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A method for extracting force constants �FCs� from first principles is introduced. In principle, provided that
forces are accurate enough, it can extract harmonic as well as anharmonic FCs up to any neighbor shell.
Symmetries of the FCs as well as those of the lattice are used to reduce the number of parameters to be
calculated. The results are illustrated for the case of the Lennard-Jones potential, wherein forces are exact and
FCs can be analytically calculated, and Si in the diamond structure. The latter are compared to the previously
calculated harmonic FCs.
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I. INTRODUCTION

Two methodologies have been developed so far to calcu-
late the force constants �FCs� of bulk crystals. One relies on
perturbation theory and linear response formalism,1 in which
the infinitesimally small displacements of atoms are taken as
the perturbing potential, and the required properties, namely,
the FCs, are calculated as a function of the ground state
eigenvalues and eigenstates of the crystal by using the per-
turbation theory. The other more traditional method, which is
called the direct method,2–4 requires a small Cartesian dis-
placement of an atom placed in a supercell �preferably twice
larger than the cutoff range of the FCs�. Forces applied to
other atoms divided by the small displacement produce the
required FCs. This method, however, also needs the calcula-
tion of Born charges5 in the case of polar semiconductors so
that FCs due to long-range Coulombic forces can be analyti-
cally added to the obtained values. Anharmonic FCs of third
or higher order can also be calculated in the same fashion. In
the direct method, in principle, two small displacements
along a given direction are needed in order to fit the pro-
duced force with a second order polynomial and extract the
harmonic and cubic coefficients. However, we are not aware
of any calculation based on the direct method involving
three-body �or higher� interactions. A similar calculation, in
spirit, to the direct method is the frozen phonon method,
which was used to calculate cubic FCs of Si.6,7

The density functional perturbation theory �DFPT�, on the
other hand, uses the so-called 2n+1 formula8 to get FCs up
to order 2n+1 from an nth order perturbation expansion of
the electronic wave functions. One can see that the direct
method, not being a very systematic one, soon becomes pro-
hibitive if FCs of third or fourth order are needed, given their
very large number. The calculation of fourth order, or the
so-called quartic,, terms also becomes quite involved by us-
ing the perturbation theory method because now wave func-
tions need to be expanded up to second order.

In order to find phonon lifetimes, calculations of the cubic
FCs for Si by using DFPT were performed in the past by
several groups.7,9 While Debernardi et al.7 used the DFPT
and frozen phonon methods to compute the cubic FCs, Lang
et al.9 used DFPT for the harmonic force constants but de-

duced the needed cubic and quartic coefficients from finite
differentiation of the harmonic FCs evaluated at a few bond
lengths around the equilibrium value. This method, however,
would not give them all the FCs.

In this paper, we propose a methodology to extract the
harmonic as well as cubic and quartic anharmonic FCs from
first principles calculations in a systematic way. While har-
monic FCs are used for the calculation of phonon spectra,
vibrational modes, and elastic properties, cubic anharmonic
FCs give the phonon lifetimes and scattering rates, and quar-
tic ones correct the shift in the phonon frequencies. These
quantities are the main ingredients in phonon transport theo-
ries, which calculate thermal conductivity. They can also be
used for constructing a classical molecular dynamics �MD�
potential of ab initio accuracy. From such molecular dynam-
ics simulations, thermal conductivity, which can be written
as the heat current autocorrelation function,10 and other ther-
modynamic properties of bulk or nanostructured materials
can be calculated. Phase transformations can also be investi-
gated by using anharmonic potentials.

II. METHODOLOGY

The force constants are defined as derivatives of the po-
tential energy with respect to atomic displacements about
their equilibrium position. We write the potential energy in
the following form:

V = V0 + �
i

�iui +
1

2!�ij �ijuiuj +
1

3!�ijk �ijkuiujuk

+
1

4!�ijkl

�ijkluiujukul, �1�

where the Roman index i labels the triplet �R ,� ,��, with R as
a translation vector of the primitive lattice, � as an atom
within the primitive unit cell, and � as the Cartesian coordi-
nate of the atomic displacement u. In other words, ui is the
displacement of the atom �R ,�� in the direction � from its
equilibrium or any reference position. �, �, and � are the
harmonic, cubic, and quartic FCs, respectively, whereas � is
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the negative of the residual force on atom i and is zero if the
potential energy V is expanded around its minimum or equi-
librium configuration. In clusters or molecules, the formal-
ism is the same, and only the translation vector R needs to be
dropped.

The resulting force on atom i would then be

Fi = −
�V

�ui

= − �i − �
j

�ijuj −
1

2�
jk

�ijkujuk −
1

3!�jkl

�ijklujukul.

�2�

If one considers a simple FCC Bravais lattice in three
dimensions, one can discover by inspection that there are
123 harmonic, 4867 cubic, and 95 663 quartic anharmonic
FCs only within the first neighbor shell. Of course, they are
related by different symmetry properties, which will be used
here to reduce their number to 4, 12, and 56, respectively.

A. General symmetries of the problem

The symmetries of the FCs are deduced from rotational
and translational invariance of the system, in addition to the
symmetries of the crystal itself. These symmetries are as
follows.

�a� Invariance under the permutation of indices:

�ij = � ji,

�ijk = �ikj = � jik = �kji = ¯ ,

�ijkl = �ikjl = �ijlk = � jikl = ¯ , �3�

where i, j, k, and l refer to the neighboring atoms. This
comes about because the force constants are derivatives of
the potential energy, and one can change the order of differ-
entiation for such analytic function.

�b� Invariance under an arbitrary translation of the sys-
tem: Translational invariance of the whole system �even if
not an ordered crystal� also implies V�u�=V�u+c� and F�u�
=F�u+c� �which is easier to use�, where u�t� are the dynami-
cal variables, and c is a constant arbitrary shift vector �may
be incommensurate with R�. This implies the well-known
“acoustic sum rule” generalized to higher order FCs:

0 = �
�

�0�
� , ∀ ����total force on unit cell = 0� ,

0 = �
R1,�1

�0�,R1�1

�� , ∀ ���,�� ,

0 = �
R2,�2

�0�,R1�1,R2�2

��� , ∀ ����,R1,�1� ,

0 = �
R3,�3

�0�,R1�1,R2�2,R3�3

���	 , ∀ ����	,R1R2,�1�2� , �4�

so that diagonal terms in these tensors can be defined in
terms of their off-diagonal elements for arbitrary Cartesian

components. For more details about the proof of these rela-
tions and the ones following on rotational invariances, we
refer the reader to Ref. 11.

�c� Invariance under an arbitrary rotation of the sys-
tem: Likewise, if the system is arbitrarily rotated, the total
energy and forces should not change. This leads to the fol-
lowing relations:11

0 = �
�

�0�
� ��
���, ∀ ����torque on unit cell = 0� ,

0 = �
R1,�1

�0�,R1�1

�� �R1�1��
��� + �0�
� 
��� ∀ ���,�� ,

0 = �
R2,�2

�0�,R1�1,R2�2

��� �R2�2�	
�	� + �0�,R1�1

�� 
���

+ �0�,R1�1
��
���, ∀ ���,R1,��1� ,

0 = �
R3�3

�0�,R1�1,R2�2,R3�3

���	 �R3�3��
	�� + �0�,R1�1,R2�2

	�� 
	��

+ �0�,R1�1,R2�2

�	� 
	�� + �0�,R1�1,R2�2

��	 
	��,

∀���,R1R2,��1�2� . �5�

Here, 
��� is the antisymmetric Levy–Civita symbol, and
�R��� refers to the Cartesian component � of the reference
position vector of the atom � in the unit cell defined by R.
Moreover, an implicit summation over repeated Cartesian
indices is implied.

As we see, rotational invariance relates the second to the
third order terms, and the third to the fourth order terms,
implying that if the expansion of the potential energy is trun-
cated after the fourth order terms, we need to start with the
fourth order terms, and application of rotational invariance
rules will give us constraints on third and second order FCs,
respectively.

B. Point and/or space group symmetries

The other constraints come from symmetry operations,
such as lattice translation, rotation, mirror, or any symmetry
operation of the space, and/or point group of the crystal
and/or molecule which leaves the latter invariant. Invariance
under a translation of the system by any translation lattice
vector R implies the following relations:

�R�
� = �0�

� ∀ �R��� ,

�R�,R1�1

�� = �0�,R1−R�1

�� ,

�R�,R1�1,R2�2

��� = �0�,R1−R�1,R2−R�2

��� ,

�R�,R1�1,R2�2,R3�3

���	 = �0�,R1−R�1,R2−R�2,R3−R�3

���	 . �6�

So in an ideal crystal, this considerably reduces the number
of force constants �by the number of unit cells, to be exact�,
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meaning that, for the atoms in all the other cells, we will use
the same FCs as those we have kept for the atoms in the
“central” cell.

If a rotation or mirror symmetry operation is denoted by
S, we must have

�S�
� = �

��

��
��S�,��,

�S�,S�1

�� = �
����

��,�1

����S�,��S�,��,

�S�,S�1,S�2

��� = �
������

��,�1�2

������S�,��S�,��S�,��,

�S�,S�1,S�2,S�3

���	 = �
������	�

��,�1,�2,�3

������	�S�,��S�,��S�,��S	,	�, �7�

where S�,�� are the 33 matrix elements of the symmetry
operation S. These symmetry relations impose a linear set of
constraints on the force constants.

We should note that in addition to these symmetries, there
is a set of constraints on elastic constants, requiring the latter
to be symmetric under the exchange of Voigt indices. These
invariances are discussed by Huang �see Refs. 12 and also 4�,
and imply extra constraint equations for low symmetry crys-
tals with internal degrees of freedom within the primitive cell
�more than one atom per unit cell at off-symmetry positions�.
Since we are using the diamond structure in this study,
Huang invariances will not give any extra constraints.

Any physically correct model of force constants must sat-
isfy the invariance relations. On the other hand, we do ap-
proximations by truncating the range of FCs and their order
in the Taylor expansion of the potential. Therefore, imposing
the constraints will move their value away from the true
value but has the advantage that they are physically correct
and will, for instance, reproduce the linear dispersion of
acoustic phonons near k=0. So, one should keep in mind that
an unrealistic truncation to a too short of a range will pro-
duce results in disagreement with experiments.

III. IMPLEMENTATION

Given a crystal with its unit cell and atoms, we first iden-
tify its symmetry properties and construct the matrices S. By
using the latter and Eqs. �3� and �7�, independent FCs of each
rank are identified. Then, a set of force-displacement data
calculated from first principles is constructed. Next, since the
data set is �better be� larger than the number of unknown
FCs, the linear set of Eqs. �2�, �4�, and �5� is fitted with this
data set by using a singular value decomposition �SVD� al-
gorithm. To our knowledge, this method was first used in this
context by Sluiter et al.4 In SVD, the unknown force con-
stants will be calculated in a least squares sense, and further-
more, linear dependencies among the equations will not be a
problem because the result is projected out of the “zero ei-
genvalue space.”13 One also has the option to use relations
�4� and �5� to eliminate some of the FCs in Eq. �2� and solve
for the remaining FCs. Here, one needs to make a judicious

choice of FCs to be eliminated. We prefer not to eliminate
the FCs and keep the option of checking the violation of the
translational and rotational invariances if only relation �2� is
used.

The data set can be obtained in several ways: a molecular
dynamics run with small initial displacements, randomly
moving all atoms by small displacements a few time steps
and calculating the forces on all atoms, and finally, sym-
metrically displacing one atom at a time about its equilib-
rium position by a small displacement along the x ,−x ,y ,
−y ,z and −z directions and calculating the forces on all other
atoms. Experience has shown that the latter works better for
the computation of harmonic force constants and two-body
force constants in general. For three- and four-body FCs, one
needs to displace at least two and three atoms at a time,
respectively.

We must add that the data set is obtained not from a unit
cell but from displacements performed in a supercell, whose
size should exceed the range of FCs, otherwise the contribu-
tion of images from neighboring supercells will also be in-
cluded in a considered FC. In some cases, this could lead to
errors in the evaluation of FCs. Notice that the exact out-
come of this procedure includes, strictly speaking, the con-
tribution of images as well. For instance, in the case of har-

monic FCs, instead of ��,��, actually the sum �̃�,��
=�L��,L+��, where L is a translation vector of the supercell,
will be extracted. Therefore, supercells with low symmetry
are preferable in order to avoid encountering FCs that cannot
be determined. For example, in a cubic supercell, the force
constants between the corners of the cube can never be cal-
culated this way since the distance between adjacent corners
never changes. It must, furthermore, be emphasized that the
size of the data set and its accuracy are crucial in determin-
ing the correct set of force constants.

IV. RESULTS

To check the feasibility and accuracy of the method, we
first used the Lennard-Jones �LJ� pair force, for which de-
rivatives can be analytically calculated and compared to our
results. Furthermore, the LJ forces are accurate within the
printed number of digits by the computer and do not suffer
from any convergence or round-off error problems. First, we
considered an fcc-Bravais crystal of LJ particles with integer
Cartesian coordinates. Particles were confined to interact
only with their first neighbor. It was found that choosing a
very small set of displacements �of the order of 0.001� pro-
duced the best results. Since in both the MD data and the
fitting procedure the cutoff was set so that only first neigh-
bors interact, the SVD procedure reproduced the exact FCs
remarkably well: the error in the harmonic, cubic, and quar-
tic FCs was in the seventh, fifth, and fourth digits, respec-
tively.

As a more stringent test and in order to get confidence on
the accuracy of the fitting method for a real material such as
Si, we also considered a diamond structure of LJ particles
with interactions up to the tenth nearest neighbor but limited
them in our fitting up to the eighth neighbor only �i.e., we
forced the ninth and tenth neighbor FCs to be zero when
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fitting�. The energy unit was taken to be 1 and the length unit
� was taken to be equal to the first neighbor distance ��3 /4�.
No MD was performed; instead, we only displaced the first
atom by 0.0005 and 0.001 along the x direction and recorded
the forces on all other atoms in a 333 cubic supercell
with 216 atoms. This was enough because all atoms and the
three displacements along x ,y ,z are equivalent. The results
are summarized in Table I. Three-body forces are found to
be, respectively, 5 and 3 orders of magnitude smaller than the
largest two-body values in cubic and quartic FCs. It is worth
noticing that the fitted values obtained by imposing the in-
variance relations are slightly worse than those when invari-
ances are not imposed. This is because some of the longer
range FCs �ninth and tenth neighbors� were neglected in the
fitting procedure, and as a result, the values of the included
FCs are slightly affected when invariance relations are im-
posed. In a real material case, however, it is more important
to have physically correct FCs, even though their values
might not be exact. In any case, this can be checked by
comparing the results with and without imposing invariance
constraints. Imposing the constraint conditions in the SVD
procedure results in the violation of the latter by typically
10−8, whereas the force-displacement data could be violated,
giving relative errors as large as a few percent if the chosen
cutoff is too short, or first principles forces are not very
accurate, or displacements are too large.

The same procedure was followed to extract FCs for a
real material case: silicon �diamond�. In this case, the range
of FCs is unknown and probably longer ranged than we can
exactly handle. The range of harmonic FCs was limited to 14
neighbors, that of the cubic coefficients was limited to 3, and
quartic FCs were limited to the nearest-neighbor interactions.
First, we used a data set that is similar to that in a previous
LJ calculation, wherein atoms were displaced by 0.008 and
0.016 Å along all the three directions in order to minimize
systematic and round-off errors, which occur in first prin-
ciples calculations. Local density approximation �LDA�
based ultrasoft pseudopotentials were used within the VASP

density-functional simulation package.14 A cutoff energy of
500 eV and 14 K points were used in the 333 cubic
supercell with 216 atoms.

This was the largest system we could handle. Perhaps
more accurate determination of forces by using more K
points and a higher cutoff energy would give better results.
In the fitting, the number of shells for each rank of the FCs
as well as the number of constraints and independent FCs is
summarized in Table II.

Of course, phonon dispersion of diamond silicon has been
calculated from first principles in the past by many
groups,15–19 but our purpose here is to illustrate how well the
method performs in comparison to experiments and other
calculations. In Table III, harmonic FCs are compared to two
recent calculations18,19 based on density-functional perturba-
tion theory.1,8

The phonon spectrum that is obtained by including har-
monic force constants up to 13th neighbors is plotted in Fig.
1 versus experimental data points20 and a calculation that
includes only eight neighbor shells. A slight difference be-
tween the two calculations is noticeable. In this case, three
neighbor shells were included in the fitting of cubic and one

TABLE I. Comparison between analytical and numerically ex-
tracted �SVD� values of the LJ force constants in the diamond struc-
ture when invariance relations �4� and �5� were not imposed and
only eight neighbor shells were included in the fitting. Real inter-
actions were included up to ten neighbors �Rcut=1.6�. The sub-
scripts in the first column refer to the first or second atom in the
primitive cell �� index for � and R� index for � and ��, while the
superscripts refer to the Cartesian coordinates �� index�.

FCs Nb Shell Exact SVD

�1,1
xx 0 �0,0,0� 711.01623 711.016

�1,2
xx 1� 1

4 , 1
4 , 1

4 � −181.33329 −181.333

�1,2
xy 1 −213.33328 −213.333

�1,1
xx 2� 1

2 , 1
2 ,0� 1.497986 1.49799

�1,1
yy 2 −0.5660705 −0.56607

�1,1
xy 2 2.064056 2.06406

�1,1
xz 2 0 210−15

�1,2
xx 3�− 1

4 ,− 1
4 ,− 3

4 � −0.0502417 −0.050242

�1,2
zz 3 0.9066605 0.906668

�1,2
xy 3 0.1196113 0.119612

�1,2
xz 3 0.3588383 0.358840

�1,1
xx 4�1,0 ,0� 0.2700770 0.270080

�1,1
zz 4 −0.0390294 −0.039029

�1,2
xx 5�− 3

4 ,− 3
4 ,− 1

4 � 0.05459899 0.0545990

�1,2
zz 5 −0.0114737 −0.0114737

�1,2
xy 5 0.07433175 0.0743320

�1,2
xz 5 0.02477725 0.0247773

�1,1
xx 6� 1

2 , 1
2 ,1� 0.0025635 0.0025635

�1,1
zz 6 0.0335998 0.0336000

�1,1
xy 6 0.0103455 0.0103454

�1,1
xz 6 0.0206909 0.0206909

�1,1
yz 6 0.0206909 0.0206909

�1,2
xx 7� 1

4 , 1
4 , 5

4 � −0.00342573 −0.0034258

�1,2
zz 7 0.03109080 0.0310910

�1,2
xy 7 0.00143819 0.0014382

�1,2
xz 7 0.00719095 0.0071910

�1,2
xx 7�− 3

4 ,− 3
4 ,− 3

4 � 0.00807978 0.0080798

�1,2
xy 7 0.01294370 0.0129437

�1,1
xx 8�1,1,0� 0.00739133 0.0073913

�1,1
zz 8 −0.00246785 −0.0024678

�1,1
xy 8 0.00985918 0.0098592

�1,1
xz 8 0 210−13

�01,01,02
xxx 2673.7772 2673.793

�01,01,02
xxy 4380.4434 4380.590

�01,01,02
xyz 5233.7765 5234.127

�01,01,11
xyx 4.128112 4.1267

�01,01,11
yyy −5.453064 −5.4645

�01,01,11
yzy −13.70929 −13.705

�01,01,02,02
xxxx −19342.22 19401.9

�01,01,02,02
xyxy −96255.98 −96202.6

�01,01,02,02
xxxy −71907.54 −71896.1

�01,01,02,02
xyxz −113777.75 −113727.9
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neighbor in that of quartic force constants. The spectrum was
calculated at a lattice constant of 5.389 Å �minimum energy
of the LDA calculation� compared to the experimental value
of 5.43 Å. The major difference between our SVD results
and Refs. 18 and 19 is in the inclusion of the neighbors along
�1,1,0�. While we include only up to 13 neighbors, they in-
cluded 25. This is presumably the main reason for the dis-
crepancy in the value of �0 and the optical frequency at the �
point. In Table IV, we only show those that were larger than
1/500 of the largest one in two units �last two columns�.

Quartic FCs were included in the fit up to the first neigh-
bor only. This means that we have only included the two-
body contributions in the fit of quartic terms. There are 7980
such terms, which are related by symmetry, making up only
14 independent constants, as reported in Table V. Many of

the 14 independent quartic terms turn out to be equal to each
other presumably due to the fact that they are two-body
terms. Had we included more shells in the fitting, the degen-
eracy would have been lifted because, in principle, the re-
ported terms are not related by any symmetry.

TABLE II. Statistics about the potential parameters for Si. The
second column shows the number of included neighbor shells in the
fitting. The third column shows the number of resulting independent
FCs, the fourth represents the total number of FCs or terms present
in the Taylor expansion of the total energy within that rank, and the
last is the total number of invariance+symmetry constraints for that
rank.

Rank Shells Independent Total Constraints

2 14 67 8412 2868

3 3 95 58062 16820

4 1 14 7980 3750

TABLE III. Comparison between harmonic force constants of
Si. Invariance relations �4� and �5� were imposed in the fitting. Up
to 14 neighbor shells were included in the fitting of quadratic force
constants. The notations in the first column follow those of Refs. 19
and 18. For brevity, we report the results on the first five shells.
Units are in mhartree /bohr2.

FCs Nb Shell Ref. 19 Ref. 18 SVD

�0 �0,0,0� 138.36 139.04 136.21

�1 � 1
4 , 1

4 , 1
4 � −33.75 −33.85 −33.14

�1 −23.54 −23.48 −23.17

�2 � 1
2 , 1

2 ,0� −1.88 −1.82 −1.90

�2 −1.82 −1.78 −1.84

	2 1.11 1.11 1.10

�2 4.30 4.33 4.22

�3 �− 1
4 ,− 1

4 ,− 3
4 � 0.33 0.32 0.37

�3 −0.35 −0.35 −0.37

	3 0.28 0.29 0.29

�3 0.07 0.06 0.09

�4 �1,0,0� −0.20 −0.20 −0.22

�4 −0.06 −0.05 −0.05

�5 � 3
4 , 3

4 , 1
4 � −0.18 −0.20 −0.17

�5 −0.28 −0.26 −0.26

	5 0.57 0.58 0.56

�5 −1.80 −1.83 −1.79

TABLE IV. Nonequivalent cubic force constants for Si. Only the
ones that are larger than 1/500 of the first one are displayed al-
though in the fitting, up to four neighbor shells were included. The
pairs in columns 3, 4, and 5 are the atom number and x ,y ,z coor-
dinate ���� �atoms �=1,2 ,11,13 corresponding, respectively, to
�0,0,0�, �1/4,1/4,1/4�, �0,−1 /2,−1 /2�, and �1 /2,0 ,−1 /2��. Invari-
ance relations �4� and �5� were imposed in the fitting. Units are in
eV /Å3 and mhartree /bohr3 in the last two columns.

No. of FCs Label �1�1 �2�2 �3�3 eV /Å3 mhartree /bohr3

1 1 1 1 1 2 1 3 32.26 175.7

13 2 1 1 1 1 2 1 −2.74 −14.9

139 3 1 1 1 2 2 1 −6.29 −34.3

643 4 1 2 1 2 2 1 −6.29 −34.3

895 5 1 2 1 3 2 1 −8.06 −43.9

1435 7 1 1 1 2 6 1 0.07 0.36

5971 21 1 1 1 1 11 1 0.14 0.74

6691 23 1 2 1 2 11 1 −0.07 −0.38

7267 25 1 1 1 1 11 2 −0.11 −0.61

7555 26 1 1 1 2 11 2 −0.07 −0.39

8707 28 1 2 1 2 11 2 0.21 1.16

8995 29 1 2 1 3 11 2 0.24 1.30

9571 30 1 3 1 3 11 2 0.16 0.87

31459 61 1 1 2 1 13 2 0.11 0.59

33835 64 1 1 2 2 13 2 −0.12 −0.63

36211 67 1 1 2 3 13 2 −0.16 −0.86

44131 77 1 2 2 3 13 3 −0.12 −0.66
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FIG. 1. �Color online� Projected phonon DOS band structure of
Si by using up to eight �dashed blue line� and 13 �solid red line�
neighbor shell FCs. Experimental data �Ref. 20� are represented
with+sign.

METHOD TO EXTRACT ANHARMONIC FORCE CONSTANTS… PHYSICAL REVIEW B 77, 144112 �2008�

144112-5



V. DISCUSSIONS

The test example of Lennard-Jones potential shows that
provided the actual calculation of force displacements is ex-
tremely accurate; it is possible to extract harmonic, cubic,
and quartic force constants with very good precision by us-
ing the above method. Choosing low-symmetry supercells
may be advantageous and avoids heavy calculations in big
supercells. Our experience on Si has shown that it is possible
to extract FCs of silicon up to the fifth neighbor by using a
small 12 atom �123� supercell. However, longer-range
FCs would require larger cells because the fitting would fail
in this case. In fact, large supercells are really needed for the
extraction of longer-range harmonic FCs. Once the latter are
known, it is possible to freeze them and extract higher-order
FCs from a smaller size supercell but more accurate calcula-
tion. In this case, the force-displacement data can come from
a molecular dynamics run with a small amplitude because
more than one particle is needed to move in order to extract
three- and four-body terms.

In case the so-developed potential is going to be used in
performing large-scale molecular dynamics �MD� simula-
tions, one does not even need to include harmonic �and an-
harmonic� FCs beyond a few, say, four or five, neighbor
shells. In fact, most classical force fields have a shorter
range. Although MD runs might be more time consuming
with this method, it has the advantage of higher accuracy.
Lattice distortions and defects can also be treated using this
potential because the new force constants of a distorted
atomic configuration can be obtained from the already devel-
oped Taylor expansion,

�new = � + u0� + u0u0�/2,

�new = � + u0� ,

�new = � , �8�

in which the static displacement u0 is due to external forces
and would be obtained by solving F�u0�=0, where the force
F is calculated from Eq. �2�.

An additional complication arises when one is dealing
with polar or ionic materials. In such cases, Born effective
charges need to be calculated and their long-range effect on
the FCs separately calculated by using the Ewald
summation5 or multipole expansion methods. Care must be
taken since its short-range part is already included in the
extracted FCs. So, it needs to be properly subtracted from the
Ewald sum contribution. Needless to say, this problem is
present in all polar materials and cannot be bypassed.

By using the extracted cubic force constants, one can cal-
culate phonon lifetimes and frequency shifts. Details of such
calculations will be published elsewhere. Below, we will
only give the obtained values for the force constant Grü-
neisen parameters that are obtained from cubic FCs.

A uniform volume expansion can be parametrized as R
→R�1+
�=R+u, where 
 is the linear expansion parameter.
Due to this change in bond lengths, the harmonic force con-
stants will change to leading order by �→�+u�. For a
force constant �, we define the Grüneisen parameter by

� = −
1

2

d ln �

d ln V
= −

1

6

d�

�d

= −

1

6

�R

�
. �9�

To assess the accuracy of the cubic FCs, in Table VI, we
compare the force Grüneisen parameters that are obtained
from Eq. �9� above to those obtained from DFPT by chang-
ing the volume and calculating � by finite difference.18 The
agreement is reasonable. For further neighbors, one needs to
include more neighbors in the fitting of the cubic FCs. Fur-
ther neighbors with much smaller FCs would only slightly
affect the mode Grüneisen parameters because the latter are
essentially weighted sums of the force Grüneisen parameters.

VI. CONCLUSIONS

To summarize, we have developed a method to extract
harmonic, cubic, and quartic force constants of any crystal

TABLE V. Nonequivalent quartic force constants for Si. Only
the first neighbor shell was included in the fitting. Similar to Table
IV, the pairs in columns 3, 4, 5, and 6 are the atom number and
x ,y ,z coordinate ���� �atoms �=1,2 corresponding, respectively, to
�0,0,0� and �1/4,1/4,1/4��. Invariance relations �4� and �5� were im-
posed in the fitting. Units are in eV /Å3 in the last column.

No. of FC Label �1�1 �2�2 �3�3 �4�4 FC4

1 1 1 1 1 1 1 1 1 1 −110.4

7 2 1 1 2 1 1 2 1 2 −25.2

43 3 1 1 1 1 1 1 2 1 27.6

211 4 1 1 1 1 1 2 2 1 13.6

1219 5 1 1 1 2 1 2 2 1 6.3

2227 6 1 1 2 3 1 3 2 1 1.6

3235 7 1 2 1 2 1 2 2 1 13.6

3571 8 1 2 1 2 1 3 2 1 1.6

4579 9 1 1 1 1 2 1 2 1 −27.6

4705 10 1 1 1 2 2 1 2 1 −13.6

5713 11 1 2 1 2 2 1 2 1 −6.3

5965 12 1 2 1 3 2 1 2 1 −1.6

6469 13 1 1 1 2 2 1 2 2 −6.3

6973 14 1 1 1 3 2 1 2 2 −1.6

TABLE VI. Comparison between the first nearest neighbor force
constant Grüneisen parameters of Si from Eq. �9� and direct finite
differentiation �Ref. 18�.

FCs Nb shell � a � �Eq. �9��

�0 �0,0,0� 1.10 1.08

�1 � 1
4 , 1

4 , 1
4 � 1.03 1.02

�1 1.98 2.23

aReference 18.
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from first principles force-displacement data. The methodol-
ogy uses symmetries of the crystal to reduce the number of
independent FCs and can include up to any number of neigh-
bor shells, in principle. It requires, however, very accurate
first principles data in order to produce reliable FCs. This
method paves the way for the development of a new genera-
tion of interatomic potentials of ab initio accuracy.
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