Announcements – 3 Dec 2013

1. Exam 4 results

2. Final exam info
 a. Take in Testing Center any time during Finals week (Mon-Fri)
 b. I plan 40-43 questions
 i. 10-11 on new stuff (Chap 13 & 14)
 ii. 30-32 on Chapters 1-12 (midterms 1-4)

3. Instructor/course ratings due before Sun Dec 15
 http://studentratings.byu.edu
 → Please take the ratings and comments seriously!

4. I also plan to write my own survey, focusing on specific ways to improve the class for next time around.
“Simple harmonic motion”

→ Sinusoidal oscillations

Demo: weight on spring

\[x = A \cos(\omega t) \]

\[A = \text{amplitude} \]

→ or \(x = A \sin(\omega t) \) or \(x = A \cos(\omega t + \phi) \) ...what’s the difference?
Plots of x, v, and a
Amplitude $A = \underline{\hspace{2cm}}$
Period $T = \underline{\hspace{2cm}}$ sec
Frequency $f = \underline{\hspace{2cm}}$ cycles/sec (Hz)
Angular frequency $\omega = \underline{\hspace{2cm}}$ rad/sec

\[f = \frac{1}{T} \]
\[\omega = 2\pi f \]

Angular frequency?? Where’s the angle??
Demo

SHM/Circular motion analogy
Clicker quiz 1: Where does it have the most kinetic energy?
 a. position A
 b. position B
 c. position C

Clicker quiz 2: Where does it have the most potential energy?
 a. position A
 b. position B
 c. position C
Clicker quiz 3 (from warmup): Where does it have the largest acceleration?
 a. position A
 b. position B
 c. position C
Clicker quiz

Given this oscillation,

what's the correct equation to describe the position vs. time?

a. \(x(t) = 6 \cos(t) \)

b. \(x(t) = 3 \sin(2t) \)

c. \(x(t) = 6 \sin(2t) \)

d. \(x(t) = 3 \sin(\pi t) \)

e. \(x(t) = 3 \cos(\pi t) \)
Springs

Experiment: change mass on spring

Experiment: change spring, keep mass the same

Summary:

Frequency

Period
From warmup
Consider a mass m hanging on a spring. We pull the weight downward and then release it so that it oscillates up and down. If we repeat this on the moon with the same weight and the same spring, the frequency of the oscillation will be:

a. larger
b. smaller
c. the same
Pendulums

Clicker quiz: Does the pendulum period depend on amplitude?
 a. yes
 b. no
 c. it depends

Experiment: change amplitude

Experiment: change mass

Summary:

Frequency

Period

(typo in syllabus “chapter summaries” document)
Worked Problem
A 70 kg trapeze artist swings on a long rope and takes 5 seconds to return to his starting spot.

How long will it take a woman of mass 50kg to make the same swing? ________ sec

How long will it take for the 70 kg man to swing from his starting place to when he first reaches the bottom? ________ sec

How long is the rope? ______________ m

Answers: 5 s, 1.25 s, 6.21 m
From warmup
Ralph is confused about pendulums. He read in the textbook that the period T of a pendulum depends on its length L and on the acceleration of gravity g, but does not depend on its mass. Ralph thinks that heavier pendulums should swing with a longer period. After all, if he puts a heavier weight on the end of the spring, it oscillates more slowly. Can you help Ralph understand this?

“Pair share”—I am now ready to share my neighbor’s answer if called on.
 a. Yes
→ Oscillating motion that transfers **energy** but not mass

Direction: where the energy is going

Medium: what is doing the “waving”

Oscillation: how the medium is moving

Transverse—Oscillation is ⊥ to the direction of the wave

Longitudinal—Oscillation is // to the direction of the wave

Demo: Suspended slinky
Wave Examples

Slinky (demo)

Rope (demo)

Water

Earthquake (P & S)
http://en.wikipedia.org/wiki/S-wave

Sound

Light
Speed, frequency, wavelength

\[v = f \lambda \]
Worked Problem
You can listen to Utah Jazz games on FM 97.5. The number refers to a broadcasting frequency of 97.5 MHz. Find the wavelength and period of the radio waves. Hint: how fast do radio waves travel?

Answers: 3.08 m, 10.3 ns
Waves on Ropes

What will changing the tension do?

\[v = \sqrt{\frac{T}{\mu}} \quad \text{For waves on a rope/string/etc} \]

Note: the book uses symbol \(F \) for tension in this section (I don’t know why)

Web demo
http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf
From warmup
Two students play with an extra-long Slinky. The student on the left end sends waves to the other student by shaking her end back and forth. After the waves die down, both students take a step backwards and try it again. How will the speed of the waves now compare to the previous waves?
 a. They will be faster
 b. They will be slower
 c. They will go the same speed

Demo: rubber tubing
Question
What happens when you increase the wave speed while keeping the wavelength constant?

Demo: violin
Clicker quiz
Two guitar strings of the same length have the same tension, but one has four times the mass of the other. The speed of a wave on the heavier guitar string is __________ that of the lighter string.

a. \(\frac{1}{4} \)
b. \(\frac{1}{2} \)
c. the same as
d. \(2 \times \)
e. \(4 \times \)
Clicker quiz
A boy shakes a rope, moving his hand up and down. He sends a wave crest out every 0.5 seconds. He sees the wave crests move away with a distance between them of 25 cm. How fast is the wave moving?
 a. 0-10 cm/s
 b. 10-20 cm/s
 c. 20-30 cm/s
 d. 30-40 cm/s
 e. more than 40 cm/s
Reflections

Clicker quiz: What happens when an upward pulse hits the end and turns around?
 a. the wave reflects back, upward
 b. the wave reflects back, downward
 c. it depends

Web demo, cont.
http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf
Boundaries

Rope: Light rope meets heavy rope
Light: Air meets glass

In both cases: _______________________________________

Sound: Thin air meets dense air
 → Also can cause reflections