No time limit. No notes. Testing Center calculators only. All problems equal weight, 60 points total.

Constants:
\[g = 9.8 \text{ m/s}^2 \text{ but you may use } 10 \text{ m/s}^2 \text{ in nearly all cases} \]
\[G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \]
\[k_B = 1.38 \times 10^{-23} \text{ J/K} \]
\[N_A = 6.02 \times 10^{23} \]
\[R = k_B N_A = 8.314 \text{ J/mol} \cdot \text{K} \]
\[\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4 \]
Mass of Sun = 1.991 \times 10^{30} \text{ kg}
Mass of Earth = 5.98 \times 10^{24} \text{ kg}

Conversion factors
1 inch = 2.54 cm
1 m = 1000 L

Other equations
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Surface area of sphere = \(4\pi r^2\)
Volume of sphere = \((4/3)\pi r^3\)
\[v_{ave} = \frac{v_1 + v_f}{2} \]
\[x = x_i + v_i t + \frac{1}{2} at^2 \]
\[v_f = v_i + 2a\Delta x \]
\[w = mg, PE_g = mgy \]
\[F = kx, PE_x = \frac{1}{2} kx^2 \]
\[f = \mu N \text{ (or } f \leq \mu N) \]
\[P = F/V = F\cos \theta \]
\[F\Delta x = \Delta p \]
Elastic:
\[(v_1 - v_2)_{bef} = (v_2 - v_1)_{after} \text{ arc length: } s = r\theta \]
\[v = r\omega \]
\[a_{tan} = r\alpha \]
\[a_c = v^2/r \]
\[F_g = \frac{GMm}{r^2}, PE_g = -\frac{GMm}{r} \]
\[I_{pt \text{ mass}} = m^2r^2 \]
\[I_{sphere} = (2/5) mR^2 \]
\[I_{loop} = mR^2 \]
\[I_{disk} = (1/2) mR^2 \]

Irod (center) = \((1/12) mL^2\)
Irod (end) = \((1/3) mL^2\)
\[L = v_i p = rp \sin \theta \]
stress = \(F/A\), strain = \(\Delta L/L\)
\[Y = \text{ stress}/\text{strain} \]
\[KE_{ave} = \frac{1}{2} m v_{ave}^2 = \frac{3}{2} k_B T \]
\[Q = mc \Delta T; Q = mL \]
\[\Delta Q = kA \frac{T_2 - T_1}{L} \]
\[P = e\sigma AT^4 \]
\[|W_{on\text{gas}}| = \text{area under P-V curve} \]
\[= PAV \text{ (constant pressure)} \]
\[U = \frac{3}{2} Nk_B T - \frac{3}{2} nRT \text{ (monatomic ideal gas)} \]
\[Q_h = |W_{net}| + Q_e \]
\[e = \frac{|W_{net}|}{Q_{h \text{ added}}} = 1 - \frac{Q_e}{Q_h} \]

Specific heat of aluminum: 900 J/kg°C
Latent heat of melting (water): 33 \times 10^5 J/kg
Latent heat of boiling (water): 2.26 \times 10^6 J/kg
Thermal conduct. of aluminum: 238 J/s·m·°C
\(\sin(30°) = 0.5 \cos(30°) = 0.866 \tan(30°) = 0.577 \pi \approx 3.14 \)

Write your work on the exam pages if you wish. Of course also record your final answers on the bubble sheet. You will likely not get this exam booklet back, but please put your CID at the top of this page just in case.
In all problems, ignore air resistance unless specifically stated otherwise. Use \(g = 9.8 \text{ m/s}^2 \) only if there are “9.8” numbers in the answer choices, otherwise use \(g = 10 \text{ m/s}^2 \).

Problem 1. Suppose your hair grows at a rate of 0.03 inches per day. How fast does it grow in nanometers per second? (“nano” = \(10^{-9} \))

\[
\begin{align*}
a. & \quad \frac{0.03 \times 2.54}{100 \times 24 \times 60 \times 60 \times 10^{-9}} \\
b. & \quad \frac{0.03 \times 2.54 \times 100 \times 10^9}{24 \times 60 \times 60} \\
c. & \quad \frac{0.03 \times 2.54 \times 10^9}{100 \times 24 \times 60 \times 60} \\
d. & \quad \frac{0.03 \times 10^9}{2.54 \times 100 \times 24 \times 60 \times 60} \\
e. & \quad \frac{0.03 \times 10^9 \times 24 \times 60 \times 60}{2.54 \times 100} \\
f. & \quad \frac{0.03 \times 10^9 \times 60 \times 60}{2.54 \times 100 \times 24} \\
g. & \quad \frac{100 \times 2.54 \times 10^9}{0.03 \times 24 \times 60 \times 60} \\
h. & \quad \frac{90.03 \times 2.54 \times 10}{100 \times 24 \times 60 \times 60}
\end{align*}
\]

Choice C

Problem 2. In a certain right triangle, the two sides that are perpendicular to each other are 4.8 cm and 3.5 cm long. What is the angle for which 4.8 cm is the opposite side?

\[
\begin{align*}
a. & \quad \sin \left(\frac{3.5}{4.8}\right) \\
b. & \quad \sin \left(\frac{4.8}{3.5}\right) \\
c. & \quad \sin^{-1} \left(\frac{3.5}{4.8}\right) \\
d. & \quad \sin^{-1} \left(\frac{4.8}{3.5}\right) \\
e. & \quad \tan \left(\frac{3.5}{4.8}\right) \\
f. & \quad \tan \left(\frac{4.8}{3.5}\right) \\
g. & \quad \tan^{-1} \left(\frac{3.5}{4.8}\right) \\
h. & \quad \tan^{-1} \left(\frac{4.8}{3.5}\right)
\end{align*}
\]

2. \(\tan \theta = \text{opp/adj} = 4.8/3.5 \)
\(\theta = \tan^{-1}(4.8/3.5) \) Choice H

Problem 3. Joshua throws a stone upward and forward from a cliff. While the stone is still rising, where does the stone’s acceleration vector point?

a. down
b. down and backward
c. down and forward
d. up
e. up and backward
f. up and forward
3. acceleration due to gravity always points straight down. Choice A

Problem 4. Sally throws a ball upwards at a \(10^\circ \) angle from the horizontal. Her twin sister Susie throws a similar ball at the same time with the same speed, but upwards at a \(20^\circ \) angle. Whose ball hits the ground first?

a. Sally’s
b. Susie’s
c. They hit at the same time
4. Susie’s ball as more upwards velocity, so it goes higher and takes longer. Therefore Sally’s hits first. Choice A
Problem 5. The “Milkdrop demo” done in class used a strobe camera to look at the instantaneous position of drops that started falling at equally spaced times. Consider the strobe picture just as a drop is leaving the nozzle, with several drops below that drop. What pattern did the separations between drops demonstrate? (x is the separation distance between the top two drops.)
 a. The separations increased like ratios of the integers: x, 2x, 3x, …
 b. The separations increased like ratios of the odd integers: x, 3x, 5x, …
 c. The separations increased like ratios of squared integers: x, 4x, 9x, 16x, …
 d. The separations increased like ratios of cubed integers: x, 8x, 27x, 81x, …

5. As mentioned in both lectures (and is on the video on the website), although the total distance traveled increases as time squared (from the position vs. time kinematic equation), the separations increase like the odd integers. The two facts fit with each other because when you add up the odd integers successively, you get the squared integers:
 1 = 1
 1 + 3 = 4
 1 + 3 + 5 = 9
 1 + 3 + 5 + 7 = 16
 1 + 3 + 5 + 7 + 9 = 25
 Etc.
 Choice B

Problem 6. Samantha’s car accelerates at 0.7 g’s. That is, \(a = 0.7 \times g \). How long will it take her to go from 20 m/s (44.7 mph) to 34 m/s (76.1 mph)?
 a. Less than 0.7 s
 b. 0.7 – 1.2
 c. 1.2 – 1.7
 d. 1.7 – 2.2
 e. 2.2 – 2.7
 f. 2.7 – 3.2
 g. More than 3.2 s

6. \(v = v_0 + at \)
 \(34 \text{ m/s} = 20 \text{ m/s} + (0.7 \times 10 \text{ m/s}^2) t \)
 \(t = (34 - 20) / 7 = 14 / 7 = 2 \text{ sec} \)
 Choice D

Problem 7. Raul is driving a car at 30 m/s (67.1 mph). He slams on his breaks and decelerates at a rate of 0.9 g’s. (That is, \(a = -0.9 \times g \).) How far will the car travel before stopping?
 a. Less than 43 m (there was a typo; this was labeled “feet” on the exam.)
 b. 43 – 49
 c. 49 – 55
 d. 55 – 61
 e. 61 – 67
 f. 67 – 73
 g. More than 73 m

7. \(v^2 = v_0^2 + 2a\Delta x \)
 \(0 = (30 \text{ m/s})^2 + 2(-0.9 \times 10 \text{ m/s}^2) \Delta x \)
 \(\Delta x = 900 / (2 \times 9) \text{ m} = 50 \text{ m} \)
 Choice C
 If you converted to feet, the correct answer = a little bit more than 50 \times 3 \text{ ft} (since there are a little more than 3 feet per meter), or choice G.
Problem 8. Frida throws a ball upwards. Which of the following is the best answer to the question, “Does the ball have some upwards acceleration in the air after it leaves her hand?”

a. No, because the air prevents the ball from rising upwards very far.
b. No, because the only acceleration at that point is from gravity.
c. No, because the ball has no acceleration until the top of its path.
d. Yes, because gravity takes over only after the acceleration from her hand runs out.
e. Yes, because otherwise the ball would fall down immediately.
f. Yes, because the air currents carry the ball upwards.

8. The ball has upwards velocity after it leaves her hand, but it starts slowing down immediately. Therefore, the acceleration is always downwards, as it always is for gravity. Choice B.

Problem 9. You drop a 4 kg stone from rest down a 5 m well. How long will it take to reach the bottom?

a. Less than 0.36 s
b. 0.36 – 0.50
c. 0.50 – 0.64
d. 0.64 – 0.78
e. 0.78 – 0.92
f. 0.92 – 1.06
g. More than 1.06 s

9. \[y = y_0 + v_{0y} - \frac{1}{2} gt^2 \]
 \[-5 \text{ m} = 0 + 0 - \frac{1}{2} (10 \text{ m/s}^2) t^2 \]
 \[5 \text{ m} = (5 \text{ m/s}^2) t^2 \]
 \[t = 1 \text{ s. Choice F} \]

Problem 10. George enters a straight freeway and travels at a constant speed of 60 mi/hr. Fred enters the freeway 20 minutes later traveling at a constant speed of 70 mi/hr in the same direction. When Fred passes George, how far has he gone on the freeway?

a. Less than 125 miles
b. 125–145
c. 145–165
d. 165–185
e. 185–205
f. 205–225
g. More than 225 miles

10. initial gap = \(\frac{1}{3} \text{ hour} \times 60 \text{ miles/hour} = 20 \text{ miles} \)
 Gap closes at 10 miles/hour → it takes 2 hours to close
 In two hours, Fred has gone 140 miles. Choice B

Problem 11. The pilot of an airplane sees that his heading is due west (the direction the nose of the plane is pointing, i.e., the plane’s direction relative to the air) and that his airspeed (speed of the plane relative to the air) is 150 mph. If there is a wind of 40 mph toward the north (speed of the air relative to the ground), what is the magnitude of the airplane’s velocity relative to the ground?

a. \(\sqrt{150^2 - 40^2} \) mph
b. \(\sqrt{150^2 + 40^2} \)
c. 150 – 40
d. 150 + 40 mph

11. \(v_{\text{plane-ground}} = v_{\text{plane-air}} + v_{\text{air-ground}} \), added as vectors. As the figure shows, when these are added like vectors, you can get \(v_{\text{plane-ground}} \) simply via Pythagorean theorem: \(v_{\text{plane-ground}} = \sqrt{150^2 + 40^2} \) mph. Choice B
Problem 12. Winston throws a ball at an upward angle across a flat field. The ball leaves his hand 2 meters above the ground, and it lands on the field some distance away. At what part of its path does the ball have its maximum speed?
 a. At the top of its path
 b. Halfway to the top
 c. Right after it leaves his hand (typo: exam said “my hand”. Sorry about that.)
 d. Right before it hits the ground
 e. There's not enough information to say

 12. The x-velocity will be constant the whole way. The y-velocity will decrease on its way up, then increase again on its way down. It will have its largest value just before the ball hits the ground. Therefore, the total velocity will also be largest just before the ball hits the ground. Choice D.

Problem 13. Sharon and Rob each throw a rock horizontally from a cliff overlooking the ocean. Sharon throws her rock fast. Rob throws his slower. Which rock will be going fastest (vector magnitude) just before it hits the water?
 a. Sharon’s
 b. Rob’s
 c. Neither; the rocks will have the same speed

 13. Both will have the same y-velocity. Sharon’s will have the larger x-velocity. Therefore Sharon's will have the larger total velocity. Choice A.

Problem 14. Jim walks back and forth for a bit; his position vs. time graph is shown. What was Jim’s average velocity between 1.0 and 1.5 seconds?
 a. Less than -0.95 m/s
 b. Between -0.95 and -0.65
 c. Between -0.65 and -0.35
 d. Between -0.35 and -0.05
 e. Between -0.05 and +0.25
 f. Between +0.25 and +0.55
 g. Between +0.55 and +0.85
 h. More than 0.85 m/s

 Problem 15. Same situation. What was Jim’s instantaneous velocity at 3.6 seconds?
 a. Less than -0.3 m/s
 b. Between -0.3 and -0.1
 c. Between -0.1 and +0.1
 d. Between +0.1 and +0.3
 e. More than +0.3 m/s

 14. \(v_{ave} \) between 1.0 and 1.5 sec = slope of this line
 \[
 \text{Slope} = \frac{\text{rise}}{\text{run}} = \frac{-0.6}{0.5} \text{ m/s}
 \]
 \[
 \text{Slope} = -1.2 \text{ m/s}. \text{ Choice A}
 \]

 15. Instantaneous v at 3.6 sec = slope of the tangent line at that point
 \[
 \text{Slope} = \frac{\text{rise}}{\text{run}} = 0. \text{ Choice C}
 \]
 (If you do it super-accurately, you actually get a slope of -0.025 m/s. But that’s still well within answer the range of choice C.)
Problem 16. The figure shows a velocity vs time graph of a car moving along a road, and positive means “to the right”. According to the graph, what is the car doing?
 a. moving to the left and slowing down
 b. moving to the left and speeding up
 c. moving to the right and slowing down
 d. moving to the right and speeding up
 e. first moving right, then moving left
 f. first moving left, then moving right

16. The velocity is positive → car is moving to the right
 The velocity is decreasing → car is slowing down.
 Choice C

Problem 17. A block moves back and forth in a straight line, and has the velocity vs time graph given in the figure. Positive means “to the right”. How many times did the block turn around during this period of time?
 a. 0
 b. 1
 c. 2
 d. 3
 e. 4
 f. 5

17. Block turns around when it switches from moving right to moving left, or vice versa. This happens when the velocity goes from + to –, or vice versa. That happens 4 times on the graph (twice between 2 and 3, once around 4.3 and once around 5.2). Choice E.

Problem 18. A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of \(v_0 = 24 \) m/s. The cliff is a height \(h = 20 \) m above a horizontal beach, as shown in the figure. How far to the right of the cliff will the stone strike the beach? Hint: first find the time it will take.
 a. Less than 30 m
 b. 30 – 35
 c. 35 – 40
 d. 40 – 45
 e. 45 – 50
 f. 50 – 55
 g. 55 – 60
 h. More than 60 m

18. First, consider the components of \(v_0 \).
 It’s initially horizontal, so \(v_{0x} = 24 \) m/s and \(v_{0y} = 0 \).
 Now, find the time from the y-direction:
 \[y = y_0 + v_{0y}t - \frac{1}{2} gt^2 \]
 \[-20 \text{ m} = 0 + 0 - \frac{1}{2} (10 \text{ m/s}^2) t^2 \]
 \[20 \text{ m} = 5 \text{ m/s}^2 t^2 \]
 \[t^2 = 4 \text{ s}^2 \]
 \[t = 2 \text{ sec} \]
 Finally, find the distance using that time:
 \[x = x_0 + v_{0x} t \]
 \[x = 0 + (24 \text{ m/s})(2 \text{ s}) \]
 \[x = 48 \text{ m. } \text{Choice E} \]
Problem 19. A hiker follows her compass due north for 4 miles. She then follows a direction 30° N of E (or 60° E of N) for 8 miles. How many miles is she from where she started?

a. $4 - 8 \cos 30°$

b. $4 - 8 \sin 30°$

c. $4 + 8 \cos 30°$

d. $4 + 8 \sin 30°$

e. $\sqrt{(4 - 8 \cos 30°)^2 + (8 \sin 30°)^2}$

f. $\sqrt{4 - 8 \sin 30°^2 + (8 \cos 30°)^2}$

g. $\sqrt{(4 + 8 \cos 30°)^2 + (8 \sin 30°)^2}$

h. $\sqrt{(4 + 8 \sin 30°)^2 + (8 \cos 30°)^2}$

19. From the picture, the displacement components are $4 + 8 \sin 30°$ and $8 \cos 30°$. Using the Pythagorean theorem, then, the overall displacement magnitude is $\sqrt{(4 + 8 \sin 30°)^2 + (8 \cos 30°)^2}$. Choice H.

Problem 20. A man holding a rifle at height $y = 0$ tries to hit the side of a large barn 100 m away. The rifle is shot at 2.9° above the horizontal. The initial velocity of the bullet is 200 m/s. What is the y-position in meters of the hole the bullet makes in the side of the barn? Use $\sin(2.9°) = 0.05$, $\cos(2.9°) = 1.00$. Hint: first find the time it will take.

a. Less than 2.0 m

b. 2.0 – 2.4

c. 2.4 – 2.8

d. 2.8 – 3.2

e. 3.2 – 3.6

f. 3.6 – 4.0

g. More than 4.0 m

20. First: the components of the initial velocity vector are

$v_{0x} = 200 \cos 2.9° \approx 200 \text{ m/s}$ and $v_{0y} = 200 \sin 2.9° \approx 200(0.05) = 10 \text{ m/s}$.

Next, use the x-direction info to find out the time the bullet takes to reach the barn:

$x = x_0 + v_{0x}t$

$100 = 0 + 200t$

$t = 0.5 \text{ s}$

Finally, use that time to figure out the change in the y-position:

$y = y_0 + v_{0y}t - \frac{1}{2} gt^2$

$y = 0 + (10)(0.5) - \frac{1}{2} (10)(0.5)^2$

$y = 5 - 5/4$

$y = 3.75 \text{ m}$. Choice F