3800 – 3900
 e. 3900 – 4000
 f. 4000 – 4100
 g. 4100 – 4200
 h. More than 4200 J

26. A heat engine undergoes a thermodynamic cycle as shown in the figure, going from state A to state B to state C, then back to state A. What is true about the internal energy of state B, compared to the internal energy of state A the next time around?
 a. $U_{A,\text{first}} > U_{A,\text{next}}$
 b. $U_{A,\text{first}} < U_{A,\text{next}}$
 c. $U_{A,\text{first}} = U_{A,\text{next}}$

27. An engine absorbs 1900 J from a hot reservoir and expels 700 J to a cold reservoir in each cycle. What is the engine's efficiency?
 a. Less than 30%
 b. 30 – 35
 c. 35 – 40
 d. 40 – 45
 e. 45 – 50
 f. 50 – 55
 g. 55 – 60
 h. More than 60%

28. Suppose a coal-fired power plant has a capacity of 1,900 megawatts (mega = 10^6). It burns coal at 360°C and uses that heat to increase the temperature of water, turning it into steam. The steam powers a turbine which generates electricity, then must be cooled down to turn back into water for the next cycle. It’s cooled down via a nearby river that has a temperature of 20°C. What is the theoretical maximum efficiency of the cycle?
 a. Less than 35%
 b. 35 – 40
 c. 40 – 45
 d. 45 – 50
 e. 50 – 55
 f. 55 – 60
 g. 60 – 65
 h. More than 65%