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Allowed mesoscopic point group symmetries in domain average
engineering of perovskite ferroelectric crystals

D. M. Hatcha) and H. T. Stokes
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

W. Caob)

Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China

~Received 30 June 2003; accepted 30 July 2003!

In multivariant systems, several energetically degenerate low temperature domain states can be
produced at the structural phase transition. Coexistence of these domain states can produce
mesoscopic structures that possess symmetries distinct from the microscopic single domain crystal
symmetry. Such engineered domain structures in certain ferroelectric materials have been proven to
give superior piezoelectric properties and extremely soft shear moduli. The objective of this article
is to consider the variety of symmetries that can be produced through domain average engineering
in proper ferroelectric systems arising from the cubicPm3̄m symmetry perovskite structure.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1611634#
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I. INTRODUCTION

Many ferroelectric systems belong to the pervovsk
family with the high temperature phase having cubicPm3̄m
symmetry. A ferroelectic phase transition driven by a zo
center transverse optical ‘‘soft’’ mode produces a crys
structure with a dipole in each unit cell, reducing the sy
metry to one of the polar classes: 1, 2, 3, 4, 6,m, mm2, 3m,
4mm, and 6mm. As a consequence, there is more than o
low temperature ferroelectric domain state present. A dom
refers to a homogeneous crystal region in which all the
poles are aligned in the same direction. It is a well est
lished fact that the presence of domains can substant
enhance the properties of ferroelectric materials. In a sin
crystal system, two neighboring domains form a twin stru
ture and there is a spatial transition region between th
which is termed the domain wall, since it usually appears
a planar structure along particular crystallographic orien
tions. Under an applied external field, the size of ferroelec
domains can either contract or expand in order to lower
total energy of the system, causing the domain walls
move. These domain wall movements and the resulting
main configurations produce the so-called ‘‘extrinsic con
butions’’ to the effective material properties in many ceram
ferroelectrics. These extrinsic contributions have been
perimentally verified to amount to 60% of the total piez
electric and dielectric effects in Pb~Zr,Ti!O3 ~PZT! ceramics
at room temperature. For this reason, researchers have
extensive effort to find better chemical additives that c
enhance the mobility of domain walls. For example, a f
percent of La or Nb dopants can produce more than 5
improvement in piezoelectric and dielectric properties in
so called soft PZT ceramics.
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Recently, a method has been reported to fabricate des
multidomain single crystals, which can greatly enhance
piezoelectric and the electromechanical coupling coefficie
in relaxor-based ferroelectric single crystals
Pb~Mg1/3Nb2/3)O3 ~PMN–PT! and Pb~Zn1/3Nb2/3)O3

~PZN–PT!.1–4 Both solid solution systems have a perovsk
structure. Poling along one of the pseudocubic axes, for
ample@001#, in the rhombohedral phase ferroelectric cryst
~corresponding to a@111# polarization!, creates a multido-
main state containing four of the eight possible low tempe
ture variants with the local dipoles oriented randomly alo
@111#, @11̄1#, @ 1̄11# and@ 1̄1̄1# directions with respect to the
pseudocubic axes. Such a poled multi-domain system h
piezoelectric coefficient over 2000 pC/N and an electrom
chanical coupling coefficientk33 over 90%,1,3,4 which is a
dream come true for transducer and piezoactuator design
The complete set of matrix properties have been determ
for the PZN–PT and PMN–PT multidomain single crys
based on the pseudotetragonal symmetry, which is subs
tially different from data of the single domain single cryst
and ceramic samples.3,4 The method used in enhancing th
material properties in this case is to manipulate the dom
structures instead of the domain wall mobility. Therefore,
configuration and size of the domains will determine the
fective symmetry and the average material properties.

It was found that one of the shear moduli in the mul
domain systems is extremely low, which means that the m
soscopic structures can also greatly influence the ela
properties. These results demonstrated that the dom
engineering concept might help us to produce materials w
superior properties. In order to take full advantage of t
process, one must gain a better understanding of the kind
effective symmetry that can be produced in each given c
tal system. Obviously, the mesoscopic symmetry or symm
try of domain patterns is intrinsically linked to the underl
ing crystal structure. Here we use group theoretical meth
to make a detailed analysis of possible proper ferroelec
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 [This a
systems which can result from transitions in a cubicPm3̄m
perovskite structure. The analysis will be performed for b
equal and non-equal volume fractions of different domains
the structure. The volume fraction deviation from equal p
tition will cause the mesoscopic symmetry to become low
In fact, as analyzed previously for the PMN–PT a
PZN–PT systems, the effective macroscopic symmetry p
duced by the microscopically rhombohedral crystal struct
can range from cubicm3̄m, tetragonal 4mm, orthorhombic
mm2, monoclinicm, all the way down to triclinic 1.5,6 The
symmetry of the multi-domain structure does not necessa
have to be a subgroup of the microscopic crystal symme
as shown in Fig. 1. In case~a! all four domains are identica
in size. The solid circles represent the endpoints of the
larization direction vector in each domain, originating fro
the center of the cube. The system has two mirror planes
one four-fold rotation axis; therefore, the effective symme
of the structure is 4mm. In Fig. 1~b!, the two right domains
have equal volume fractions~represented by solid circles!
and the two left domains have equal volume fraction~repre-
sented by the open circles! but the two left domains have
different volume fractions from the right domains. Therefo
there is only one mirror plane in the structure and the sy
metry of this twin is reduced to monoclinicm. ~In this article
if the domains have the same volume fraction they are r
resented by the same symbol, e.g., solid circle, open cir
solid triangle, etc., might be used, but different symbols i
ply different volume fractions.!

The mesoscopic symmetry analysis must distinguish
following two different situations. The first kind of domai
structure analysis is on domain geometry and includes
consideration of the geometrical nature of domain confi
ration in space, twinning patterns as well as domain w
orientation, and positioning. The second kind of dom
analysis, domain averaging, considers an average of t
domains without consideration of spatial occupation deta
The symmetry operations therefore refer to the global av
age in terms of volume fractions and the operation may
exactly bring the local structure back to itself. This article
focused on the second kind of domain structure analysis

Of course, the domain pattern symmetry will be differe
if the microscopic symmetry of the crystal structure is
tered. The ultimate objective is to systematically obtain
allowed ‘‘domain sets,’’ their mesoscopic symmetry, info
mation about the role of domain fractions in determining t

FIG. 1. Illustration of two different symmetries for a twin structure pr
duced in a rhombohedral ferroelectric phase transition.~a! The four domains
have identical size so that the system has 4mm symmetry.~b! Two domains
are larger than the others.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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symmetry, and the corresponding physical tensor proper
for that domain set. Since the domain patterns can v
greatly, and since the questions of variety and resulting s
metries are not directly determined from the crystal symm
try, these possibilities can become complicated and diffic
to obtain systematically. In the following we describe a
lowed mesoscopic symmetries in crystals having aG point
soft mode, which upon softening produces a proper fer
electric phase transition. The three cases we consider co
spond to polarization (px ,py ,pz) oriented along @100#,
@110#, and@111#, resulting in the single domain state symm
tries P4mm, Amm2, andR3m, respectively. For the@111#
polarization direction the PZM–PT and PMN–PT crysta
are examples of interest. The well known BaTiO3 is an ex-
ample of a structural change with polarization along t
@100# direction. KNbO3 is an example of a material whic
undergoes a transition due to the spontaneous polariza
toward the cube edges^110&.

Multidomain symmmetries have been considered
Fousek et al.7 and Fuksa and Janovec.8 In the work of
Fouseket al.7 all volume fractions were assumed equal a
thus the number of symmetries for the domain configurat
were restricted. They considered multidomain symmetr
for the transition fromm3̄m to R3m. This corresponds to ou
@111# polarization ordering. The equal volume restriction w
relaxed in the work of Fuksa and Janovec8 and they listed
possible symmetries for the@111# ordering. Here we conside
the case of nonequal volume fractions and briefly describe
algorithm to systematically obtain all possible domain co
figurations. The algorithm has been implemented on co
puter and thus can easily yield similar results for multid
main configurations resulting from any phase transition.
examples of our procedure we list results for the experim
tally interesting perovskites mentioned above of order
along@100#, @110#, and@111#. We compare our results for th
@111# ordering with previously published work.

II. ALLOWED MESOSCOPIC SYMMETRIES

At the transition the symmetry reduces from the par
group symmetryG to a phase of symmetryF1,G, which is
the symmetry of the domain stateS1 . There is a one to one
correspondence between the domain states and the left c
of F1 in G. The groupG is the union of all these left coset

G5F11g2F11...1gnF1 .

Each coset representativegi of F1 in G acting on the stateS1

takes it into the corresponding stateSi whose symmetry is
giF1gi

21. The set of thesen domain states formed by th
transition is represented asS5$S1 ,S2 ...%. The action of the
parent groupG on the setS is a mapping ofS to S which, for
each elementgPG, assigns a stateSb to a stateSa for all
states inS. This mapping must be an isomorphism which
associative. The identity element of this mapping is the id
tity element ofG. The action ofg on S results in a permuta-
tion of the elements inS and can be mapped onto a perm
tation matrixD(g). The mapping of all operatorsgPG onto
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
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 [This a
permutation matrices results in a permutation representa
of G on S which contains a finite number of distinct matric
forming a permutation groupP.

If H is an arbitrary subgroup ofG then theH orbit of the
stateSa is the setSa of distinct states generated by applyin
all elements of H to Sa . For any H,G, the set S
5$S1 ,S2 ...% is either a singleH orbit S5Sa or the union of
disjoint H orbits. An operationgPG takes anH orbit of Sa

into a gHg21 orbit of gSa . Thus the division of S
5$S1 ,...% into H orbitsS5SaøSbø... is transformed into a
division of gHg21 orbits S5gSag21øgSbg21ø... . We
will say that the two divisions ofS under any two subgroup
H1 andH2 of G, are equivalent if there exists an operati
gPG which takes every orbit ofH1 into an orbit ofH2 .

A multidomain crystal has an average symmetryH if the
effective property tensorŪ is invariant under the groupH.
Any effective property tensorŪ can be written as a function
of tensor propertiesU1 , U2 ,...Un of the domain statesS1 ,
S2 ,...Sn respectively, weighted by their volume fraction
The essential information needed in order to obtain a ma
scopic symmetry and thus the macroscopic properties is
knowledge of the multidomain structure, their respective v
ume fractions, and the maximal set of symmetries wh
preserve these volume fractions. The average symmetry
be determined only by the symmetry of the domains as t
transform into one another under the restriction that the s
metry transformation cannot disturb the relative weighting
the domains according to the volume fraction. With this p
losophy in mind, the domains which are present in the str
ture, with their respective group symmetries, can be in
preted as coexisting in space and being permuted by
elements of the symmetry operation corresponding to
coset decomposition. In fact, the same philosophy has b
used in all ceramics and alloys when they are assumed
mogeneous and isotropic. Our algorithm is based upon c
permutations corresponding to a given transition and th
resulting symmetries.

We will call a domain set ‘‘connected’’ with respect to
group H,G, if the action ofH on any one of the domain
states yields the entire set of domain states, the set consis
a single H orbit. If H is the symmetry of a multidomain
structure, all elements of anH-connected set must have equ
volume fractions. A nonconnected~NC! set of domains con-
sists of distinct connected components. In the NC set dif
ent components do not have the same volume fraction
the domain states in each component do. The symmetr
the NC set is the intersection of the symmetries of its disti
connected components.

A multidomain structure can be represented by a vec
S where the components represent the relative fraction of
total volume each domain occupies in the crystal. For
ample, a crystal composed of two domains,S1 and S2 of
equal amounts is represented byS5(a,a,0,0,...,0) whereas a
crystal composed of the two domains in unequal amou
~necessarily nonconnected! is represented by S
5(a,b,0,0,...,0) whereaÞb. The symmetryL of a multido-
main structure consists of all operators which leaveS invari-
ant, i.e., allg for which D(g)S5S. In the examples above
the symmetry ofS5(a,a,0,0,...,0) could include operator
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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that interchange domainsS1 andS2 whereas the symmetry o
the nonconnected multidomain setS5(a,b,0,0,...,0) would
not.

The above procedure is also applicable in the reve
direction. This is the basis of our algorithmic approach.
more detailed discussion of the computer implementat
will be given elsewhere. Here we want to emphasize
results which will be of interest for mesoscopic symmetr
and tensor properties. Given a group symmetryL, the most
general form of S which satisfies the matrix equatio
D(g)S5S for everyg in L gives us the most general mult
domain structure with that symmetry. This procedure redu
to solving a set of simultaneous equations by compute
matrix equation resulting for each elementg in L. The sym-
metry L of every multidomain structure corresponds
~maps onto! one of the subgroups ofP. SinceP is finite, it
has a finite number of subgroups. If we consider every p
sible symmetry that might be allowed by a multidoma
structure~corresponding to all subgroups of the permutati
groupP!, and obtain the multidomain structure for each sy
metry, we can obtain all possible multidomain structures.
construct by computer all subgroups ofP by requiring ele-
ment multiplication and group closure. We start with grou
of order two, check for equivalences, then go to groups
order three, etc., on up to the order of the groupP. We then
need only consider each of these subgroups, one at a t
and obtain the general domain set structureS for each one.

The process of starting from symmetriesLi and obtain-
ing the domain configuration needs some clarification. F
there are subgroups of the permutation groupP, defining the
symmetriesLi , which generate the same multidomain stru
ture as a higher symmetry groupL. We are only interested in
the complete symmetry of a structure, so in the results p
sented here we list only the maximal symmetry group fo
given multidomain structure. Second, a multidomain str
ture may be equivalent to another in that it is just a rotat
of the latter by a lost parent-group element. We can syst
atically check for equivalence for each domain structure.
list only one representative in an equivalence class. Th
suppose the symmetryL determines a nonconnected vect
S5(a,a,b,c,d,e) as a general multidomain structure
symmetryL. It is possible that the vectorS5(0,0,b,0,d,0)
also determines the same symmetry. This symmetry is
obtainable by omittingb or d ~i.e., the symmetry increase
whenb or d is omitted! and the addition of the other domain
~corresponding toa, c, ande! does not decrease the symm
try. We note thatS5(0,0,b,0,d,0) is then a minimal domain
set for the symmetryL while S5(a,a,b,c,d,e) is not mini-
mal. In the listing of our tables we only include the minim
domain set that determines the maximal symmetry group
the domain structure. Additional nonconnected sets wh
yield the same symmetry will not be listed. This allows us
present a more compact listing in the tables. In our exam
the vectorS5(0,0,b,0,d,0) would yield a domain set which
would be listed in our tables with symmetryL, because it is
a minimal multidomain set. However, the vectorS
5(a,a,b,c,d,e) and its symmetry would not be listed be
cause it yields the same symmetry, even though it is a n
connected domain set of symmetryL. ~See the discussion o
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
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 [This a
a specific example in Sec. III.! Similarly, suppose a con
nected setS5(0,0,a,a,0,0) with symmetryL is listed in our
tables. If the addition of domains 2 and 6, corresponding
the vectorS5(0,b,a,a,0,b), does not decrease the symm
try, this nonconnected set is not listed because it is no
minimal set yielding the symmetryL. ~See the specific ex
ample in Sec. III.!

Thus in the listing of our results we will list:~1! the
maximal symmetry for a multidomain structure;~2! only one
representative for each equivalence class; and~3! only the
minimal domain set determining the symmetry. We do p
vide the most general domain structure for each symme
This allows one to infer domain structures from the minim
form up to the most general form for each symmetry of
equivalence class. We check by computer each disjoint o
to obtain the minimal domain configuration.

III. †110‡ DIPOLE ORDERING IN PEROVSKITE BASED
FERROELECTRIC SYSTEMS

As an example of our procedure, consider the case wh
the dipole moment orders at the transition toward the c
edges$110% e.g., KNbO3. This ferroelectric distortion arise
from theG4

2 representation and changes the symmetry fr
that of the parentPm3̄m to that of the microscopic ortho
rhombic crystal structureAmm2. There are 12 possible do
main states, each being symmetrically related to the@110#
domain. Those 12 domain states are the following: 1(a,a,0),
2(a,-a,0), 3(-a,a,0), 4(-a,-a,0), 5(a,0,a), 6(a,0,-a),
7(-a,0,-a), 8(-a,0,a), 9(0,a,a), 10(0,-a,-a), 11(0,a,-a),
and 12(0,-a,a). Here we give the domain number and t
direction of the dipole moment. The twelve domain states
represented in Fig. 2. All possible connected sets obtaine
our algorithm are shown in Table I. In column 2 of Table
the point group symmetry of the mesoscopic average st
ture ~the multidomain structure! is given. Under the symme
try transformations of the point group listed in column 2 a
domain state in the set will transform into all of the liste
domain states. As mentioned earlier, a set of domain
equivalent to another set if there exists a symmetry elem
of the parent phase which simultaneously transforms the
domain set into the second. Only one representative of e
symmetry class of domains is given in column 1. For e
ample, there are many domain sets of order 6. The dom
class represented by~1,4,5,7,9,10! is connected. There is als
another class, inequivalent to~1,4,5,7,9,10!, consisting of 6
domains which is connected and the representative of

FIG. 2. Directions of polarization of domain states with orthorhombic
dering along@110#.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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class is~2,3,6,8,11,12!. Only two domain classes of order
are connected. All other connected domain structures c
taining six domains are equivalent to one of these two cl
representativies.~Using our computer algorithm we can ea
ily obtain a listing of all domain structures equivalent to
selected one. We do not give the complete listing of equi
lent domains here because of space considerations.! In col-
umns 3, 4, 5 we give the directions of the order parame
~OPs! for this structure. At the onset of the polarization~the
primary OP! there will be coupling to secondary OPs whic
then become nonzero as a result of the transition. The
ondary OPs of interest to us in this discussion are the c
ponents of strain. For the phase transitions fromPm3̄m the
strain contributions areG1

15(exx1eyy1ezz) ~volumetric
strain!, G3

15(exx1eyy22ezz,A3exx2A3eyy) ~deviatoric
strain!, andG5

15(exy ,eyz ,exz) ~shear strain!. The OP values
of the symmetric domain set are the volume-fractio
weighted average of the polarizations and strains for
structure. Along with the primary OP of dipole mome
given in column 3, we give the direction of the seconda
strains in columns 4 and 5, which are also connected with
mesoscopic structural symmetry.

For some domain set entries there is no dipole mom
contribution, e.g., domain set~5,7,9,10! has no mesoscopic
polarization~no entry for G4

2) but this connected set doe
possess deviatoric and shear strain~entries forG3

1 andG5
1).

Poling fields may be applied in a hierarchal fashion
move down the chain of symmetries. For example, from
domain set~1,2...11,12!, with all domains present and o
equal prominence~yielding the symmetrym3̄m), a shear
stress of the form (a,a,a) induces the domain se
~1,4,5,7,9,10! ~of symmetry 3̄m) and then by imposing an
electric field of the form (a,a,a) the domain set~1,5,9! is
obtained with symmetry 3m.

A selection of the values for the OPsG4
2 , G3

1 , G5
1 does

not necessarily guarantee a unique symmetry. Notice th
strain of the formG5

15(a,a,a) corresponds to two differen
symmetries with two different domain set

-

TABLE I. All possible symmetrically distinct connected sets for ferroele
tric ordering along@110#. Only nonzero contributions of the order param
eters are shown in columns 3, 4, 5.

Set Group G4
2 G3

1 G5
1

~1,2,...11,12! m3̄m ¯ ¯ ¯

~1,4,5,7,9,10! 3̄xyzmx̄y ¯ ¯ (a,a,a)
~2,3,6,8,11,12! 3̄xyzmx̄y ¯ ¯ (a,a,a)
~1,5,9! 3xyzmx̄y (a,a,a) ¯ (a,a,a)
~2,8,11! 3xyz2x̄y ¯ ¯ (a,a,a)
~1,2,3,4! 4z /mxmxymz ¯ (a,0) ¯

~5,6,7,8,9,10,11,12! 4z /mxmxymz ¯ (a,0) ¯

~5,8,10,11! 4̄zmx2xy ¯ (a,0) ¯

~5,8,9,12! 4zmxmxy (0,0,a) (a,0) ¯

~1,4! mx̄ymxymz ¯ (a,0) (a,0,0)
~1,3,6,7! myzmx2ȳz (0,a,2a) (a,A3a) (0,a,0)
~11! myzmx2ȳz (0,a,2a) (a,A3a) (0,a,0)
~1,3! mzmx2y (0,a,0) (a,0) ¯

~5,7,9,10! 2ȳz /mȳz ¯ (a,0) (0,a,a)
~5,9! mȳz (a,a,a) (a,0) (0,a,a)
~5,10! 2ȳz (a,2a,0) (a,0) (0,a,a)
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3̄m (1,4,5,7,9,10) and 32~2,8,11!, respectively. The poin
group symmetry 3̄m is completely specified byG5

1

5(a,a,a) while 32 needs the additionalG1
2 , G5

2 distortions
to obtain this structure. These additional distortions are
being considered in our limited discussion here, so these
domain structures cannot be separated using stress and
tric field alone. Other examples of this type are evident
our tables.

In Table II all possible distinct symmetries of minim
nonconnected sets for ferroelectric ordering along@110# are
given. Nonzero contributions of the order parameters
shown in columns 3, 4, 5. The list is exhaustive as far
allowed symmetries of minimal nonconnected sets are c
cerned and gives a representative for each class. It is
exhaustive in showing all nonequivalent nonconnected
main sets which can give the same symmetry. For exam

TABLE II. All possible distinct symmetries of nonconnected sets for fer
electric ordering along@110# are given. Only nonzero contributions of th
order parameters are shown in columns 3, 4, 5.

Set Group G4
2 G3

1 G5
1

~1,2,3,4!,~5,6,7,8! mxmymz ¯ (a,b) ¯

~1,4!,~5,8,10,11! 2x̄y2xy2z ¯ (a,0) (a,0,0)
~1,2,3,4!,~9,10! 2x /mx ¯ (a,b) (0,a,0)
~1,4!,~5,8,9,12! mx̄ymxy2z (0,0,a) (a,0) (a,0,0)
~1,5,9!,~2,8,11! 3xyz (a,a,a) ¯ (a,a,a)
~1,2!,~9,10! 2x (a,0,0) (a,b) (0,a,0)
~1,4!,~5,7! 1̄ ¯ (a,b) (a,b,c)
~1,3!,~5,8! mx (0,a,b) (a,b) (0,a,0)
~1,3!,~9! mx (0,a,b) (a,b) (0,a,0)
~1,3!,~10! mx (0,a,b) (a,b) (0,a,0)
~9!,~11! mx (0,a,b) (a,b) (0,a,0)
~1!,~5! 1 (a,b,c) (a,b) (a,b,c)
~1!,~7! 1 (a,b,c) (a,b) (a,b,c)

TABLE III. The most general domain structure for given symmetry of@110#
ordering.

Set No. Domain set Symmetry

1 (a,a,a,a,a,a,a,a,a,a,a,a) m3̄m
2 (a,a,a,a,b,b,b,b,b,b,b,b) 4x /mymzmx

3 (a,b,b,a,a,b,a,b,a,a,b,b) 3̄xyzmx̄y

4 (a,a,a,a,b,b,b,b,c,c,c,c) mxmymz

5 (a,b,b,a,c,c,c,c,c,c,c,c) mx̄ymxymz

6 (a,a,a,a,b,c,c,b,c,b,b,c) 4̄zmx2xy

7 (a,a,a,a,b,c,c,b,b,c,c,b) 4zmxmxy

8 (a,b,c,a,a,c,a,b,a,a,b,c) 3xyz2x̄y

9 (a,b,b,c,a,b,c,b,a,c,b,b) 3xyzmx̄y

10 (a,b,b,a,c,d,d,c,d,c,c,d) 2x̄y2xy2z

11 (a,a,a,a,b,b,b,b,c,c,d,d) 2x /mx

12 (a,b,b,a,c,d,c,d,c,c,d,d) 2x̄y /mx̄y

13 (a,b,a,b,c,c,c,c,d,e,d,e) mzmx2y

14 (a,b,a,b,b,a,a,b,c,c,d,e) mxmyz2ȳz

15 (a,b,b,a,c,d,d,c,c,d,d,c) mxymx̄y2z

16 (a,b,c,d,a,c,d,b,a,d,b,c) 3xyz

17 (a,a,b,b,c,c,d,d,e,e, f , f ) 2x

18 (a,b,c,a,d,e, f ,g, f ,d,g,e) 2x̄y

19 (a,b,b,a,c,d,c,d,e,e, f , f ) 1̄
20 (a,b,a,b,c,d,d,c,e, f ,g,h) mx

21 (a,b,b,c,d,e, f ,g,d, f ,e,g) mx̄y

22 (a,b,c,d,e, f ,g,h,i , j ,k,l ) 1
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the nonconnected domain set~1,2,3,4!,~5,6,7,8! yields the
symmetrymxmymz . However, the non-connected domain s
~1,2,3,4!,~5,6,7,8!,~9,10,11,12! also yields the same symme
try. Only minimal non-connected sets, representatives
each symmetry, are listed. Also, an allowed nonconnected
may not be shown because the symmetry~or the equivalent
symmetry! it determines can be obtained from a connec
set of domains. For example, the connected domain set~1,3!
yields the symmetry mzmx2y . The domain set
(a,b,a,b,0,0,0,0,0,0,0,0) is nonconnected but it determin
the same symmetry as that of (a,0,a,0,0,0,0,0,0,0,0,0), a
connected set. The nonconnected domain
(a,b,a,b,0,0,0,0,0,0,0,0) is not listed in Table II.

In Table III we list the most general domain structu
allowed by the representative symmetry of a given cla
This allows the reader to obtain a set of domain structu
yielding the same symmetry, progressing from the minim
domain structure to the more general. The discussion of
two examples in the paragraph above can be develope
considering the sets of numbers 4 and 13, respectively
Table III.

For a structure composed of domains 1 and 3, with eq
volume fractions, the domain set is connected and the s
metry ismzmx2y ~see Table I!. If a shear stress, correspon
ing to G5

1(6a,0,0), is added, then the domains are of d
ferent energies, their volume fractions are no longer eq
the domain set is not connected but consists of two com
nents~1! and ~3! respectively, and the symmetry changes
mz . @This domain structure is equivalent to the domain str
ture ~9!,~11! of Table II.# There is an also an associate
change in dipole moment direction.

IV. †100‡ DIPOLE ORDERING IN PEROVSKITE BASED
FERROELECTRIC SYSTEMS

Now consider the case where the dipole moment ord
at the transition along the$100% cubic directions, e.g.
BaTiO3 . This ferroelectric distortion also arises from theG4

2

representation and changes the symmetry of the microsc
crystal structure fromPm3̄m to the tetragonalP4mm struc-
ture. There are six possible domain states with each be
symmetrically related to the@100# domain. The six domain
states are represented in Fig. 3. The labeling of OP direct
are the following: 1(a,0,0), 2(2a,0,0), 3(0,0,a), 4(0,0,
2a), 5(0,a,0), 6(0,2a,0). All possible connected sets ari
ing from this transition are given in Table IV. In Table V a
possible distinct symmetries of nonconnected sets for fe
electric ordering along@100# are given. Table VI lists the
most general domain structure allowed by the symmetry r
resenting each equivalence class for the@100# ordering.

As an example of the use of the symmetry tables
ordering along@100# consider the case discussed by Erh
and Cao.5,6 As can be seen from Table IV, when a polin
field is applied along@111# rather than one of the polarizatio
directions it leads to a three domain state containing the
main set~1,3,5!. If only two of these domains remain due t
additional poling then only the symmetrymm2 is possible.
This follows from the fact that domain sets~1,3! and ~1,5!
are in the class corresponding to entry~3,6! in Table IV. If
17 Mar 2014 21:46:48
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the domains are of different volume fractions then Tables
and VI indicate the symmetry is reduced tom.

V. †111‡ DIPOLE ORDERING IN PEROVSKITE BASED
FERROELECTRIC SYSTEMS

Now consider the case where the dipole moment ord
at the transition along the@111# cube diagonals, e.g., PZN
PT. This ferroelectric distortion also arises from theG4

2 rep-
resentation and changes the symmetry of the microsc
crystal structure fromPm3̄m to R3m. There are eight pos
sible homogeneous domain states with each being symm
cally related to the@111# domain. The eight domain states a
represented in Fig. 4. The labeling of OP directions a
1(a,a,a), 2(a,2a,2a), 3(2a,a,2a), 4(2a,2a,a), 5
(2a,2a,2a), 6(2a,a,a), 7(a,2a,a), 8(a,a,2a). All
possible connected sets arising from this transition are sh
in Table VII. In Table VIII all possible distinct symmetries o
nonconnected sets for ferroelectric ordering along@111# are
given. Table IX lists the most general domain structure
lowed by the symmetry representing the equivalence c
for the @111# ordering.

Although this case was investigated by Fouseket al.7 we
found some differences. The set@135# of Fouseket al.7 cor-
responds to our labeling of domains~1,4,5!. The domain set
~1,4,5! does not show up in our listing of connected sets
Table VII and it is not equivalent~not just a ‘‘rotated’’ ver-
sion! to the three domain set~2,3,4! which does appear in
that table. The symmetry of domain set~1,4,5! is mx̄y accord-
ing to Fouseket al.7 They considered only equal volum
fractions to get this symmetry. However, themx̄y symmetry
is obtained in our work by the minimal domain set~1!~4!,
shown in Table VIII. Moreover, by adding the third doma
to obtain the domain set~1!~4!~5!, which is not a minimal

FIG. 3. Directions of polarization of domain states with tetragonal order
along @100#.

TABLE IV. All possible symmetrically distinct connected sets for ferroele
tric ordering along@100#. Only nonzero contributions of the order param
eters are shown in columns 3, 4, 5.

Set Group G4
2 G3

1 G5
1

~1,2,3,4,5,6! m3̄m ¯ ¯ ¯

~1,2,5,6! 4z /mxmxymz ¯ (a,0) ¯

~3,4! 4z /mxmxymz ¯ (a,0) ¯

~1,3,5! 3xyzmx̄y ~a,a,a! ¯ ~a,a,a!
~3! 4zmxmxy ~0,0,a! ~a,0! ¯

~3,6! myzmx2ȳz ~0,a,2a! (a,A3a) ~0,a,0!
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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nonconnected domain set for this symmetry, we do not
minish the symmetry frommx̄y . None of the three volume
fractions need to be equal to obtain this symmetry. Thus
expanded consideration to nonconnected sets provide
broader understanding of possible three-domain config
tions yielding themx̄y symmetry.

Similarly, @1235# ~this domain set corresponds to our l
beling ~1,2,4,5!! yields the symmetrymx̄z according to
Fouseket al.7 The same symmetry is obtained by the no
connected, nonminimal domain set~1,4!~2!~5! or the noncon-
nected minimal domain set~1,4!~2!. This domain set is
equivalent to our entry~1!~2,3! in Table VIII.

The domain set@1238# corresponds to our labeling
~1,2,4,7!. This domain set yields the symmetry 3xȳzmx̄z ac-
cording to Fouseket al.7 The minimal connected domain se
~1,2,4! yields this symmetry and is equivalent to our ent
~2,3,4! in Table VII. The nonminimal, nonconnected s
~1,2,4!~7! does not destroy any symmetry and thus yields
same symmetry 3xȳzmx̄z .

As we compare our results of@111# ordering with those
of Fuksa and Janovec8 we see that there are some differenc
in presentation of results. We distinguish inequivalent d
main structures in our listings where they do not. Fuksa a
Janovec list many nonconnected sets which are not minim
To systematically obtain non-connected sets which are
minimal we give the most general domain structure for
given symmetry so that the nonminimal domain sets can
constructed. However, their results and ours generally ag

An example of field induced domain reorientation w
recently described by Chenet al.9 The domains corre-
sponded to dipole moment ordering along^111&. Thus there

g

TABLE V. All possible distinct symmetries of nonconnected sets for fer
electric ordering along@100# are given. Only nonzero contributions of th
order parameters are shown in columns 3, 4, 5.

Set Group G4
2 G3

1 G5
1

~1,2!,~3,4! mxmymz ¯ (a,b) ¯

~1,2!,~5! mxmz2y (0,0,a) (a,b) ¯

~3!,~5! mx (0,a,b) (a,b) (0,a,0)
~1,5!,~3! mx̄y (a,a,b) (a,0) (a,b,b)
~1!,~3!,~5! 1 (a,b,c) (a,b) (a,b,c)

TABLE VI. The most general domain structure for given symmetry of@100#
ordering.

Set No. Domain set Symmetry

1 (a,a,a,a,a,a) m3̄m
2 (a,a,b,b,a,a) 4z /mxmxymz

3 (a,a,b,b,c,c) mxmymz

4 (a,a,b,c,a,a) 4z /mxmxymz

5 (a,b,a,b,a,b) 3xyzmx̄y

6 (a,a,b,b,c,d) mxmz2y

7 (a,a,b,c,c,b) myzmx2ȳz

8 (a,b,c,c,d,d) 2x

9 (a,b,c,c,b,a) 2x̄y

10 (a,a,b,c,d,e) mx

11 (a,b,c,d,a,b) mx̄y

12 (a,b,c,d,e, f ) 1
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are eight domain states, shown again in Fig. 5~a!. They di-
vided the process of polarization into four regions. In the fi
region only a small field was applied@see Fig. 5~b!# and thus
only fairly low energy domain switching could take plac
namely 180° switching which removed domains 3 and
Thus, with no lattice distortion the domain configuration b
comes that shown in Fig. 5~b!. As indicated in the figure, the
electric field of direction@01̄1# simultaneously selects do
main set ~4,7! of symmetry myzmx2ȳz ~symmetrically
equivalent to the domain set~3,8! shown in Table VII! and
domain set~1,2,5,6! ~symmetrically equivalent to the domai
set~1,4,5,8! shown in Table VII!. This latter domain set con
tains all symmetry elements of the first, thus yielding t
nonconnected domain set~1,2,5,6!~4,7! of symmetry
myzmx2ȳz . In the second region a stronger field selects
main set~4,7!, resulting in two domains and the symmet
remainsmyzmx2ȳz . In region three a rotation of the polariza
tion takes place and the microscopic domain symme
changes. Our model does not apply to this process. Du
strong-field poling the fourth region is a single domain w
dipole moment aligned along@01̄1# and of symmetry
myzmx2ȳz ~symmetrically equivalent to the listing of doma
structure~11! in Table I!.

VI. DISCUSSION AND CONCLUSION

Domain average engineering has shown great succe
producing superior piezoelectric crystals.1–4 The effective
properties and symmetries are determined by the config

FIG. 4. Directions of polarization of domain states with rhombohedral
dering along@111#.

TABLE VII. All possible symmetrically distinct connected sets for ferr
electric ordering along@111#. Only nonzero contributions of the order pa
rameters are shown in columns 3, 4, 5.

Set Group G4
2 G3

1 G5
1

~1,2,3,4,5,6,7,8! m3̄m ¯ ¯ ¯

~2,3,4,6,7,8! 3̄xyzmx̄y ¯ ¯ (a,a,a)
~1,5! 3̄xyzmx̄y ¯ ¯ (a,a,a)
~1,2,3,4! 4̄z3xyzmxy ¯ ¯ ¯

~1,4,6,7! 4zmymx̄y (0,0,a) (a,0) ¯

~1,4,5,8! mxymx̄ymz ¯ (a,0) (a,0,0)
~2,3,4! 3xyzmx̄y (a,a,a) ¯ (a,a,a)
~1! 3xyzmx̄y (a,a,a) ¯ (a,a,a)
~1,4! mxymx̄y2z (0,0,a) (a,0) (a,0,0)
~3,8! mxmyz2ȳz (0,a,2a) (a,A3a) (0,a,0)
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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tion of domains at the mesoscopic level but still intrinsica
linked to the microscopic crystal symmetry. There are ma
different possibilities of domain structure configurations f
each given crystal system. Fouseket al.7 composed a partia
list of domain averaging for a cubic–rhombohedral ferr
electric system. Fuksa and Janovec8 then extended consider
ations to nonconnected sets for this same species. Our e
sion adds the results of the other two ferroelectric ph
transition systems, i.e., cubic–tetragonal, cubi
orthorhombic, and also considers the problem with the g
of systematic implementation for other phase transitio
Since the analysis depends only on the symmetries of
parent and product phases the results obtained here ar
dependent on the specific perovskite structure. This struc
was used because of its practical importance in many fe
electric materials. Our results will apply for any structu
with them3̄m symmetry with a dipole moment ordering co
responding to theG4

2 soft mode.
ISOTROPYcontains the computer implementation10 of our

algorithm and obtains domain average structures for
space group phase transition. For domain structure ana
of the first kind ~domain geometry!, the task is more in-

-

TABLE VIII. All possible distinct symmetries of nonconnected sets f
ferroelectric ordering along@111# are given. Only nonzero contributions o
the order parameters are shown in columns 3, 4, 5.

Set Group G4
2 G3

1 G5
1

~1,5!,~2,3,6,7! 2x̄y /mx̄y ¯ (a,0) (a,b,b)
~1,5!,~4,8! 2x̄y /mx̄y ¯ (a,0) (a,b,b)
~1,5!,~2,7! 2x̄y (a,2a,0) (a,0) (a,b,b)
~1,5!,~2,6!,~3,7! 1̄ ¯ (a,b) (a,b,c)
~1,6!,~3,8! mx (0,a,b) (a,b) (0,a,0)
~1!,~2,3! mx̄y (a,a,b) (a,0) (a,b,b)
~1!,~4! mx̄y (a,a,b) (a,0) (a,b,b)
~1!,~6,7! mx̄y (a,a,b) (a,0) (a,b,b)
~1!,~8! mx̄y (a,a,b) (a,0) (a,b,b)
~1!,~2!,~3! 1 (a,b,c) (a,b) (a,b,c)
~1!,~2!,~7! 1 (a,b,c) (a,b) (a,b,c)

TABLE IX. The most general domain structure for given symmetry of@111#
ordering.

Set No. Domain set Symmetry

1 (a,a,a,a,a,a,a,a) m3̄m
2 (a,a,a,a,b,b,b,b) 4̄z3xyzmxy

3 (a,b,b,b,a,b,b,b) 3̄xyzmx̄y

4 (a,b,b,a,a,b,b,a) mxymx̄ymz

5 (a,b,b,a,b,a,a,b) 4zmymx̄y

6 (a,b,b,b,c,d,d,d) 3xyzmx̄y

7 (a,a,b,b,a,a,b,b) 2x /mx

8 (a,b,b,c,a,b,b,c) 2x̄y /mx̄y

9 (a,b,a,b,b,a,b,a) mxmz2y

10 (a,a,b,c,a,a,c,b) mxmyz2ȳz

11 (a,b,b,a,c,d,d,c) mxymx̄y2z

12 (a,a,b,b,c,c,d,d) 2x

13 (a,b,c,d,a,c,b,d) 2x̄y

14 (a,b,c,d,a,b,c,d) 1̄
15 (a,b,c,d,b,a,d,c) mx

16 (a,b,b,c,d,e,e, f ) mx̄y

17 (a,b,c,d,e, f ,g,h) 1
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volved and there is as yet no systematic procedure avail
to provide an exhaustive list of domain pattern symmetri

The domain average symmetry considered in this pa
is applicable to crystals having a large number of doma
For such a case, the domains form a kind of nanocompo
with sets of domains. Each set contains domains of eq
volume and the domains have certain predetermined sym
tries based on the underlying parent crystal symmetry.

We point out again that our list of symmetries include
possible ones up to equivalence. Some multidomain me
copic symmetries given here may be difficult to physica
realize. If the domain size becomes relatively large, say
yond microns, one must consider the spatial configuration
domains and the orientation of domain walls that join the

FIG. 5. Symmetry changes resulting from a@01̄1# field: ~a! OP directions
for rhombohedral ordering;~b! nonconnected domain configuration fo
weak poling field; and~c! connected domain set of symmetrymyzmx2ȳz for
strong poling field.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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domains. The limited number of domains in each given fin
sample may invalidate the statistical treatment used in
article. Such large domain cases belong to the first kind
mesoscopic symmetry problem mentioned above, which
not discussed here.11
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