Complex Numbers
- A horizontal

Euler $e^{i\theta} = \cos \theta + i \sin \theta$

Re-writing the other way
$Ae^{i\theta} = A \cos \theta + i A \sin \theta$

so $A \cos \theta = \text{Real} [Ae^{i\theta}]$

Similarly, find A in this:
$5 \cos(\theta + 30^\circ) = 5e^{i(\theta + 30^\circ)}$

Phase notation:
- Real part assumed

When all terms in an equation have same

eigenvalues, we could have

worry about them if they all change

$e^{i\theta} \text{ assumed, I can do if all terms in each will have }$

\[
\begin{align*}
\text{How to add } & 7 \angle 30^\circ + 5 \angle 100^\circ \text{ ?} \\
& \frac{7}{\sqrt{2}} + 5 \frac{1}{\sqrt{5}}
\end{align*}
\]
Complex Numbers Summary, by Dr Colton
Physics 471 – Optics

We will be using complex numbers as a tool for describing electromagnetic waves. *P&W* has a short section in Chapter 0 on the fundamentals of complex numbers, section 0.2, but here is my own summary.

Colton’s short complex number summary:

- A complex number *x* + *iy* can be written in rectangular or polar form, just like coordinates in the *x*-*y* plane.
 - The rectangular form is most useful for adding/subtracting complex numbers.
 - The polar form is most useful for multiplying/dividing complex numbers.
- The polar form (*A*, *θ*) can be expressed as a complex exponential *Ae*^*iθ*.
- For example, consider the complex number 3 + 4i:
 = (3, 4) in rectangular form,
 = (5, 53.13°) in polar form, and
 = 5e^i53.13° or 5e^i(0.9273 rad) in complex exponential form, since 53.13° = 0.9273 rad.
- The complex exponential form follows directly from Euler’s equation: *e*^*iθ* = cos*θ* + isin*θ*, and by looking at the *x*- and *y*-components of the polar coordinates.
- By the rules of exponents, when you multiply/divide two complex numbers in polar form, (*A*₁, *θ*₁) and (*A*₂, *θ*₂), you get:
 - multiply: *A*₁*e^i*θ*₁ * *A*₂*e^i*θ*₂ = *A*₁*A*₂*e^i(*θ*₁+*θ*₂) = (*A*₁*A*₂, *θ*₁+*θ*₂)
 - divide: *A*₁*e^i*θ*₁ / *A*₂*e^i*θ*₂ = (*A*₁/*A*₂)*e^i(*θ*₁-*θ*₂) = (*A*₁/*A*₂, *θ*₁-*θ*₂)
- I like to write the polar form using this notation: *A*∠*θ*. The “∠” symbol is read as, “at an angle of”. Thus you can write:
 = (3 + 4i) × (5 + 12i)
 = 5∠53.13° × 13∠67.38°
 = 65∠120.51° (since 65 = 5 × 13 and 120.51° = 53.13° + 67.38°)

Representing waves as complex numbers:

Suppose you have an electromagnetic wave traveling in the *z*-direction and oscillating in the *y*-direction. The equation for the wave would be this:

\[\vec{E} = E₀ \hat{y} \cos(kz - ωt + φ) \]

It’s often helpful to represent that type of function with complex numbers, like this:

\[\vec{E} = E₀ \hat{y} \cos(kz - ωt + φ) \quad \rightarrow \quad \vec{E} = E₀ \hat{y} e^{i(kz - ωt + φ)} \]

It’s understood that this is just a temporary mathematical substitution. If you want to know the real oscillation, you take the real part of the complex exponential, i.e. turn it back into a cosine.

\[\rightarrow \vec{E} = E₀ \hat{y} \cdot e^{i(kz - ωt)} \]

Now \(\vec{E}_₀ \) is actually a complex number whose magnitude is \(E₀ \), the wave’s amplitude, and whose phase is \(φ \), the phase of the oscillating cosine wave. This type of trick will make the math much easier for some calculations we need to do.
Application: Number made up by class. Like this: 0.20

\[\cos(3t + __) + ____ \cos(3t + ____) \]

\[= A \cos(3t + \phi) \]

What are A and \(\phi \)?

Taught in my 123 section... like adding vectors!

\[\text{Re} \left[A_1 e^{i(3t + \phi)} + A_2 e^{i(3t + \phi_2)} \right] \]

\[\text{Re} \left[e^{i3t} (A_1 L_1 + A_2 L_2) \right] \]

Add polar cards = add vectors.

\[A L_0 \]

\[\text{Re} \left[e^{i3t} A e^{i\phi} \right] \]

\[\text{Re} \left[A e^{i(3t + \phi)} \right] \]

\[A \cos(3t + \phi) \]

Test with Mathematica

Challenge: Work out this answer some other way!

Don't: points for first person

Often, on understand Re[], understand e^{i\theta}, even e^{i(\theta+\phi)}
Complex amplitudes

Ex. \[E = 8^\text{v} \cos \left(kz - \omega t + 30^\circ \right) \]

\[E_0 = \text{amplitude} = 8^\text{v} \]
complex amplitude = \[8 \angle 30^\circ \] \[\text{incorporates phase into } E_0. \]

Note: regular amplitude is regular vector symbol \[E_0 \]
complex amplitude is new vector symbol \[E_0 \]
(Griffiths notation)
but polar does use \[\angle \]

\[E_0 \] is understood complex phase

polar coord. angle \[\rightarrow \] complex phase.
E x B vanishes, a few quick notes

- If \mathbf{B} also has a wave equation, identical when in free space (as mentioned).

- If you plug $E = E_0 \cos(kt-x\omega)$ into Faraday's law...

 $E_0 \approx i(2\pi/n)$

 $B \approx B_0 \omega/m$

 $i(k \cdot E_0) / E_0 \approx -B_0 \approx \frac{k}{n} E_0$

(a) same phase!

(b) $B_0 = \frac{1}{\sin(\theta)} E_0 \cdot \hat{n}$

(c) $|B_0| = \frac{1}{z} |E_0|$

small!
Recall \(\nabla \cdot \mathbf{D} = \rho \) Gauss

\[\mathbf{D} = \varepsilon \varepsilon_0 \mathbf{E} + \mathbf{P} \quad \text{def!} \]

Before we used \(\mathbf{D} = \varepsilon \varepsilon_0 \mathbf{E} \) to obtain

First eqn with \(\mathbf{v} = \frac{\mathbf{E}}{\sqrt{\varepsilon_0}} \) (if \(\mu = 1 \), i.e. nonmagnetic)

\[\mathbf{v} = \frac{\mathbf{E}}{\sqrt{\varepsilon_0}} \]

But does \(\mathbf{D} \) always equal \(\varepsilon_0 \varepsilon_0 \mathbf{E} \)? Not necessarily

\[\mathbf{P} \text{ must be related to } \mathbf{E} \text{ by } \mathbf{P} = \chi \mathbf{E} \]

\[\chi \text{ is the susceptibility, } \mathbf{P} = \chi \mathbf{E} \]

(1) \(\chi \) could be matrix:

\[\begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix} = \chi \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} \]

\[\begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} \] units

\[\chi \text{ is usually diagonal, often } \chi = \begin{pmatrix} \chi_x & 0 & 0 \\ 0 & \chi_y & 0 \\ 0 & 0 & \chi_z \end{pmatrix} \]

Must have this if \(\chi \) nonisotropic

i.e. \(\chi \) in different directions than \(\mathbf{E} \)

(2) \(\chi \) could induce nonlinearity

\[\mathbf{P} = \varepsilon_0 \left(\chi \mathbf{E} + \chi_2 \mathbf{E}^2 + \ldots \right) \]

(3) \(\chi \) can depend on frequency of light

(4) \(\chi \) could be complex - phase shift between \(\mathbf{E} + \mathbf{P} \)

Will worry about (3)(4) now, (1) later (Ch. 5) and (2) not at all in this class, e.g. Ph. 571