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Interference in the far-field radiation pattern emitted from a classical current distribution implies

near-field work between different spatial portions of the distribution. We examine this relationship

and the essential role of system geometry for the case of two oscillating dipoles and for a Gaussian

current distribution. This analysis offers a compelling argument as to why the radiation from a

large single-electron quantum wave packet should not exhibit the same destructive interference

as that associated with a comparable classical charge density. Our discussion draws attention to

the ad hoc heuristics motivating the original derivation of a quantum electron’s radiation profile.
VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4793437]

I. INTRODUCTION

It is well known that the founders of quantum mechanics
disagreed (for a time) about how to interpret the single-
particle wavefunction wðr; tÞ. In an early paper,1 Schr€odinger
suggested that the quantity ejwðr; tÞj2 be interpreted as a clas-
sical charge density for the electron, coupling naturally to
classical electrodynamics via Maxwell’s equations. This sug-
gestion was superseded by the probabilistic interpretation
introduced by Born in 1926,2 which held steadfast even
through the developments of second quantization and quan-
tum electrodynamics (QED). The Born interpretation is the
commonly held viewpoint today,3,4 although alternative per-
spectives have been explored (for example, cf. Refs. 5–9).
Even so, the unwieldiness of QED often compels researchers
to resort to first-quantized calculations. In this context, it is
easy to revert to Schr€odinger-like intuition, especially in con-
nection with radiative processes. We refer in particular to the
radiation generated by a laser-driven single-electron wave
packet.

The purpose of this paper is to improve general intuition
for quantum radiation scattering by studying the implications
of classical electrodynamics. Classical charge and current
distributions q and J generate (Lorenz-gauge) potentials,

Uðr; tÞ ¼ 1

4p�0

ð
d3r0

qðr0; trÞ
r

and

Aðr; tÞ ¼ l0

4p

ð
d3r0

Jðr0; trÞ
r

;

(1)

where r ¼ jr� r0j and tr ¼ t� r=c is the retarded time.10 The
electric and magnetic fields are generated from these potentials
by E ¼ �rU� @A=@t and B ¼ r� A. If the classical cur-
rent J oscillates across its distribution, then the radiation can
be strongly suppressed in certain directions due to destructive
interference. Thus, it seems natural to ask: does this same sup-
pression occur if the source is a (large) single-electron quan-
tum wave packet? A cursory appeal to Born’s probabilistic
interpretation gives no immediate intuition on the matter;
hence, it may be tempting to suppose that ejwðr; tÞj2 (or a rela-
tivistic analog) radiates like a classical charge density in spite
of being a fundamentally different object. Indeed, Refs. 11 and
12 found pronounced radiative interference when Eq. (1) is
sourced by a quantum probability current.

We recently demonstrated in the context of QED that light
scattered from a single-electron wave packet is independent
of the size of the wave packet.13–15 This is in sharp contrast
with classical electrodynamics wherein the radiated light
depends sensitively on the spatial extent of the oscillating
source. QED predicts that the radiation emitted from differ-
ent regions of an electron wave packet do not interfere—no
radiative suppression occurs. The numerical quantum field
simulations by Cheng et al. agree with our conclusions.16

Unfortunately, these approaches generally only enlighten
those who are already well-versed in second quantization.

In this paper, we present intuitive arguments to show that
radiation from a single-electron wave packet, computed clas-
sically from Eq. (1), leads to inconsistencies with quantum
mechanics. We appeal only to the principles of classical
electrodynamics, showing that far-field interference in the
radiated light would imply that different regions of the elec-
tron wave packet do work on each other via the near fields.
This is at odds with ordinary single-particle quantum
mechanics because one does not include a Hamiltonian term
for the near-field interaction between different parts of the
same electron wavefunction. (Such a term would completely
alter the well-understood hydrogenic ground state, for exam-
ple.) At the same time, the examples given in this article are
interesting classical electrodynamic problems in their own
right.

In Secs. II and III, we compute the far-field radiation from
two dipoles and we demonstrate that near-field work
accounts for the interference between the dipoles. This
relates to recent work by Berman, who looked at energy
exchange between two well-separated radiating dipoles.17

Section IV generalizes the analysis to a Gaussian current dis-
tribution, investigating the radiative interference that a quan-
tum electron wave packet would exhibit if ejwðr; tÞj2 were a
classical charge density, as Schr€odinger suggested. Finally,
Sec. V discusses the Schr€odinger interpretation in the context
of early calculations of single-electron radiation scattering.

II. RADIATION FROM A TWO-DIPOLE SYSTEM

In this section, we analyze interference in the radiation
generated by a pair of oscillating dipoles. First, consider a
single dipole at position r1, oriented along the z-direction,
and oscillating with frequency x ¼ ck,
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p1 ¼ ẑp0 cos ð�xtþ u1Þ: (2)

The parameters p0 and u1 represent the amplitude and phase.
The electric field surrounding the radiating dipole is given by18

E1ðr; tÞ ¼
p0

4p�0

½3ðẑ � r̂Þr̂ � ẑ� cos ðkr� xtþ u1Þ
r3

�

þ k sin ðkr�xtþ u1Þ
r2

�

� p0

4p�0

½ðẑ � r̂Þr̂ � ẑ� k
2 cos ðkr�xtþ u1Þ

r
;

(3)

where ~r � r� r1 and r̂ �~r=r. A similar expression can be
written for the field E2ðr; tÞ emanating from a parallel dipole
positioned at r2 and oscillating with the same frequency. The
pair of dipoles is depicted in Fig. 1. Of course, the net field is
given by E1 þ E2.

We calculate the power radiated by the pair of dipoles
following standard far-field analysis. In the far-field (i.e.,
r! large), the final term in Eq. (3) dominates. Moreover,
outside of the cosine argument we may write r � r. Within
the cosine argument, we make the approximation jr� r1j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

1 � 2r1 � r
p

� r � r1 � r̂ (and similarly jr� r2j
� r � r2 � r̂). The net field from the two dipoles in the far-
field then becomes

E1ðr; tÞ þ E2ðr; tÞ � �
p0

4p�0

½ðẑ � r̂Þr̂ � ẑ� k
2

r

� ½cos ðkr � kr1 � r̂ � xtþ u1Þ
þ cos ðkr � kr2 � r̂ � xtþ u2Þ�:

(4)

In spherical coordinates, we have ðẑ � r̂Þr̂ � ẑ ¼ ĥ sin h.
The magnitude of the Poynting flux (which is directed along r̂)
is then

Sðr; tÞ ¼ �0cjE1 þ E2j2

¼ cp2
o sin2 h

ð4pÞ2�0

k4

r2
½cos 2ðkr � kr1 � r̂ � xtþ u1Þ

þ cos 2ðkr � kr2 � r̂ � xtþ u2Þ
þ 2 cos ðkr � kr1 � r̂ � xtþ u1Þ
� cosðkr � kr2 � r̂ � xtþ u2Þ�: (5)

The time average of this expression reduces to

hSðr; tÞit ¼
cp2

0 sin2 h

ð4pÞ2 �o

k4

r2
½1þ cos ðka � r̂ � uÞ�; (6)

where a � r2 � r1 and u � u2 � u1. This distribution is
shown in Fig. 2 for various dipole separations. As the dipoles
get farther apart, the distribution shows rich interference
structure.

To obtain the average power radiated into the far-field, we
integrate the average Poynting flux over the surface of a
large sphere of radius r,

hPit ¼ r2

ð2p

0

d/
ðp

0

dh sin hhSit: (7)

The integration is worked out in Appendix A and the result-
ing expression for radiated power is

hPit ¼
cp2

0k4

4p�0

2

3
þ cos u

~a2

a2

sin ka

ka
þ ~a2 � 2a2

z

a2

cos ka

ðkaÞ2

 "

� ~a2 � 2a2
z

a2

sin ka

ðkaÞ3

!#
; (8)

where a2
z � ðz2 � z1Þ2; ~a2 � ðx2 � x1Þ2 þ ðy2 � y1Þ2, and a2

¼ ~a2 þ a2
z . Figure 3 shows the total radiated power as a func-

tion of dipole separation. As is evident, the geometry of the
dipole arrangement not only affects the distribution of the
far-field Poynting flux but also the overall amount of emitted
power.

Fig. 1. Two oscillating dipoles at arbitrary locations r1 and r2 with orienta-

tions parallel to the z-axis.

Fig. 2. (Color online) Far-field average Poynting-flux distribution from two

parallel dipoles separated by (a) k~a ¼ 0, (b) k~a ¼ 4p=3, (c) k~a ¼ 8p=3, and

(d) k~a ¼ 4p. Here, we have taken kaz ¼ 0 and u ¼ 0; az and ~a are defined

following Eq. (8).
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III. NEAR-FIELD WORK IN A TWO-DIPOLE

SYSTEM

We next evaluate the work required of the agent causing
the dipole oscillations in the presence of the near fields. As
we will see, the missing power in the far-field is accounted
for in the near-field work. The power required to drive the
oscillations of dipole 2 in the presence of field E1 is

P21 ¼ �E1ðr2; tÞ �
dp2

dt
; (9)

where p2 ¼ ẑp0 cos ð�xtþ u2Þ. After explicit substitution
from Eq. (3), this expression becomes

P21 ¼
ck4p2

0 sin ðxt� u2Þ
4p�0

�ðkaÞ2 a2
z

a2
� 1

� ���

þ 3
a2

z

a2
� 1

� ��
cos ðka� xtþ u1Þ

ðkaÞ3

þ 3
a2

z

a2
� 1

� �
sin ðka� xtþ u1Þ

ðkaÞ2

)
; (10)

and with time averaging it reduces to

hP21it ¼
ck4p2

0

8p�0

ðk~aÞ2 þ 3
a2

z

a2
� 1

� �� �
sin ðkaþ uÞ
ðkaÞ3

(

� 3
a2

z

a2
� 1

� �
cos ðkaþ uÞ
ðkaÞ2

)
: (11)

Starting from the above expression, it is possible to deter-
mine the power required to drive dipole 2 in the presence of
its own field. We simply make the substitution u1 ! u2 (or
set u ¼ 0) and take the limits ~a ! 0 and az ! 0, in either
order. This produces the well-known Larmor radiation
formula,

hP22it ¼
ck4p2

0

12p�0

; (12)

in this case derived directly from the interplay between the
dipole and the near-field rather than indirectly by invoking
energy conservation in the far-field.

We may also determine the power required to drive dipole
1 in the presence of field E2 as

P12 ¼ �E2ðr1; tÞ �
dp1

dt
: (13)

Similar to Eq. (11), the time average is

hP12it ¼
ck4p2

0

8p�0

ðk~aÞ2 þ 3
a2

z

a2
� 1

� �� �
sin ðka� uÞ
ðkaÞ3

(

� 3
a2

z

a2
� 1

� �
cos ðka� uÞ
ðkaÞ2

)
: (14)

Equations (11) and (14) differ only by the sign in front of u.
The expression for hP11it is of course identical to Eq. (12).

The total power required of the agent causing the dipole
oscillations is hPit ¼ hP12it þ hP21it þ hP11it þ hP22it, which
works out to be identical to Eq. (8), as expected. It is satisfy-
ing to see that the injected power matches precisely the power
radiated away. It is interesting that only the final term in
Eq. (3) contributes to the radiation calculation, whereas the
computation of the injected power requires one to take into
account all of the field terms in Eq. (3). This calculation illus-
trates the crucial role played by the near-field work between
the dipoles, as it accounts for the diminished radiated power
resulting from destructive interference.

IV. RADIATION FROM A GAUSSIAN CURRENT

DISTRIBUTION

The electric field arising from an arbitrary current and
charge distribution (denoted by J and q, respectively) is given
by Jefimenko’s equation,10

Eðr; tÞ ¼ 1

4p�0

ð
qðr0; trÞ

r2
r̂ þ _qðr0; trÞ

cr
r̂ �

_Jðr0; trÞ
c2r

� �
d3r0;

(15)

where~r � r� r0 and tr � t� r=c. We will find it helpful to
eliminate the dynamic part of q in favor of J by invoking the
continuity equation,

_q ¼�r0 � Jþ _J � r̂=c

and

q¼ qstatic þ
ðtr

_q dt0 ¼ qstatic �
ðtr

r0 � Jdt0 þ J � r̂=c:

(16)

In the above expressions, we have accounted for the fact that
J depends on r0 both explicitly and implicitly through tr, and
it is understood that r0 operates on explicit and implicit
occurrences of r0. The time-independent quantity qstatic

restores the part of q that does not survive the operationÐ tr _q dt (i.e., an integration constant).

Fig. 3. Total average power emitted from a pair of parallel oscillating

dipoles as a function of separation [in units of the power radiated from a sin-

gle dipole given by Eq. (12)]. As in Fig. 2, we take kaz ¼ 0 and u ¼ 0; sepa-

rations corresponding to those shown in Fig. 2 are indicated.
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As we substitute Eq. (16) into Eq. (15), we further note
(via integration by parts) that

ð
d3r0ðr0 � JÞ r̂

rn
¼
ð

d3r0
J

rnþ1

� ðnþ 1Þ
ð

d3r0ðJ � r̂Þ r̂

rnþ1
: (17)

With the above substitutions, Jefimenko’s equation takes the
form,

Eðr; tÞ ¼ 1

4p�0

ð
qstaticðr0Þ

r2
r̂

�

þ
ðtr 3½Jðr0; t0Þ � r̂�r̂ � Jðr0; t0Þ

r3
dt0

þ 3½Jðr0; trÞ � r̂�r̂ � Jðr0; trÞ
cr2

þ ½
_Jðr0; trÞ � r̂�r̂ � _Jðr0; trÞ

c2r

�
d3r0: (18)

It is interesting to note that if the current is chosen to be
Jðr0; trÞ ¼ ẑp0 sin ð�xtr þ u1Þd3ðr0 � r1Þ=x with qstatic ¼ 0,
Eq. (18) reduces to the field surrounding a single oscillating
dipole located at r1 [identical to Eq. (3)].

We now consider a classical current distribution designed
to mimic a free quantum wave packet for a charged particle
stimulated by a laser field. If the wave packet is sufficiently
diffuse to make quantum spreading slow and if an applied
laser field avoids the relativistic regime such that we may
neglect geometrical distortions to the shape, we may contem-
plate a current distribution of the form,

Jðr0; tÞ ¼ ẑJ0e�r02=r2
0 sin ðkx0 � xtÞ: (19)

This scenario arises when a Gaussian charge distribution is
stimulated by an external electric field polarized in the
z-direction and traveling in the x-direction with frequency
x ¼ ck. This current distribution is depicted in Fig. 4.

When Eq. (19) is inserted into Eq. (18), we obtain

Eðr; tÞ ¼ J0

4p�0x

ð
e�r02=r2

0

�
½3ðẑ � r̂Þr̂ � ẑ�

� cos ðkx0 � xtþ krÞ
r3

þ k sin ðkx0 � xtþ krÞ
r2

� �

�½ðẑ � r̂Þr̂ � ẑ� k
2 cos ðkx0 � xtþ krÞ

r

�
d3r0

þ 1

4p�0

ð
d3r0

qstaticðr0Þ
r2

r̂: (20)

Not surprisingly, this field is identical to that arising from a
distribution of oscillating dipoles. Aside from the (inconse-
quential) electrostatic component, Eq. (20) is nothing more
than a Gaussian superposition of dipole fields described by
Eq. (3), with r1 ¼ r0 and u1ðr0Þ ¼ kx0. In this context, J0=x
may be thought of as the peak medium polarization (in units
of dipoles per volume).

Only the term involving 1=r in Eqs. (18) or (20) survives
in the far-field limit. As before, in this limit, we make the
approximation r � r except in the cosine argument where
we write r � r � r0 � r̂. Equation (20) then reduces to

Eðr;tÞ�� kJ0

4p�0cr
½ðẑ � r̂Þr̂� ẑ�

ð
e�r02=r2

0

�cos kx0 �xtþkr�k
x0xþy0yþz0z

r

� �
d3r0

¼�ĥ
kJ0 sinh
4p�0c

< eiðkr�xtÞ

r

ð1
�1

dx0e�x02=r2
0 e�ikðx=r�1Þx0

�
ð1
�1

dy0e�y02=r2
0 e�ikyy0=r

ð1
�1

dz0e�z02=r2
0 e�ikzz0=r:

(21)

After performing the Gaussian integrals, the electric field
simplifies to

Eðr;tÞ��ĥJ0

k
ffiffiffi
p
p

r3
0

4�0c
sinh

cosðkr�xtÞ
r

e�k2r2
0
ð1�sinhcos/Þ=2;

(22)

with x=r ¼ sin h cos /.
The average Poynting flux (directed along r̂) is

hSit ¼ �0chjEj2it ¼
k2p J2

0r6
0

32�0c

sin2 he�k2r2
0
ð1� sin h cos /Þ

r2
;

(23)

which is shown in Fig. 5. As the size of the source current
distribution grows, interferences cause the emitted radiation
to be suppressed in every direction except along the x-axis,
the direction of the traveling wave responsible for stimulat-
ing the current. This constructive interference in a preferred
direction is commonly referred to as phase matching.

To compute the average power radiated into the far-field,
as before, we insert Eq. (23) into Eq. (7) to get

hPit ¼
k2p J2

0r6
0

32�0c
e�k2r2

0

ðp

0

dh sin 3h
ð2p

0

d/ek2r2
0

sin h cos /:

(24)
The integration yields19,20

Fig. 4. (Color online) Current distribution defined by Eq. (19) at an instant

in time. The direction of the current alternates with each stripe and is polar-

ized in the z-direction. The internal waves propagate in the x-direction at

speed c while the overall Gaussian distribution remains centered on the

origin.
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hPit¼
p2 J2

0r4
0

16�0c
1� e�2ðkr0Þ2�1þ e�2ðkr0Þ2

ðkr0Þ2
þ1�e�2ðkr0Þ2

ðkr0Þ4

" #
:

(25)

Note that in the limit kr0 � 1, this expression reduces to the
power radiated from a single dipole [Eq. (12)], as it should,
with effective dipole moment p0 ¼ p3=2J0r3

0=kc. A graph
showing the total power is shown in Fig. 6. As the size of the
(normalized) current distribution increases, the relative

overall power drops off as the emission into directions other
than the x-axis is suppressed.

To summarize, Eq. (25) gives the average power radiated
from a Gaussian current distribution comprised of linearly
polarized oscillations that travel at c in the x-direction. This
expression may be understood as the time average of
the left-hand side of Poynting’s theorem,

Þ
S � n̂ d2rþ

@=@t
Ð
ð�0E2=2þ B2=2l0Þd3r ¼ �

Ð
E � J d3r, since the aver-

age field energy for our temporally periodic system is time in-
dependent. Thus, Poynting’s theorem guarantees that on
average the radiated power precisely balances the power nec-
essary to maintain the current, as described by

P ¼ �
ð

Eðr; tÞ � Jðr; tÞ d3r: (26)

When Eqs. (19) and (20) are explicitly inserted in Eq.
(26), we arrive at the following six-dimensional integral:

hPit ¼
J2

0k2

8p�0c

ð
d3re�r2=r2

0

ð
d3r0e�r02=r2

0

� 3ðẑ � r̂Þ2� 1

ðkrÞ3
�ðẑ � r̂Þ

2� 1

kr

" #
sin ðkr� krxÞ

(

� 3ðẑ � r̂Þ2� 1

ðkrÞ2
cos ðkr � krxÞ

)
; (27)

where we have used h sin ðkx� xtÞ cos ðkx0 � xtþ krÞit
¼ �sin ðkr � krxÞ=2 and hsin ðkx� xtÞ sin ðkx0 � xtþ krÞit
¼ cos ðkr � krxÞ=2, with rx � x� x0. The integration is car-
ried out in Appendix B and as expected it agrees precisely
with Eq. (25). Again, it is interesting that the near-field terms
play an important role in computing Eq. (27), whereas only
the far-field portion is needed to compute Eq. (25). As in the
two-dipole case, the near-field work accounts for the dimin-
ished radiated power.

V. HISTORIC BAIT AND SWITCH

Our discussion here is immediately relevant to the original
derivation of a quantum electron’s scattering cross section.
Before the advents of second quantization and QED, Walter
Gordon derived the intensity profile for radiation scattered
by a single (spinless) electron,21 which turned out to be cor-
rect to lowest order in scalar QED. We provide here a gen-
eral outline of his semiclassical argument, writing formulas
with modernized notation and units.

Gordon’s analysis begins with a calculation of approxi-
mate momentum states wpðr; tÞ that are dressed by an inci-
dent monochromatic plane-wave field (represented by vector
potential Ain). He superposes these momentum states to form
a wave packet,

Wðr; tÞ ¼
ð

d3p aðpÞwpðr; tÞ; (28)

where aðpÞ are the momentum amplitudes of the packet. He
next uses the quantum wavefunction Wðr; tÞ to construct a
current density,

Jðr; tÞ ¼ e

m
<fW	ð�i�hr� eAinÞWg: (29)

Fig. 6. Total average power emitted from a Gaussian current distribution as

a function of distribution size according to Eq. (25). Distribution sizes corre-

sponding to those shown in Fig. 5 are indicated. Power is expressed in units

of k2p2J2
0r6

0=ð12�0cÞ, which is the effective radiated dipole power for

small kr0.

Fig. 5. (Color online) Far-field average Poynting flux from a Gaussian cur-

rent distribution according to Eq. (23) with distribution sizes (a) kr0 ¼ 0,

(b) kr0 ¼ 2p=3, (c) kr0 ¼ 4p=3, and (d) kr0 ¼ 2p.

355 Am. J. Phys., Vol. 81, No. 5, May 2013 Peatross, Corson, and Tarbox 355

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.187.97.22 On: Wed, 12 Feb 2014 04:29:59



This current density [with the packet in Eq. (28)] could, for
example, look similar to the oscillating Gaussian distribution
given in Eq. (19).

Gordon begins the evaluation of the radiation field by using
the current density Eq. (29) as a source in Eq. (1). In other words,
he appears to treat the quantum current density as a classical cur-
rent density, consistent with the Schr€odinger interpretation.

An interesting development occurs near the end of
Gordon’s calculation. After substituting Eq. (28) into Eq. (29)
and then using Eq. (29) in Eq. (1), one ends up with integra-
tions over d3p; d3p0, and d3r0, which Gordon expresses in the
general far-field form,

Aðr; tÞ ¼ <
ð

d3p0
ð

d3p a	ðp0ÞaðpÞAp0pðr; tÞd3ð~pÞ; (30)

where

Ap0pðr; tÞd3ð~pÞ ¼ l0e

4pmr

ð
d3r0 w	p0 ð�i�hr� eAinÞwp:

(31)

The factor d3ð~pÞ is a momentum-conserving delta function
that naturally arises from the integration in Eq. (31), where ~p
includes both p and p0 as terms.22 In a move prescient of QED,
Gordon recognizes the latter expression as a kind of transition
matrix element with indices p and p0. Knowing instinctively
that the electron ought to transition between momentum states
when light is emitted, Gordon concludes by calculating the
outgoing light intensity using the transition potential defined
by Eq. (31) instead of the full potential Eq. (30).

To compute scattered light intensity, classically one expects
to square (the derivative of) Eq. (30), which would generate
cross terms between the various momentum components via
factors of a	ðp0ÞaðpÞ. This immediately would lead to the
kinds of interferences described throughout this paper, thereby
disagreeing with QED. Rather than squaring the entire integral
[Eq. (30)], Gordon squares just a part of the integrand! This
departure from classical physics leaves behind Gordon’s moti-
vating picture of sourcing Eq. (1) with a wave-packet current.
Nevertheless, his final result is applicable to wave packets by
summing the intensities computed for the different momen-
tum constituents (in contrast with summing fields).13–15

It is interesting that Gordon’s ad hoc step is precisely
what is needed to be consistent with the subsequently devel-
oped lowest-order scalar QED.23,24 Gordon’s analysis relied
on the Klein-Gordon equation. In a subsequent well-known
paper, Klein and Nishina25 applied Gordon’s semiclassical
framework to the Dirac equation, which correctly incorpo-
rates the effects of electron spin. Their result agrees with
QED to lowest order.26 These calculations used notions of
wave packets and charge densities to motivate their heuris-
tics, but in the end they produced correct results by making a
marked departure from the Schr€odinger interpretation.

VI. CONCLUDING REMARKS

In summary, we have analyzed two examples of radiation
in the framework of classical electrodynamics. We consid-
ered a pair of oscillating dipoles with arbitrary separation
and a Gaussian-shaped current distribution with propagating
internal oscillations. In both examples the overall radiated
power, as well as the radiation distribution, depends strongly
on the source geometry. We demonstrated explicitly the con-
nection between interference in the far-field and the near-

field work between different source components. We note
that this connection naturally appears in QED calculations
for the photoemission from a two-electron wave packet,
where far-field interference is possible. Radiative interfer-
ence for this case is associated with Feynman diagrams that
allow the two electrons to perform work on each other
through an exchange of virtual photons (demonstrated, for
example, following the general procedure in Ref. 15).

The essential role of near-field work, as pertains to far-field
radiation, illustrates that a single-electron quantum wave packet
with initial wavefunction wðr; tÞ and charge e must radiate
quite differently than a classical charge density given by
qðr; tÞ ¼ ejwðr; tÞj2. At the most basic level, a classical charge
density may perform work on itself via Coulomb self repulsion.
In contrast, accurate quantum mechanical results for the hydro-
gen atom are derived by excluding electron self repulsion from
the Hamiltonian. The removal of interferences in the scattered
radiation from a single quantum electron is as natural (and criti-
cal) as the omission of the classical Coulomb self repulsion.
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APPENDIX A: INTEGRATION OF FAR-FIELD

POWER FOR TWO RADIATING DIPOLES

In this Appendix, we work out the integration in Eq. (7),
which, when written explicitly, is

hPit ¼
k4cp2

0

ð4pÞ2�0

8p
3
þ
ð2p

0

d/
ðp

0

dh sin3h

�
� cos ðkax sin h cos /þ kay sin h sin /

þ kaz cos h� uÞ
�
: (A1)

We make the following expansion:

cos ðkax sin h cos /þ kay sin h sin uþ kaz cos h� uÞ
¼ cos ðkax sin h cos /þ kay sin h sin /� uÞ
� cos ðkaz cos hÞ � sin ðkax sin h cos /

þ kay sin h sin /� uÞ sin ðkaz cos hÞ: (A2)

The final line gives zero when integrated over h because the
integrand in the interval ð0; p=2Þ is equal and opposite to the
integrand in the interval ðp=2; pÞ. Further, we make the
expansion,

cos ðkax sin h cos /þ kay sin h sin /� uÞ
¼ cos u cos ðkax sin h cos /Þ cos ðkay sin h sin /Þ
� cos u sin ðkax sin h cos /Þ sin ðkay sin h sin /Þ
þ sin u sin ðkax sin h cos /Þ cos ðkay sin h sin /Þ
þ sin u cos ðkax sin h cos /Þ sin ðkay sin h sin /Þ;

(A3)
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where only the first term survives integration over /, owing
to symmetries in the interval ð0; 2pÞ.

Next, we let ~a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y

q
and write ax ¼ ~a cos ~/ and

ay ¼ ~a sin ~/, allowing us to write

cos ðkax sin h cos /Þ cos ðkay sin h sin /Þ

¼ 1

2

�
cos
	

k~a cos ð/� ~/Þ sin h



þ cos
	

k~a cos ð/þ ~/Þ sin h

�
: (A4)

Because the integration over / is periodic over the interval
ð0; 2pÞ, the offset 6~/ has no effect on the result and can
be dropped. In view of Eqs. (A2)–(A4), Eq. (A1) then
reduces to

hPit ¼
k4cp2

0

ð4pÞ2�0

8p
3
þ cos u

ð2p

0

d/
ðp

0

dh sin 3h

�

� cosðk~a sin h cos /Þ cos ðkaz cos hÞ
�
: (A5)

The integration over / is accomplished using the well-known
formula

Ð 2p
0

d/cosðacos/Þ¼2pJ0ðaÞ, with a� k~a sinh. The
remaining integration over h is accomplished using27

ðp

0

dh sin3 h cos ða cos hÞJ0ðb sin hÞ

¼ 2

½a2 þ b2�3=2
b2 þ 2a2 � b2

a2 þ b2

� �
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q�

þ a2 � 2b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q �
; (A6)

where a � kaz and b � k~a; this leads to the result in Eq. (8).

APPENDIX B: TIME-AVERAGED POWER REQUIRED

TO DRIVE A GAUSSIAN CURRENT DISTRIBUTION

In this Appendix, we evaluate Eq. (27). After making sub-
stitutions x0 ¼ x� rx; y0 ¼ y� ry, and z0 ¼ z� rz and treat-
ing rx; ry, and rz as the new integration variables, Eq. (27)
can be rewritten as

hPit ¼
J2

0

8p�0c

ð
d3r

e�r2=r2
0

r2
� 3

r2
z

r2
� 1

� ���

�ðkrÞ2 r2
z

r2
� 1

� ��
sin ðkr� krxÞ

kr

� 3
r2

z

r2
� 1

� �
cos ðkr� krxÞ

�
�
ð1
�1

dx

ð1
�1

dy

�
ð1
�1

dz e�2ðx2þy2þz2Þ=r2
0 e2ðrxxþryyþrzzÞ=r2

0 : (B1)

The Gaussian integration of the final line is readily per-
formed and yields r3

0ðp=2Þ3=2er2=2r2
0 . Equation (B1) then

becomes

hPit ¼
J2

0r3
0

16�0c

ffiffiffi
p
2

r ð2p

0

d/
ðp

0

sin h dh
ð1

0

dr e�r2=2r2
0

�
�
½ð3 cos2 h� 1Þ � ðkrÞ2ð cos2 h� 1Þ�

� sin ðkr � kr sin h cos /Þ
kr

�ð3 cos2 h� 1Þ cos ðkr � kr sin h cos /Þ
�
; (B2)

where we have made use of spherical coordinates.
We next make the expansions

sin ðkr � kr sin h cos /Þ ¼ sin ðkrÞ cos ðkr sin h cos /Þ
� cos ðkrÞ sin ðkr sin h cos /Þ

cos ðkr � kr sin h cos /Þ ¼ cos ðkrÞ cos ðkr sin h cos /Þ
þ sin ðkrÞ sin ðkr sin h cos /Þ

(B3)

and note that
Ð 2p

0
d/ sin ða cos /Þ ¼ 0 and

Ð 2p
0

d/ cos ða cos /Þ
¼ 2p J0ðaÞ. The expression for the average power then
becomes

hPit ¼
p J2

0r3
0

8�0c

ffiffiffi
p
2

r ð1
0

dr e�r2=2r2
0

�
ðp

0

dh 2
sin ðkrÞ
ðkrÞ � cos ðkrÞ

� �
sin h

�

þ ððkrÞ2 � 3Þ sin ðkrÞ
ðkrÞ þ 3 cos ðkrÞ

� �
sin 3h

�
� J0ðkr sin hÞ: (B4)

The h integration is accomplished with the aid of
Ð p

0
dhsinh

�J0ðusinhÞ¼
ffiffiffiffiffiffiffiffiffiffi
2p=u

p
J1=2ðuÞ and

Ð p
0

dhsin3hJ0ðusinhÞ
¼

ffiffiffiffiffiffiffiffiffiffi
2p=u

p
½J1=2ðuÞ� J3=2ðuÞ=u�, where u� kr.20 Additionally,

we may write sinu=u� cosu¼
ffiffiffiffiffiffiffiffiffiffi
pu=2

p
J3=2ðuÞ and sinu

¼
ffiffiffiffiffiffiffiffiffiffi
pu=2

p
J1=2ðuÞ, whereupon the average power may be

expressed as

hPit ¼
p2J2

0r3
0

8�0c

ffiffiffi
p
2

r ð1
0

du e�u2=2k2r2
0 ½uJ2

1=2ðuÞ

� 2J1=2ðuÞ J3=2ðuÞ þ 3J2
3=2ðuÞ=u�: (B5)

This final integral27 (excluding all pre factors) is equal to

a
ffiffiffiffiffiffiffiffi
p=2

p
½1� e�2a2 � ð1þ e�2a2Þ=a2 þ ð1� e�2a2Þ=a4�, where

a � kr0, which finally leads to Eq. (25).
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