Lecture 27 Announcements

1. Thursday lecture: Some new stuff, mostly final exam review. Coolest demo of the semester!!
2. TA-led final exam review(s):
 a. Time/date(s): ____________________
3. Rate the TA-lab tutors. Email sent out yet?
4. Deadlines:
 a. Colton “class improvement survey” must be done by Thurs, Dec 10, to get extra credit
 b. All extra credit and late FBDs must be turned in by midnight Sat, Dec 12
 c. BYU Instructor/course ratings must be done by Sat Dec 13. http://studentratings.byu.edu
 d. Final exam in Testing Center anytime during finals week (last day: Fri, Dec 18)
 e. All computer-graded homework must be turned in by midnight Fri, Dec 18 (last day of finals)

Doppler Shift—“Race Car Effect”

Applications:
- Radar guns
- Doppler weather radar
- Astronomy “red shifts” and “blue shifts”
- Doppler ultrasound: blood flow imaging in heart

Key point: Frequency is _______________ when the source and observer approach each other, ______________ when they go away from each other.

Demo: Doppler speaker

Demo: Come, Come, Ye Saints http://stokes.byu.edu/bells.wav

The pie factory conveyor belt:

\[f = \frac{v}{\lambda} \quad \text{or} \quad \lambda = \frac{v}{f} \]

- \(v \): source speed
- \(v_o \): observer speed
- \(v \): speed of sound (pies)

If **observer moves** toward source (pie maker), she would measure the same ______ but the pies are coming at her at ____________

If **source moves** toward observer, the _______shrinks, but the pie ____ doesn’t change

Both source and observer can move http://stokes.byu.edu/doppler_script_flash.html

Equation:

\[f' = f \left(\frac{v + v_o}{v v_o} \right) \]

Choose your signs carefully!!

- → + in numerator when ______________
- → – in denominator when ______________

Otherwise, reversed!

Worked problem: An ambulance siren emits a 500 Hz tone as it approaches you at 25 m/s, and continues to emit the tone as it goes away from you (still at 25 m/s). What two pitches do you hear? (\(v_{sound} = 343 \) m/s.)

What if ambulance were stationary and you were moving at 25 m/s?

Answers: 539.3 Hz, 466.0 Hz
If source moves at or above the speed of the waves…

\(v_{\text{source}} > v_{\text{wave}} \)

[Sonic boom manifested by condensation of water in air](http://stokes.byu.edu/boom_flash.html)

[Sonic boom](http://stokes.byu.edu/boom_flash.html)

[Shock wave of a bullet in flight](http://stokes.byu.edu/boom_flash.html)

Doppler shift of light

From warmup: Ralph wants to know why this is funny.

Answer from the class:

→ How fast would you need to go?

[FIGURE 60. Based on her successful Doppler effect defense, Carla was found not guilty of running a red light and instead was found guilty of speeding and fined eight trillion dollars!](http://stokes.byu.edu/boom_flash.html)

What use is it?

One answer: **Astronomy**

How far away is a star/galaxy? Hard question

Edwin Hubble, 1929: Distance away proportional to speed

→ How did he measure speed?

Doppler shift of spectral lines!

That’s now a standard technique for today’s astronomers when they want to measure distances… just measure Doppler shift.

Hubble’s Law and the Big Bang

(Yes, it’s OK for LDS to believe in the Big Bang…)

Clicker quiz: Take the speed of sound to be 300 m/s for convenience. A 200 Hz siren is coming towards you on a fast car going 150 m/s. You’re driving away from that car at 100 m/s. What frequency do you hear (in Hz)?

- a. 150
- b. 200
- c. 250
- d. 267
- e. 330

Interference/superposition: waves add together

Electron waves on a copper surface with iron atoms added, viewed by scanning tunneling microscope.

“Path length” → waves coming at you from different sources can be shifted from each other

Demo: “Moire pattern” transparencies

From warmup: If two waves are shifted by ________, completely destructive interference will occur.

- a. \(\lambda/2 \)
- b. \(2\lambda/3 \)
- c. \(\lambda \)
- d. \(2\lambda \)

Path-length dependence

Constructive interference:

Destructive interference
Worked Problem: Two speakers are in-line as shown. Both emit the same sound waves \((v=343 \text{ m/s})\) at 500 Hz. A boy is standing 5 m away from the nearest speaker.

What is the wavelength?

How far back should one speaker be placed \((\Delta x)\) to get a minimum where the boy is standing?

How far back should one speaker be placed \((\Delta x)\) to get a maximum where the boy is standing?

Answers: 0.686 m; 0.343 m (or 1.029 m, 1.715 m, …); 0.686 m (or 1.372 m, 2.058 m, …)

Standing waves:

- Combination of forward- and backwards-moving waves
- Only certain vibration frequencies give you a stable pattern.

Standing waves on “strings”

Demos: ¼ inch tubing, “ladies belt”

What kinds of patterns can you get?

Harmonics of string, both ends fixed

→ How many wavelengths fit into the length, \(L\)?

\[
\frac{L}{\lambda} = __________
\]

For stable patterns: ______________________

What are the frequencies of these harmonics?

1.

2.

3.

The pattern: \(f_n = n \times f_1\); \(n = 1, 2, 3, \ldots\)
Standing waves in air

Demos: trumpet, organ pipe

“Open-open” pipes

Pressure patterns:

Open end

L = _____

L = _____

L = _____

For stable patterns: _____________________________

What is the fundamental frequency? (First harmonic)

f₁ =

Same pattern as before: \(f_n = n \times f_1 ; \ n = 1, 2, 3, \ldots \)

“Open-closed” pipes

Pressure patterns:

For stable patterns: _____________________________

What are the frequencies of these harmonics?

1.

2.

3.

The pattern: \(f_n = n \times f_1 ; \ n = 1, 3, 5, \ldots \)

From warmup: You have two pipes which produce sound: one is open at both ends (like an organ pipe) and the other is open at only one end (like a panpipe). If the two pipes have the same length, the fundamental resonant frequency will be ___________ for the two.

a. the same
b. different

Clicker quiz: You change the frequency that you excite a pipe, and find some resonant frequencies at 600, 840, and 1080 Hz. (Others resonant frequencies exist, also.) T/F: The fundamental frequency could be 240 Hz?

a. True
b. False

Music (if we have time)

Trumpet (Let’s suppose a “C trumpet” instead of a regular trumpet, so we don’t have to worry about the shift between trumpet & piano scales)

The notes you can play with no valves pushed in:

<table>
<thead>
<tr>
<th>Note</th>
<th>Frequency Ratio to Fundamental</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st harmonic: Low C (with difficulty)</td>
<td>130.8 Hz (fundamental)</td>
</tr>
<tr>
<td>2nd harm: Middle C</td>
<td>261.6</td>
</tr>
<tr>
<td>3rd harm: G</td>
<td>392.4</td>
</tr>
<tr>
<td>4th harm: C above middle C</td>
<td>523.3</td>
</tr>
<tr>
<td>5th harm: E</td>
<td>654.1</td>
</tr>
<tr>
<td>6th harm: G</td>
<td>784.9</td>
</tr>
<tr>
<td>7th harm: B-flat??</td>
<td>915.7</td>
</tr>
<tr>
<td>8th harm: High C</td>
<td>1046.5 Hz</td>
</tr>
</tbody>
</table>

Common chords: Typically have integer ratio relationships

C-E-G (major) \(\rightarrow \) ratios 4:5:6 (can see from table)
C-E-G-B_flat (dominant 7th) \(\rightarrow \) ratios 4:5:6:7
C-E-G-B (major 7th) \(\rightarrow \) ratios 8:10:12:15
C-E-flat-G (minor) \(\rightarrow \) ratios 10:12:15
C-E-flat-G-B_flat (minor 7th) \(\rightarrow \) ratios 10:12:15:18

“One of these things is not like the other”

\(\rightarrow \) B-flat on piano = \textbf{932.3 Hz}

…why? To be cont.