Announcements – 19 Nov 2009

1. No class on Tuesday (Friday instruction)
2. Exam 4 starts today!
 a. Exam ends Tues Nov 24 (late fee after 3 pm)
 b. Covers Chapters 9-12, HW 15-20 (but cumulative)
 c. Anticipated average time: 2 hours
 d. Anticipated average score: 75-80%
 e. No problems where you turn in work
 f. Look over the first page of exam on class website
 g. No outside calculators (you can check one out if you like)
 h. Things to study, roughly in order of importance:
 i. HW problems
 ii. Conceptual stuff, especially:
 1. Clicker quizzes
 2. Warmup questions
 3. Demos
 iii. Questions from old exams
 iv. Problems from old exams
 v. Worked problems from class
 v. Textbook problems

Summary of Chapter 12

\[W_{net, \text{sys}} = \text{area under curve in P-V diagram (watch the signs!)} \]

\[U \text{ depends only on } T; \text{ often it's strictly proportional} \]
\[3/2 \text{nRT for monatomic, } 5/2 \text{nRT for diatomic at } \sim 300 K \]

\[P-V \text{ diagrams: to graph changes to state; visualize isothermal contours to understand changes in temperature—and hence } U \]

1st Law: \[\Delta U = Q_{\text{added}} + W_{\text{on system}} \]

Four specific changes

- constant pressure: \(W = P \Delta V \)
- constant volume: \(W = 0 \)
- isothermal: \(\Delta U = 0, W = nRT \ln(V_2/V_1) \)
- adiabatic: \(Q = 0 \)

Engines: transform heat to work

2nd Law: …but not all of the heat!

\[\text{Carnot Theorem: } \ldots \text{often not even most of the heat!} \]

\[\text{max eff. } = e_v = 1 - T_r/T_h \]

Song: (4 minutes)

http://www.uky.edu/~holler/CHE107/media/first_second_law.mp3

Exam 4 - Review of important concepts

1. Pressure & Buoyancy in Static Fluids
 a. Definition of pressure, force/area: \(P = \frac{F}{A} \)
 not given on exam
 b. Definition of density: \(\rho = \frac{m}{V} \)
 not given on exam
 c. Static liquids:
 i. Pressure increases with depth, \(P = P_0 + \rho gh \)
 is given on exam
 ii. Pressure in static fluid is the same at same \(h \)
 d. Archimedes’ Principle: \(F_B = \text{weight of displaced fluid} \)
 \[= m_{\text{displaced fluid}} \times g = \rho_{\text{fluid}} V \text{ object} g \]
 not given on exam

2. Fluid dynamics: Pressure in Moving Fluids
 a. Viscosity
 b. “Garden hose equation”, \(VFR = A_1V_1 = A_2V_2 \)
 not given on exam
 c. Bernoulli effect: motion of fluid causes \(P \) to decrease
 i. wings: combination of air deflection and Bernoulli
 d. Bernoulli eqn: \(P_1 + \frac{1}{2} \rho V_1^2 + \rho g y_1 = P_2 + \frac{1}{2} \rho V_2^2 + \rho g y_2 \)
 is given on exam
3. Temperature effects
 a. Thermal expansion:
 i. \(\Delta L = \alpha L \Delta T \) is given on exam
 ii. \(\Delta V = \beta V \Delta T \) (\(\beta = 3 \alpha \) for solids) is given on exam
 b. Ideal gas law: \(PV = nRT \), \(PV = \frac{NkT}{ω} \) not given on exam
 c. “Kinetic Theory Equation”: \(\frac{1}{2} m_{av}^2 = \frac{3}{2} k_BT \) is given on exam
 i. Use to get average speed or average KE
 d. Internal energy: both are given on exam
 1. \(U = \frac{3}{2} NkT = \frac{3}{2} nRT \) (monatomic)
 2. \(U = \frac{5}{2} NkT = \frac{5}{2} nRT \) (diatomic, \(\sim 300K \))

4. Heat
 a. Calorimetry: \(Q_{\text{gained by 1}} = Q_{\text{lost by 2}} \) (Blueprint eqn)
 i. \(Q = mc\Delta T \) both are given on exam
 ii. Colton method: Make sure each term is positive
 b. Radiation: \(P = \frac{\text{heat}}{\text{time}} = e\sigma \Delta T^4 \) is given on exam
 i. Describes heat emitted and heat absorbed
 c. Conduction: \(P = \frac{\text{heat}}{\text{time}} = ka \frac{T_2 - T_1}{L} \) is given on exam
 d. Convection: qualitative only

5. Thermodynamics
 a. P-V diagrams
 i. Isothermal contours to visualize temperature changes
 b. First Law: \(\Delta U = Q_{\text{added}} + W_{\text{on system}} \) not given on exam
 c. Five special state changes:
 i. constant \(P \)
 ii. constant \(V \): \(W=0 \) not given on exam
 iii. isothermal (constant \(T \)): \(\Delta U=0 \) not given on exam
 iv. adiabatic: \(Q=0 \) not given on exam
 v. cycle: \(\Delta U=0 \) not given on exam
 This is what I give you on the exam for those changes:
 \[|W_{\text{on gas}}| = \text{area under P-V curve} \]
 \[= |P\Delta V| \] (constant pressure)
 \[= nRT \ln \left(\frac{V_2}{V_1} \right) \] (isothermal)
 \[= |U| \] (adiabatic)
 d. Engines: general picture
 i. \(Q_h = |W_{\text{net}}| + Q_e \) is given on exam
 ii. Efficiency: \(e = \frac{Q_h}{Q_{\text{added}}} \) is given on exam
 i. Carnot Theorem: \(e_{\text{max}} = 1 - \frac{T_c}{T_h} \) is given on exam
 ii. Second Law: Two versions, qualitative reason

HW 15-2. Piston 1 in the figure has a diameter of 0.58 in.; piston 2 has a diameter of 1.5 in. In the absence of friction, determine the force \(F \) necessary to support the 500-lb weight.

Answer: 12.5 lbs

HW 16-5. Oil (\(\rho = 700 \text{ kg/m}^3 \)) is poured into the right arm of a U-tube and forms a column \(L = 3 \text{ cm} \) high. (a) What is \(h \)? (b) Air is blown across the left arm while the right arm is shielded; the left side gets “sucked” up until the two sides are at the same height. What is \(v \)? (\(\rho_{\text{air}} = 1.3 \text{ kg/m}^3 \))

Answers: 0.9 cm, 11.6 m/s
HW 17.3. An underground gasoline tank at 54°F can hold 930 gallons of gasoline. If the driver of a tanker truck fills the underground tank on a day when the temperature is 90°F, how many gallons, according to his measure on the truck, can he pour in? Assume that the temperature of the gasoline cools to 54°F upon entering the tank. Use the coefficient of volume expansion for gasoline given in the textbook, $\beta = 9.6 \times 10^{-4}/°C$

Answer: 948 gallons

HW 18-5. A 45.1-g block of ice is cooled to –78.3°C. It is added to 567 g of water in an 85-g copper calorimeter at a temperature of 25.3°C. Determine the final temperature. Remember that the ice must first warm to 0°C, melt, and then continue warming as water. The specific heat of ice is 2090 J/kg°C.

Answer: 14.8°C

HW 18-6. What mass of steam that is initially at 121.6°C is needed to warm 340 g of water and its 286-g aluminum container from 22.5°C to 48.5°C?

Answer: 17.4 g

HW 19.1. A Styrofoam box has a surface area of 0.832 m² and a wall thickness of 2.09 cm. The temperature of the inner surface is 4.8°C, and that outside is 25.5°C. If it takes 9.79 hours for 5.54 kg of ice to melt in the container, determine the thermal conductivity of the Styrofoam.

Answer: 0.0635 W/m°C
HW 19-3. Calculate the temperature at which a tungsten filament that has an emissivity of 0.25 and a surface area of 2.5×10^{-5} m2 will radiate energy at the rate of 36 W in a room where the temperature is 22$^\circ$ C.

Answer: 2900$^\circ$ C

HW 19-4. A sample of helium behaves as an ideal gas as it is heated at constant pressure from 273 K to 369 K. If 34 J of work is done by the gas during this process, what is the mass of helium present?

Answer: 0.170 g

HW 19-5 (b). Calculate the work done on the gas as the gas expands along path IF. $P_i = 3.05$ atm and $P_f = 1.07$ atm.

Answer: -417 J

HW 20-3. 2.23 moles of a monatomic ideal gas have a volume of 1.00 m3, and are initially at 354 K. (a) Heat is carefully removed from the gas as it is compressed to 0.50 m3, causing the temperature to remain constant. How much work was done on the gas in the process? (b) Now the gas is expanded again to its original volume, but so quickly that no heat has time to enter the gas. This cools the gas to 223 K. How much work was done by the gas in this process?

Answers: 4550 J, 3640 J
HW 20-6. A nuclear power plant has an electrical power output of 1000 MW and operates with an efficiency of 33%. If the excess energy is carried away from the plant by a river with a mass flow rate of 1.9E6 kg/s, what is the rise in temperature of the flowing water?

Answer: 0.26°C