4. A solar cell is fabricated by diffusion processes from a p-n junction.

10. Induction of domain walls from a common source (C) into a second crystal by diffusion for long range and high density.

110. In the function depth, the material is in a 10% solution.

111. A complete phase analysis for an 80% V2O5-20% Al2O3 matrix is obtained at 1200°C to 0°C.

120. We find that the crystallographic orientation and phase analyses at 1200°C, 600°C, and 300°C when probed at 29°C.

121. The potential of interaction between atoms in an ionic solid is determined.

122. What is the peak separation in the (111) reflection from a single crystal? What are the peak features in the (111) reflection? What are the crystallographic orientation of the (111) reflection from a single crystal?

3. The potential of interaction between atoms in an ionic solid is determined.

2. What is the lattice parameter of each material?

1. What is the lattice parameter of each material?

7. Metals Al and Pb are conductive materials for high-temperature superconductors.

Exercises

1. In Fig. 10.1, which has a larger work function, the metal or the semiconductor?

2. In Fig. 10.1, which has a larger work function, the metal or the semiconductor?

3. If two metals are placed in contact, would there be a similar step in the conduction band? Explain why or why not?

4. What is the physical significance of the shaded area in Fig. 10.1a? What is the significance of the shaded area in Fig. 10.1b?

5. What is the connection between the representation of the p-n junction in the electron conduction band and that of the hole conduction band?
A. Defects

B. Structure

C. Devices

REFERENCES
The pressure at which the gas pump is located is expressed in units of atmospheres (atm).

The pressure of a gas pump is given by the formula:

\[P = \frac{nRT}{V} \]

where:
- \(P \) is the pressure (in atm)
- \(n \) is the number of moles of gas
- \(R \) is the gas constant (8.314 J/(mol·K))
- \(T \) is the temperature (in Kelvin)
- \(V \) is the volume (in liters)

The pressure of the gas pump is dependent on the temperature and volume of the gas.

Exercises

1. An air compressor is being used to fill a 10-liter tank with air. If the tank is being filled at a rate of 2 liters per minute, how long will it take to fill the tank?

2. A chemical reaction takes place in a jacketed reactor at 50°C. If the reactor is being heated at a rate of 1°C per minute, how long will it take to reach a temperature of 100°C?

3. A throttle valve is being used to control the flow of a gas through a pipeline. If the valve is being throttled at a rate of 0.5 m/s, how long will it take to reduce the flow rate to 0 m/s?

4. A vacuum chamber is being evacuated using a diffusion pump. If the diffusion pump is operated at a rate of 100 liters per minute, how long will it take to evacuate the chamber to a pressure of 100 mTorr?

5. A liquid is being delivered at a rate of 0.5 liters per minute. If the liquid is being delivered into a 1-liter container, how long will it take to fill the container?

6. Two identical pumps are being used to fill a 10-liter tank with water. If each pump is delivering 2 liters per minute, how long will it take to fill the tank?

7. A chemical reaction takes place in a reactor at 50°C. If the reaction rate is 0.5 moles per liter per minute, how long will it take to consume 1 mole of reactant?

8. A chemical reaction takes place in a reactor at 50°C. If the reaction rate is 0.5 moles per liter per minute, how long will it take to consume 1 mole of reactant?
REFERENCES

(q) What proportion pressure is associated with this source of

(b) How far does this rise in the updraft correspond to a source having

(c) What is the rate of increase of the pressure of air in the
deviation from the undisturbed pressure of air in the

dissociation of the air in the absence of any other source of

(d) How far is this rise in the updraft due to the

(e) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(f) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(g) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(h) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(i) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(j) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(k) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(l) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(m) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(n) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(o) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(p) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(q) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(r) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(s) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(t) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(u) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(v) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(w) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(x) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(y) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

(z) What is the rate of increase of the pressure of air in the
dissociation of the air in the absence of any other source of

14 In systems to measure the web coat large surface areas of polishing sheets

Vacuum Science and Technology