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Modes and quasi-modes for m 51,2 in a gyrokinetic model
for a non-neutral plasma

S. Neil Rasband and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 27 October 1998; accepted 16 February 1999!

Modes and quasi-modes form51,2 are studied in a gyro-kinetic model for a pure-electron plasma.
Only z-independent perturbations are considered. Numerical methods are used to solve the relevant
differential equations for smooth, analytic density profiles. Different temperatures and
representative profiles are considered and comparison is made with the familiar cold fluid model
from which the results depart but little, except at higher temperatures. A continuum component to
the spectrum, present in the cold-fluid model, remains in the gyro-kinetic model to the order
considered. ©1999 American Institute of Physics.@S1070-664X~99!04005-7#
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I. INTRODUCTION

Some recent investigations have demonstrated rene
interest in damped quasi-modes forz-independent perturba
tions of a non-neutral plasma studied nearly 30 years ago
Briggs, Daugherty and Levy.1 Corngold2 published an ana
lytic analysis for some special density profiles and
present authors published a study using numerical meth
for more general profiles.3 This recent theoretical interest ha
been stimulated, at least in part, by experimental obse
tions of such modes by Pillai and Gould4 and investigations
of similar behavior at University of California, San Dieg
~UCSD!.5

We have been partly motivated by a desire to underst
how some of the special features of the cold fluid~CF!
model, the continuum modes and quasi-modes, are mod
when additional physical effects are included.

The plan of this article is to discuss the physical mod
in Sec. II, the numerical codes and tools used in our stud
Sec. III, and in Sec. IV we considerm51 andm52 modes
in representative hollow and monotonic equilibrium dens
profiles. Section V contains our conclusions.

II. THE COLD FLUID AND GYROKINETIC MODELS

The cold fluid ~CF! model has been documented a
discussed in the references given earlier. We use the de
tion of the Laplace transform given by

f̃ ~v!5E
0

`

f ~ t !eivtdt, ~1!

where the inversion integral is along a contour in the up
half of the complexv-plane lying above all singularities. In
the CF model for the Laplace transformf̃ (1)(r ,v) of the
perturbed potentialf (1)(x,t) we use the differential equatio
in the form
1431070-664X/99/6(5)/1435/7/$15.00
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d

dr
S r

df̃~1!

dr
D 2

m2

r 2 f̃~1!2
1

r 2 f̃~1!F mrṽp
2

ṽ2mṽ0

n~0!8

n~0! G
52

4p iqn~1!~r ,01 !

v2mv0
, ~2!

wherem is the axial mode number from the assumed dep
dence of the form exp(imf). The unperturbed density is de
noted asn(0)(r ), its derivativedn(0)/dr as n(0)8, and the
corresponding plasma frequencyvp

2(r )54pq2n(0)(r )/M ,
with q the charge andM the mass. The rotation profilev0(r )
is given by v(0)5rv0(r )f̂, where v(0) is the equilibrium
drift velocity, v(0)5(q/MV) ẑ3¹f (0), and V5qB/Mc is
the signed gyrofrequency. Angular frequencies with a ti
over them denote that they have been scaled by the gyro
quency, e.g.,ṽp

25vp
2/V2. The scaled transform frequency

ṽ5v/V. The quantityn(1)(r ,01) denotes the initial density
perturbation.

For the gyrokinetic~GK! model the reader is referred t
the Appendix where a sketch and summary of an earlier
culation by one of us is given.6 In the GK model the differ-
ential equation for the Laplace transformf̃ (1)(r ,v) takes the
form

b0F1

r

d

dr
S r

df̃~1!

dr
D 2

m2

r 2 f̃~1!G2
b1

r 2 f̃~1!2
b2

r

df̃~1!

dr

2b3r
d

dr F r
d

dr S n~0!8

r
f̃~1!I 2D G

2b4r
d

dr S n~0!8

r
f̃~1!I 1D 54p iqn̄~r ,01 !I 1 , ~3!

where

b0~r !5112eṽp
22e2ṽp

2F2~ṽ01ṽp
2!1

mr2

4r

n~0!8

n~0! I 2G , ~4!
5 © 1999 American Institute of Physics
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b1~r !5mrṽp
2H n~0!8

n~0! I 1@12eṽp
212e2ṽ0~ṽ01ṽp

2!#

12e2
m

r
~2ṽ01ṽp

2!1e2
n~0!8

n~0!

3F ṽ2mṽ02
m2r2

r 2 I 2G J , ~5!

b2~r !52
rn ~0!8

n~0! ṽp
2e@12e~2ṽ01ṽp

21mṽ0I 1!#

22e2ṽp
2~2ṽ01ṽp

2!, ~6!

b3~r !5
e2mr2ṽp

2

n~0!r 2 , ~7!

b4~r !52
e2mṽ0

2ṽp
2

n~0! . ~8!

The right-hand side of Eq.~3! represents a combinatio
of initial value terms. Since we are not interested in follo
ing the time development of specific particular initial stat
this right-hand side is arbitrary to an extent and we choos
write it in a form similar to the right-hand side of Eq.~2!. We
recall thate is simply an ordering parameter, a marker,
keep track of ordering in the gyro-expansion. In calculatio
e is set equal to 1. The coefficient functionsb0(r ), . . . ,b4(r )
of the differential Eq.~3!, as given in Eqs.~4!–~8!, are the
same as given in Ref. 6 with a few minor corrections
second order terms.

Other symbols occurring in these equations arer2

5vT
2/V2, wherevT

252kT/M ; T is temperature andk is the
usual Boltzmann constant. The quantitiesI 1 andI 2 are phase
space integrals coming from the integration of the pertur
distribution function to obtain the perturbed density. If w
define

g512eṽ02e2ṽ0ṽp
2 ~9!

and

v̄~r ,W!5v0g2
e2W2ṽp

2n~0!8

4rVn~0! , ~10!

then

I 15
2V

vT
2 E

0

` W exp~2W2/vT
2!

v2mv̄~r ,W!
dW5I /G, ~11!

I 25
2V

vT
4 E

0

` W3 exp~2W2/vT
2!

v2mv̄~r ,W!
dW5~12zI!/G, ~12!

where

G5
e2mr2ṽp

2~0!n~0!8

4rn00
~13!

and

z5@ṽ2mṽ0g#/G, ~14!
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with n00 and ṽp
2(0) denoting values atr 50 of the unper-

turbed density and scaled plasma frequency, respectiv
The quantityI (z) denotes the integral

I ~z!5E
0

` e2j

z1j
dj5ezE1~z!, ~15!

where E1(z) is the exponential integral in the notation o
Abramowitz and Stegun,7

E1~z!5E
z

` e2t

t
dt

52Fg1 ln z1 (
n51

`
~21!nzn

nn! G ~ uarg zu,p!, ~16!

whereg50.57721̄ is Euler’s constant.
In the limit thate→0 Eq. ~3! becomes

1

r

d

dr
S r

df̃~1!

dr
D 2

m2

r 2 f̃~1!2
m

r
ṽp

2 n~0!8

n~0! I 1f̃~1!

5
4p iqn̄~r ,01 !

ṽ2mṽ0
, ~17!

where in this limitI 1→1/(ṽ2mṽ0), showing that Eq.~17!
and therefore Eq.~3! are entirely consistent with Eq.~2! and
the CF model.

A. Persistence of a continuous spectrum in the GK
model

Setting the right-hand side of Eq.~3! equal to zero gives
a mode equation forf̃ (1):

b0F1

r

d

dr
S r

df̃~1!

dr
D 2

m2

r 2 f̃~1!G2
b1

r 2 f̃~1!2
b2

r

df̃~1!

dr

2b3r
d

dr F r
d

dr S n~0!8

r
f̃~1!I 2D G

2b4r
d

dr S n~0!8

r
f̃~1!I 1D 50. ~18!

Let r s denote a value of the radial coordinate where
given v is such thatv5mv0(r s),0,r s,r wall . We look at
solutions to Eq.~18! in the neighborhood ofr s and let x
5r 2r s . With an expansion of all derivatives Eq.~18! can
be written in the standard formA(r ,v)d2f̃ (1)/dr2

1B(r ,v)df̃ (1)/dr1C(r ,v)f̃ (1)50 where the coefficient
functions are lengthy algebraic expressions. Singularitie
this mode equation occur through the phase space integ
I 1 , I 2 , and their derivatives. For our purposes we note t
A(r ,v) is given by the expression forb0 given in Eq.~4! but
with the 1/4 replaced by 5/4. Thus in the limit thatx→0 we
havez→0 and sinceI 2;z ln z, A(r ,v) limits to just a num-
ber. Furthermore, it has no zeros for 0<r<r wall . The singu-
larities are in the coefficientC(r ,v). Since asx→0 I 1

; ln z, the most singular term comes fromdI1 /dr;dI1 /dz
;1/z;1/(v2mv0g) and is thus similar to the singularity in
the CF mode equation@Eq. ~2! with the right-hand side se
equal to zero#.
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To elucidate the continuity conditions onf̃ (1) and
df̃ (1)/dr at singularities we consider specifically an integ
tion of the CF mode equation across the singular layer.
singular term is proportional to 1/x and because this singu
larity is nonintegrable, no continuity conditions ondf̃ (1)/dr

are obtained. Consequently, the jump indf̃ (1)/dr across the
singular layer can be arbitrarily large. As a consequence
the right ofx50 the constants multiplying the two linearl
independent solutions to the mode equation in the CF mo
can be chosen to provide continuity forf̃ (1) at r 5r s and for
f̃ (1)50 at r 5r wall . This holds for any choice ofv in the
rangev0(r ), 0<r<r wall , and hence the continuous part
the spectrum.

In the GK model this picture does not change subst
tially. If we take the first order limit of Eq.~18! ~e→1, e2

→0!, the singularity is still proportional to 1/x. Keeping
terms to second order,I (z) is proportional to2 ln x and the
lowest order term in the mode equation from the GK exp
sion is integrable. However, second order terms, which n
enter into the mode equation, have nonintegrable singu
ties of the form 1/x precluding convergence of the GK ex
pansion atx50. This leads again to an absence of a con
nuity condition ondf̃ (1)/dr at r s . As a specific example, th
term in Eq. ~18! with the coefficientb4 has a term with
dI1 /dr which expands near the singular layer into a num
of terms, one of which is proportional to 1/x. Thus for the
same reason as in the CF model there is a continuous r
of v’s for which a solution exists.

The usual Frobenius analysis near the singular laye
the CF limit for Eq.~18! shows the solution in the CF mode
to be of the form

f̃~1!~r !5f̃~1!~r s!@11c1x lnuxu1¯#1c2x1¯ . ~19!

For the GK model, discarding the terms with coefficie
functionsb2 ,b3 ,b4 and keeping only the lowest order ter
in e in b1 , we find

f̃~1!~r !5f̃~1!~r s!@11c1x2 lnuxu1¯#1c2x1¯ . ~20!

Thus we see that in the complexv-plane the line of points
along the real axis wherev5mv0(r )g(r ) for 0<r<r wall

represents a line of branch points, and this is true for eit
the CF or the GK model. Thus the rationale for deformi
the r-contour off the real axis into the complex plane
uncover quasi-modes, as discussed in Refs. 1–3, is as
for the differential equation~18! as it is for differential equa-
tion ~2!, with right-hand side equal to 0.

There is one additional complexity in solving Eq.~3! as
compared to Eq.~2!. The functionI (z) occurring in the co-
efficients of Eq.~3! has a branch cut from the origin tò,
normally taken along the negative real axis. In solving E
~3! from r 50 to r 5r wall it is necessary to avoid crossing th
branch cut in the complexz-plane. Recall thatz is a function
of r through Eq.~14!, which can be a complicated path if th
integration path is deformed into the complexr-plane. This
becomes an issue particularly when considering hollow d
sity profiles with deformedr-contours. In practice we moni
tor the path ofz(r ) in the complex plane as defined by Eq
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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~13! and ~14! and choose the branch cut forI (z) so that the
pathz(r ) does not cross it. We restrict consideration of pr
files or complex deformations to those for which such
choice is possible.

III. THE NUMERICAL TOOLS

We have used a number of codes to explore the beha
of solutions to Eq.~3! and the homogeneous eigenval
equation obtained from Eq.~3! by setting the right-hand side
equal to zero. To study the eigensolutions to the homo
neous equation we have used a code~C1! based on finite
elements and a Galerkin approximation to the differen
equation. The potential perturbationf̃ (1) is expanded in se
of cubic B-splines and then the homogeneous set of eq
tions obtained from the Galerkin approximation is solved
matrix shooting.8 The purpose of this code is to find th
quasi-modes by deforming the interval over which the d
ferential equation is solved into the complex plane followi
the method suggested in Ref. 1. The interval 0<r<r wall is
analytically continued into the complex plane by choosin

r ~s!5r wall@s1 ih~s!#,

h~0!50; h~1!50; h~s!>0; 0<s<1.
~21!

The effect of the substitution represented by Eq.~21! is to
push, i.e., analytically continue, the curvemv(r ) into the
lower half of the complexv-plane. With a sufficiently large
deformation the complex frequencies of any existing qua
modes are left exposed above it. Some additional detai
the numerical method for finding the quasi-modes is given
Ref. 3.

In order to follow the changes inv for modes and quasi
modes as profile parameters are changed, we have cou
the code described above with a continuation algorit
given by Allgower and Georg.9 This code~C2! allows us to
explore mode dependencies on profile shapes and ide
modes and quasi-modes with those obtained analytically
sharp-boundary profiles.

The third code~C3! we use solves Eq.~3! for a given
n̄(r ,01) and a sequence ofv’s approximating the Bromwich
contour which surrounds the line of branch pointsmv0(r )
for 0<r<r wall . Again f̃ (1) is decomposed into a set of cu
bic B-splines with the appropriate boundary conditions a
then a Galerkin approximation to the differential equation
made. The norm of this solution, as a function of thev’s,
shows a peak at values ofv with a real part near the real pa
of a ~quasi!mode frequency. The Laplace inversion is th
carried out to obtain the electric field at the wall. The dec
in time of this field can give a good estimate of the ima
nary part of the~quasi!mode frequency when only a singl
~quasi!mode is present. This procedure is not sensitive to
choice made forn̄(r ,01).
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IV. REPRESENTATIVE DENSITY PROFILES

A. Hollow density profile

For our numerical studies we consider only electrons
the first representative profilen0(r ) we consider is depicted
in Fig. 1 along with the corresponding rotation profilev0(r ).
This profile is given by the formula

n~0!~r !5n00S 11mF r

r p
G2DexpS 2F r

r p
GnD , ~22!

wherem controls the hollowness of the profile,r p controls
the position of the peak, andn controls the steepness of th
exponential decline in the density. The valuesm51.35, r p

51.79, andn54.5 were chosen for the profile depicted
Fig. 1. The numerical values are selected to give profi
with some semblance of experimentally measured profile10

The value of the density at the center is taken asn0053.6
31012m23. The value of the constant axial magnetic field
taken as 375.0 G. The peak value of the rotation profile
these values is 1.0993106 sec21.

1. Resonances for m 51

Figure 2 depicting results obtained from C3 shows t
we can expect two modes: one the usual diocotron m
with a frequency nearv0(r wall) and the other near to th
peak value ofv0(r ). The actual resonance frequencies
the GK model are ‘‘Doppler’’ shifted by the quantityg of
Eq. ~8! and are slightly different from the corresponding fr
quencies of the CF model, regardless of the temperat
Also in the CF model the mode with the frequency reson
at the peak of thev0 profile is the special mode with
f̃ (1)(r )}Ar(v2v0) that has been included in many studi
of CF resonances,6,11–13 and has no imaginary part to th
resonance frequency. In the GK model this mode is wea
unstable. Table I compares the frequencies for the CF
the GK models. For the GK model results for two values

FIG. 1. An analytic radial density profile and the corresponding rotat
profile. These profiles are scaled by their maximum values. The values a
center aren0053.631012 m23 and v0(0)50.86863106 sec21 and at the
peakvmax51.0993106 sec21.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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the temperature are given; larger temperatures give,
course, a greater difference between the values of the CF
GK models.

2. Resonances for m 52

Using the same density profile as given in Fig. 1 but n
with m52, code C3 gives frequencies 0.974vmax and
1.94vmax as estimates for the real part of resonance frequ
cies. Figure 3 displays the results of this calculation in a w
different from that of Fig. 2. The norm off̃ (1) is plotted in
arbitrary units along the normal direction away from t
point on the Bromwich contour where Eq.~3! is solved. The
modes and quasi-mode are also indicated in this figure. C
C1 gives the first as a quasi-mode withv5(0.97753
2 i (0.01098))vmax and the second as an unstable mo
with v5(1.93416 i (0.01592))vmax, for a temperature of
1.0 eV. For the two temperatures of 1.0 eV and 100.0 eV
have used code C2 to compute curves for the variation of
mode frequencies as the hollowness of the density profil
changed. To obtain the curves the depth of the central
pression in the density is changed by varying the param
m in Eq. ~22! from 1.35 to 0.0. This corresponds to varyin
the ratio of the peak density to the density at the cen
(r 50) from 1.36 to 1.0. Figures 4 and 5 show the variati
in the mode and quasi-mode frequencies for both the CF
the GK ~T51.0 and 100.0 eV! models.

n
he
FIG. 2. Form51 and the density profile of Fig. 1 the norm of the Lapla

transformf̃ (1)(r ,v) in arbitrary units is plotted as a function of normalize
frequencyv/vmax as v varies around the Bromwich contour depicted
Fig. 3.

TABLE I. Mode frequencies (m51) for hollow profile of Fig. 1 where
vmax51.0993106 sec21.

Model Diocotron/vmax Peak mode/vmax

CF 0.2673 0.9998
GK ~1.0 eV! 0.2676 0.99901i~0.0 009 492!
GK ~100.0 eV! 0.2766 0.98951i~0.008 591!
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B. Double-hump profile

As a second representative type, we consider a mo
tonically decreasing profile but with two ‘‘shoulders’’ as
decreases to zero. Figure 6 shows a typical example with
correspondingv0(r ) profile. This profile is given by the ana
lytic form:

n~0!~r !5
n00

2
@11na~r !#nb~r !, ~23!

wherena(r ) andnb(r ) are functions of the form

n~r !5
e22kr2

~12e22k~r wall
2

2r 2!!~11 e/~22e!!

~12e22krwall
2

!~e22kr2
1 e/~22e!!

. ~24!

The parametere is given by the formula

FIG. 3. The complexv-plane showing the Bromwich contour~dotted curve!
on which the differential equation~3! is solved, the mode eigenfrequencie
~asterisks! and quasi-mode~star! found with code C1, the line of branch
points along the real axis~heavy bold!, and finally in arbitrary units the

log(if̃(1)i) is plotted along the normal direction away from the Bromwi
contour.

FIG. 4. Frequency variation for the quasi-mode as the ratio of the p
density to the central density varies from 1.36, as depicted in Fig. 1, to
where there is no central depression in the density. Different line st
distinguish the different curves for the cold fluid~CF! and the gyrokinetic
~GK! models and the GK curves are labeled with the chosen temperat
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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e5
2e22krp

2
@122e22k~r wall

2
2r p

2
!1e22krwall

2
#

12e22krp
2
2e22krwall

2
1e22k~r wall

2
1r p

2
!

, ~25!

wherek determines the sharpness of the step andr p the po-
sition of the step; atr 5r p we requiren(r p)51/2. In the
functions na(r ) and nb(r ) we choose respectively 0.5r wall

and 0.75r wall for r p wherer wall53.81 cm withk51 for the
profile of Fig. 6.

1. Resonances for m 51

Figure 7 displays results from C3 which shows clea
the existence of the familiar diocotron~wall! mode (v real

;0.353106 sec21) and suggests the existence of a heav
damped mode or quasi-mode withv real;0.643106 sec21.
Code C1 finds the wall mode atv5(0.353061 i (0.0))
3106 sec215(0.40649)vmax, where vmax5v0(r50), but
finds no mode or quasi-mode associated with the bump c

k
.0
s

.

FIG. 5. Frequency variation for the unstable mode as the ratio of the p
density to the central density varies from 1.36, as depicted in Fig. 1, to
where there is no central depression in the density. Different line st
distinguish the different curves for the cold fluid~CF! and the gyrokinetic
~GK! models and the GK curves are labeled with the chosen temperat

FIG. 6. An analytic radial density profile with two ‘‘shoulders’’ and corre
spondingly two quasi-modes. The values at the center (r 50) are given by
n0053.631012 m23 andvmax5v0(0)50.868631026 sec21.
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 This a
tered on 0.643106 sec21. Results from running C3 on a cor
responding CF model show a similar bump. However,
m51 no other mode than the wall mode exists. The sec
step in the density profile seems to have an enhanced e
on the dynamics without giving rise to a mode or qua
mode.

2. Resonances for m 52

Figure 8 from code C3 suggests two quasi-modes w
the real part of the frequencies approximately 0.
3106 sec21 and 1.373106 sec21. Table II gives the results
from code C1 in terms of the central frequency for thr
different temperatures. We see little change from the
model,;1% even for 100.0 eV.

V. CONCLUSIONS

In qualitative terms there is little to be gained by usi
the GK model instead of the CF model, certainly for te
peratures in the range of those seen experimentally. With
exception of the weakly unstablem51 mode for hollow
profiles, the modes and quasi-modes have frequencies,
real and imaginary parts, that differ by at most a few perc
in the two models. The instability for them51 modes in
hollow profiles has been noted before6 and gives a growth
rate only about 10% of that seen experimentally.10 The GK

FIG. 7. Form51 and the density profile of Fig. 6 the norm of the Lapla

transformf̃ (1)(r ,v) in arbitrary units is plotted as a function of normalize
frequencyv/vmax as v varies around the Bromwich contour depicted
Fig. 8.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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expansion sheds no further light on the continuum mo
extant in the CF model. The procedure of inverting t
Laplace transform by integrating around the Bromwich co
tour, as embodied in code C3, proved to be very usefu
obtaining initial estimates for the frequencies of modes a
quasi-modes.

APPENDIX: RESULTS FOR THE GK MODEL

In this appendix we summarize results from Ref. 6 ne
essary to obtain the differential equation~3! for the gyroki-
netic model of a nonneutral plasma. We reference equat
from this article by giving equation numbers preceded by
R, e.g., Eq.~R12!.

We assume that the unperturbed, time independent
tribution function is a simple Maxwellian:

F ~0!~r ,U,W!5
n~0!~r !

M3vT
3p3/2exp@2~U21W2!/vT

2#, ~A1!

and that perturbed and unperturbed fields and distributi
are independent of the coordinatez along the direction of the
imposed magnetic field.

From the Laplace transform of the Vlasov equation
the perturbed distribution function, Eq.~R14!, we obtain for
the Laplace transform,F̃ (1)(x,v;U,W), of the perturbed dis-
tribution function

FIG. 8. The complexv-plane showing the Bromwich contour~dotted curve!
on which the differential equation~3! is solved, the quasi-mode frequencie
~stars! found with code C1, the line of branch points along the real a

~heavy bold!, and finally in arbitrary units the log(if̃(1)i) is plotted along the
normal direction away from the Bromwich contour.
TABLE II. Quasi-mode frequencies (m52) for the double-hump profile of Fig. 6 wherevmax50.8686
3106 sec21.

Model v1 /vmax v2 /vmax Temperature~eV! r2/r wall
2

CF 1.0362i~0.002501! 1.5772i~0.02445! NA NA
GK 1.0362i~0.002507! 1.5772i~0.02444! 1.0 5.5631026

GK 1.0372i~0.002510! 1.5792i~0.02445! 10.0 5.5631025

GK 1.0482i~0.002433! 1.5922i~0.02419! 100.0 5.5631024
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 This a
F̃ ~1!~x,v;U,W!

5
q

MV

eimf

~v2mv̄ !

]F ~0!

]r H 2
m

r
f̃~1!1

e

V
F ~v2mv̄ !

]f̃~1!

]r
2

m

r

vp
2

V
f̃~1!G

1
e2

V2 F2
m

r

W2

4
D2f̃~1! 2mv0

2 ]f̃~1!

]r
1

vp
2

V
S ~v2mv̄ !

]f̃~1!

]r
2

m

r

vp
2

V
f̃~1!D G J

1
i

v2mv̄
FF ~1!~01 !2

]F ~0!

]r

q

MV
eimf

e

V
~11eṽp

2!
]f̃~1!

]r
~01 !G . ~A2!

The quantityv̄ is defined in Eq.~8! and

D2f̃~1!5
1

r

]

]r
S r

]f̃~1!

]r
D 2

m2

r 2 f̃~1!. ~A3!

From Eq.~R21! in the z-independent case we obtain for the Laplace transform of the perturbed density

ñ~1!~x,v!5I1~ F̃ ~1!!1
2e

V
~ ẑ•c~0!!I1~ F̃ ~1!!1

2e

V
~ ẑ•c~1!!I1~F ~0!!1

e2

V2 H I1~ F̃ ~1!!@~ ẑ•c~0!!21¹•~ve
~0!
•¹ve

~0!!#

1I1~F ~0!!@2~ ẑ•c~0!!~ ẑ•c~1!!1¹•~ve
~0!
•¹ve

~1!1ve
~1!
•¹ve

~0!!#1S Dve

Dt D ~0!

•¹I1~ F̃ ~1!!

1S D ṽe

Dt D ~1!

•¹I1~F ~0!!1¹2I3~ F̃ ~1!!J , ~A4!

where the velocity integralsI1(¯) andI3(¯) are given by the formula

Ik~¯ ![2pM3E
2`

`

dUE
0

`

~¯ !WkdW. ~A5!

We also recall thatve5(q/MV) ẑ3¹f, c5¹3ve , andD/Dt5]/]t1ve•¹. SubstitutingF̃ (1) from Eq. ~A2! into Eq. ~A4!
and using the definitions given, we obtain for the Laplace transform of the perturbed density

ñ~1!~x,v!5
q

MV
eimfn~0!H 2

m

r

n~0!8

n~0! f̃~1!I 11eFm

r
ṽp

2 n~0!8

n~0! f̃~1!I 11
n~0!8

n~0!

]f̃~1!

]r
12D2f̃~1!G

1e2F2
m

r
f̃~1!S 2m

r
~2ṽ01ṽp

2!1
n~0!8

n~0! F ~ṽ2mṽ0!2
m2

r 2 r2I 212ṽ0~ṽ01ṽp
2!I 1G D

2
]f̃~1!

]r Fn~0!8

n~0! ~2ṽ01ṽp
21mṽ0

2I 1!2
2

r
~2ṽ01ṽp

2!G2D2f̃~1!F2~ṽp
21ṽ0!1

mr2

4r

n~0!8

n~0! I 2G
1

rmṽ0
2

n~0!

d

dr S n~0!8

r
f̃~1!I 1D 2

mr2

rn ~0!

d

dr S r
d

dr Fn~0!8

r
f̃~1!I 2G D G J 1 initial value terms. ~A6!
on

ec
ec

of
This result forñ(1) is then substituted into Poisson’s equati
for the Laplace transformf̃ (1). This results in Eq.~3!.
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