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Linear theory of non-neutral plasma equilibrium in a tilted magnetic field 
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Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 

(Received 3 January 1992; accepted 23 June 1992) 

A linear perturbation expansion has been found that allows the rapid and accurate 
calculation of the response of a non-neutral plasma to a tilted magnetic field. The results of 
the calculation have been found to agree with previous three-dimensional equilibrium 
calculations, and also to agree with Keinigs’ [Whys. Fluids 24, 860 ( 1981)] calculation of zero- 
frequency resonances caused by magnetic field errors. This expansion also allows the 
perturbed velocity to be calculated. It is speculated that this perturbed flow may be related to 
the enhanced radial transport in a non-neutral plasma with a tilted magnetic field. 

I. INTRODUCTION 

It is well known that non-neutral plasmas are sensitive 
to various kinds of magnetic and electric field errors.ld A 
particularly simple example of such an error is the tilting of 
the confining magnetic field with respect to the axis of the 
conducting cylinder. A recent study of this misalignment 
of the magnetic field used a three-dimensional equilibrium 
calculation to compute the nonlinear coupling between the 
magnetic field perturbation and the I= 1 diocotron mode 
and compared that result to experimental data.5 That 
three-dimensional calculation, however, was very slow and 
too coarse to reveal small, but interesting, features such as 
equilibrium flow. This paper attempts to remedy this situ- 
ation by using a linear perturbation expansion in the small 
tilt angle a to obtain two-dimensional equations for the 
deviation of the plasma from axisymmetric equilibrium. 
The resulting equations are solved numerically, and the 
solutions are found to agree very well with the results of 
the equilibrium solver of Ref. 5. In addition, the equations 
indicate that the tilted plasma is required to have flow. If 
this flow were to become unstable and cause mixing, it 
might account for the observed flattening of density pro- 
files when such a field misalignment is purposely 
produced.6 We also discuss the connection of this calcula- 
tion to Keinigs’ calculation of resonant magnetic field 
errors7 and find in full two-dimensional geometry the same 
effects he found in infinitely long geometry. 

II. PERTURBED EQUILIBRIUM 

Consider a cylindrically symmetric non-neutral plasma 
contained within a conducting cylinder of radius a and 
radially confined by a magnetic field B = B$ The plasma is 
made up of particles of mass m and charge q, and is mod- 
eled as a fluid with constant temperature T. With these 
assumptions the equilibrium equations are 

V=nava = 0, 
and 

nGvo-Vvo= -nqV~o-WVno+qnovo~B, 

(1) 

(2) 

where the equilibrium density, electric potential, and flow 
velocity are given by 

no(r,z>, Mr,z), v0=ro0(r,z)g (3) 
The equilibrium rotation frequency o. can be calcu- 

lated from the radial component of the fluid momentum 
equation, Eq. (2) (assuming that inertial effects are small) 
to be 

1 
w&,2) =wE+oD=z 

o 

where WE is the E X B drift frequency and where tiD is the 
diamagnetic drift frequency. The equilibrium diamagnetic 
drift does not influence the plasma perpendicular to the 
magnetic field, but radial pressure gradient effects do play 
a role in the inertial response of the plasma along the tilted 
field, as noted later. 

A typical non-neutral plasma equilibrium, without a 
tilted field, is displayed in Fig. 1. This particular plasma is 
an electron plasma in thermal equilibrium (rigid rotor) 
with a maximum density of 5 x 10” m-‘, a temperature of 
1 eV, and is confined by end potentials of 175 V in a 
cylinder of radius 4 cm. 

The magnetic field is tilted by adding a small amount 
of magnetic field in the y direction: 

B=B,$+aBoq, (5) 
where a is a small number. When a is small, it is approx- 
imately the tilt angle of the magnetic field. We now seek a 
steady-state solution of the following equations, to first or- 
der in a: 
continuity 

V*nv=O, (6) 
drift motion perpendicular to B 

vl= (-V#xi;)/B,, (7) 
where $ is a unit vector in the direction of the tilted mag- 
netic field: 

i;= (S+aj;)/( 1 +a2)“2. (8) 
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FIG. 1. Equilibrium potential and density for a 1 eV thermal equilibrium 
plasma. The potential contour increment is 20 V and the density incre- 
ment is 5X 10” mm3. 

Note that the diamagnetic drift has been ignored here in 
spite of finite temperature because the divergence of the 
mass flux from this drift velocity is zero, and hence it can 
have no influence on the perpendicular part of the tilted 
equilibrium. In this calculation, finite temperature and in- 
ertial effects only influence motion parallel to the magnetic 
field: 
Parallel momentum 

mn&Vv = - q&V4 - kZ%Vn, (9) 
where n is the particle density, 4 is the electric potential, v 
is the fluid velocity, and where kT is the temperature in 
energy units (assumed constant and uniform). 
Poisson’s equation 

V2#= ( -q/Eo)n. (10) 

We now make a linear expansion in the small tilt angle 
a by writing 

4=~0+~,, n=no+n1, v=vo+v1, (11) 

where 4t, n,, and vl are the linear corrections to the equi- 
librium quantities caused by the tilt. We also linearize Eq. 
(8): 

i;z=P+ay. (12) 

We choose to carry out this expansion in cylindrical 
coordinates aligned with the conducting cylinder, rather 
than aligned with the magnetic field. We first note that the 
diamagnetic drift velocity contributes nothing to the con- 
tinuity epation because v*nvD= 0, where 
vD= - (Vpxb)/(nB). We then write the continuity equa- 
tion in the form 

Vsnv = nV.v + v.Vn = 0. (13) 

The divergence of the EXB drift velocity is zero, so we 
obtain 

ndllull + v*Vn = 0, (14) 
where a,, is the derivative along the direction of the mag- 
netic field and where uII is the component of the fluid ve- 
locity along the magnetic field. This equation is now lin- 
earized to obtain 

a(novl,) 
~+V*~~+~$= -arnozcOs fj, (15) 

where in deriving this equation we have replaced vII with vlr 
by using the linearized form of Eq. (7) to obtain 

viz= vII -araE cos 8. (16) 

Although the pressure gradient was not important in 
the continuity equation, it is important in the linearized 
parallel momentum equation: 

(17) 

where lFo is the combined radial electric and pressure gra- 
dient force in the untilted equilibrium: 

a#, kTdno 
Fo= -s--,,, 

0 
(18) 

Note that the term containing F. in Eq. ( 17) is simply the 
component of the radial force along the new parallel direc- 
tion in the tilted field. It appears because the Lorentz force 
can no longer balance this component of the force, as it did 
in the axisymmetric equilibrium. Note also that a small 
inertial contribution to F. has been neglected. Finally, we 
have Poisson’s equation: 

V2&= - (q/Eo)nl. (19) 
To first order in a, the tilt is just an I= 1 perturbation, 

but since we have chosen the transverse component of the 
magnetic field to be in the y direction, we must carefully 
choose the phases of the perturbed quantities. Equations 
(lo)-( 12) require that we write 

bl=4l(r,z)sin 6 nt=nt(r,z)sin 8, 

vlz=vlr( r,z)cos e. 
(20) 

With these choices Eq. (7) may be used to obtain the 
formula for vlr, 

(21) 

we solve Eq. (17) for vln then substitute in Eq. ( 15), and 
use Eq. ( 18) to obtain 

(22) 
(1) (2) (3) (4) (5) (6) (7) 

.$ ~)+P(~~)+a~~-~~f+~h+a~~~+~~=O, 
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FIG. 2. Perturbed potential and density for the 1 eV thermal equilibrium 
plasma shown in Fig. 1 when the magnetic field is tilted by 2.5 X IO-’ rad. 
The potential contour increment is 7.8X IO-’ V and the density incre- 
ment is 9.3 X IO9 mm3. The shaded regions indicate where the perturbed 
quantity is negative. 

where 

f =q&/kT; h=n&. (23) 

This gives one relation between the perturbed potential 
and density, and Poisson’s equation gives another. To- 
gether they determine the solution of the problem. It is 
possible simply to solve this set of equations numerically, 
and interesting resonance effects in plasmas near the Bril- 
louin limit can be found in this way, as discussed in Sec. 
IV. But, for typical non-neutral plasmas, it is found that 
terms (4)-(7) are much smaller than terms (l)-(3). 
Hence we may approximately solve this equation by keep- 
ing only the first three terms. After solving forfand h, we 
verify that terms (4)-(7) are indeed small, then use Eq. 
( 15) approximately to solve for Q. The resulting velocities 
are discussed in Sec. III. With these approximations we 
obtain 

a 2 
h=-f-t= o s 

F,, dz 

and 

i a af f a*f 
rar'ar-7+~ - kg= - ak& J; F. dz, (25) 

where kD is the reciprocal of the local Debye length in the 
untilted equilibrium, 

k* pcm 
D E&T ’ (26) 

(We have assumed that the untilted equilibrium is sym- 
metric about z=O.) It is now a simple matter to use a 
standard Poisson solver with the modified operator of Eq. 
(25) to find the perturbed potential function, f, ( f =0 on 
the conducting cylinder) and then to use Eq. (24) to ob- 
tain the perturbed density. Figure 2 shows contours of 
perturbed potential and density for the thermal equilib- 
rium of Fig. 1 with a tilt angle of a = 0.0025. The neglected 
terms in Eq. (22) are typically found to be three orders of 
magnitude smaller than the included terms for a tempera- 
ture of 1 eV. 

A. Central analytic solution 

If the plasma is much longer than a plasma diameter, 
it is possible to find a solution of Eq. (25) valid in the 
straight central region of the plasma. In this region, the 
right-hand side of Eq. (25) is proportional to z; if we as- 
sume that both f and h are also proportional to z, the 
second derivative with respect to z vanishes and we simply 
have a radial ordinary differential equation to solve. If the 
following equation for f is substituted into Eq. (25)) it can 
be verified that it is a solution: 

4 ah(m f(r,z)=-crzkT ar +azf&), 

where fh satisfies the homogeneous differential equation 

(28) 

The proof of this statement requires the use of Poisson’s 
equation for a very long non-neutral plasma with central 
density profile nc(r,O). The value off,, at the conducting 
wall, r=a, is chosen to make f in Eq. (27) zero there: 

(29) 

This solution for f in the central region may then be 
used in Eq. (24) to obtain the approximate perturbed den- 
sity in this region: 

an,(r,o) 

nlz-a.2 ar -w=fh(r). 

Note that the first terms in these forms for n, and $i [Eqs. 
(27) and ( 30)] are simply the expressions we would obtain 
by assuming that the equilibrium plasma has rotated about 
the x axis by angle a; e.g., n, z -&Vno, g=az$, as dis- 
cussed in Ref. 5. Hence the second term, which comes 
from the part of the solution for the perturbed potential 
which depends on the conducting wall, is just the pertur- 
bation produced by the image charge on the wall. Figure 3 
shows the difference between the perturbed density com- 
puted by numerically solving Eq. (24) and that given by 
Eq. (30) for the equilibrium of Fig. 1. Note that they only 
disagree near the ends of the plasma. [In making this com- 
parison, we chose to use Eq. (30) with na( r,O) replaced by 
nc(r,z). These two are identical in the straight central re- 
gion, but the second form has the advantage that it goes to 
zero beyond the ends of the plasma, as does the actual 
perturbed density. This improves the approximation some- 
what.] 

Finally, Fig. 4 shows the difference between the per- 
turbed density computed from Eqs. (24) and (25) and 
that computed by the three-dimensional equilibrium calcu- 
lation of Ref. 5. The agreement is quite good (2%-4%) 
except near the ends of the plasma. This disagreement is of 
approximately the same magnitude as the accuracy of the 
three dimensional equilibrium calculation because of the 
finite grid size. The disagreement near the ends of the 
plasma is probably exaggerated by the contour plot be- 
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FIG. 3. Density difference between the solution of Eq. (24) and the 
analytic central approximation [IQ. (30)]. The contour increment is 
4.4X lo9 mm3. Note that the analytic approximation accounts for virtu- 
ally all of the perturbed density in the central regions of the plasma but 
only approximately 50% of the perturbed density at the ends. The shaded 
regions indicate where the difference is negative. 

cause both calculations have steep gradients near the end, 
turning slight differences in position into large differences 
in density. When the peak values of the perturbed density 
in the two calculations are compared, they differ only by 
7%. This disagreement between the two calculations is of 
about the same magnitude and is concentrated in the same 
spatial regions as the nonlinear axisymmetric and I=2 
terms in the three-dimensional equilibrium calculation. 
This may indicate that the assumption of linearity is just 
starting to break down in this end region. 

Hence this method provides a fairly simple and accu- 
rate way to compute the response of typical non-neutral 
plasmas to tilted magnetic fields, and even provides an 

1 
12 

analytic approximation valid in the central section. In ad- 
dition, it also allows us to calculate the flow induced in the 
plasma by the tilt, as discussed in Sec. III. 

III. FLOW IN THE TILTED EQUILIBRIUM 

Because of grid size limitations in the three- 
dimensional calculations described in Ref. 5, it was not 
possible to find the flow induced in the plasma by the tilted 
field. In this calculation, however, the flow may easily be 
obtained from the perturbed potentials and densities. We 
use Eq. (7) to obtain the perturbed flow perpendicular to 
the tilted magnetic field and Eq. ( 15) to obtain the flow 
parallel to the field. When these velocities are expressed in 
cylindrical coordinates aligned with the conducting cylin- 
der, we have 

u10= (31) 

4- 
3 

32 
lx 

1 

1 
p37.5 -12.5 

I 
37.5 

FIG. 4. Magnitude of the relative difference between the solution of Eq. 
(25) and the results of a three-dimensional equilibrium calculation. The 
contour increment is 2.5% relative difference. The larger values at the 
ends are probably due to the very large gradients in z in both calculations. 
Small differences in position can translate into large ( -20%) differences 
in perturbed density. 
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(32) 

Figure 5 displays these three components of the per- 
turbed flow for the thermal equilibrium of Fig. 1. [Note 
that the plots are actually plots of velocity multiplied by 
the weighting factor no(r,z)/no(O,O). This weighting was 
used to suppress the annoying large velocities which al- 
ways appear in the vacuum regions in fluid ca@lations.] 
The unperturbed EXB flow velocity, vE=rwfl, is much 
larger than these perturbed velocities. Because of this, 
when the flow pattern is integrated to find the new flow 
streamlines, the deviation of a fluid element from the tilted 
field line is of the order of czz at the ends, and much smaller 
in the central section. This deviation is thus greater for 
large tilt angles and for long plasmas. The component of 
the flow that moves fluid elements across the magnetic field 
is concentrated near the ends of the plasma. This suggests 
that this equilibrium flow might have something to do with 
the observed slow flattening of density profiles in tilted 
plasmas.6 Perhaps the flow induced by the tilt is unstable, 
or is particularly susceptible to electric or magnetic pertur- 
bations, leading to enhanced transport toward thermal 
equilibrium. This is only speculation at this point, how- 
ever; much further study of the dynamics of tilted plasmas 
will be required before anything more definitive can be 
said. 

IV. RESONANCE EFFECTS 

As discussed by Keinigs7 and as observed by Heinze,4 
field errors, such as the tilt discussed here, can resonate 
with low-frequency waves. From this point of view our 
tilted equilibrium, for proper choices of the parameters, 
should be a zero-frequency mode with very large perturbed 
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pends on the appearance of k in a term in the continuity 
equation which is proportional to 

(34) 

z 
where SB, is the radial component of the magnetic pertur- 

0 bation. For Keinigs, no is uniform in z while SB, is propor- 
4 tional to eikz, giving for this term 

g nOSB,= ikSBpo. (35) 
0 
-12 -6 0 6 12 

Z (cm) In our calculation SB, is uniform in z, but no depends on 
length, giving 

FIG. 5. Perturbed velocity for the equilibrium shown in Fig. 1 with the 
magnetic field tilted by 2.5X IO-’ rad. The contour increment is 9.8 

; n$Br= SBr$. (36) 

m/xc in the V, plot, 7.7 m/se% in the V, plot, and 7.7 m/xc in the V, 
plot. The regions where the velocity is negative are shaded. Here, V, and For a long plasma &ze/az has a bump at one end and a 
V, vary as cos 8 and V, varies as sin 8. These velocities are density 
weighted [i.e., multiplied by no(r,z)/nc(O,O)]. This has a very small effect 

bump of opposite sign at the other end, looking sort of like 

in the interior of the plasma, but it causes the calculated velocity to be 
a half-period of a sine wave of wavelength 4z,,, where zp is 

zero in the regions where there is no plasma. the half-length of the plasma. We thus make the crude 
estimate kz:Dz,, to obtain from Eq. (33) the approxi- 
mate resonance condition 

fields and densities. This possibility is excluded from the 
calculations of Sec. II because of the terms we neglected 
there. To remedy this situation we must keep all terms in 
Eq. (22) and solve it simultaneously with Eq. (19). We 
use Eq. (19) to eliminate the perturbed density, n, =n,h, 
from Eq. (22) to obtain a partial differential equation for 
the perturbed potential, which is second order in r and 
fourth order in z. We solve this equation by finite differ- 
encing it on an r-z grid of size nrXnz, and by using a 
banded matrix solver to find the perturbed potentials at the 
grid points. This is not just one choice among many pos- 
sible ways to solve this problem; the equation has the nasty 
feature that it is elliptic over part of the computational 
region and hyperbolic over the other part, rendering many 
methods, such as iteration, useless. 

As a check, we first verified that the numerical solution 
of the full Eq. (22) agreed with the approximate solution 
of Sec. II when the neglected terms were small. For the 
grids we used (typically nr=20 and nz= 150), the differ- 
ences between the two calculations were about 0.1%. As 
we explored lower temperatures, we found that it was im- 
portant to have the grid spacings Ar and AZ no larger than 
a Debye length. 

With some confidence in the numerical method, we 
went looking for resonances. As a guide to where to look, 
we used Keinigs’ approximate result that there should be a 
“finite-k diocotron” mode for a magnetic perturbation of 
wave number 

ks @+/a~, (33) 

where a is the radius of the conducting wall, wp is the 
plasma frequency, and o, is the cyclotron frequency. We 
cannot make direct contact with Keinigs’ calculation be- 
cause a tilted magnetic field is a perturbation with infinite 
wavelength. However, the formula for k given above de- 

OJ &o+z~Tru. (37) 

This condition has been written in such a way that the 
quantity on the left is a measure of how close the plasma is 
to the Brillouin limit, since at the Brillouin limit wp=wJ 
fi. Equation (37) predicts that resonance in a short 
plasma would require that it be near the Brillouin limit, 
while longer plasmas need not be so close to the limit. 

With these results as a guide, we looked at several 
different equilibria and slowly changed the magnetic field 
in the neighborhood of the Brillouin limit looking for res- 
onances. Figure 6 shows the peak perturbed density, as a 
fraction of the peak equilibrium density, for more than 
3000 different values of the magnetic field. The equilibrium 
we used for this calculation had a temperature of 1 eV and 
plasma radius and half-length ratios of r/u=O.5 and 
z/a= 1.55. The most striking feature of this figure is the 
large number of apparent resonances. Almost all of them 
are numerical artifacts, however, characterized by wild ra- 
dial oscillations with wavelengths on the order of the grid 
size. The relatively broad peaks, however (labeled a and b 
on the figure) have smooth enough perturbed potentials to 
be candidates for real resonances. Peak a has the character 
of a diocotron mode, while peak b has more of the char- 
acter of a plasma mode (the perturbed potential has two 
radial maxima). To try to make a more precise identifica- 
tion, we made a sequence of equilibria identical in every 
way except for their length. For each one we calculated the 
left- and right-hand sides of Eq. (37) and compared them 
to see if they tended to agree with each other as the plasma 
became long. The results of these calculations are displayed 
in Table 1. Considering the crude way in which we made 
contact with Keinigs’ calculation, the agreement is quite 
good (and perhaps even fortuitous). Nevertheless, based 
on the shape of the potential eigenfunction and on the 
approximate agreement with Keinigs’ calculation, we feel 

3511 Phys. Fluids B, Vol. 4, No. 11, November 1992 R. L. Spencer and G. W. Hart 3511 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to  IP:

128.187.97.20 On: Fri, 14 Mar 2014 04:16:31



10 
b 

I-I I -I 

n 1 

% 

0.1 

0.01 

O.,l m 
1 10 100 

FIG. 6. Perturbed density for a thermal equilibrium with r/u=O.S and 
z/r,=3, where zp is the half-length of the plasma. The perturbed density 
is displayed versus magnetic field, expressed in terms of the Brillouin limit 
parameter wd &c+. Most of the peaks are numerical artifacts, but peak a 
is a diocotronlike resonance and peak b is a plasmalike resonance.’ 

confident that we have reproduced his calculation in full 
two-dimensional geometry. To make doubly sure, we tried 
varying the temperature of our equilibrium (Keinigs’ cal- 
culation had T=O) to see if the resonance was sensitive to 
temperature. We dropped the temperature from 1 eV down 
to 0.1 eV and saw only a small (3% ) increase in the res- 
onant value of the magnetic field. Since this resonance is 
perilously close to the Brillouin limit, we also tried to in- 
clude some inertial effects perpendicular to the field by 
including, to first order in w=/w,, the inertial terms asso- 
ciated with the EXB drift in the perpendicular momentum 
equation. When the resonances were recalculated with 
these terms included we found that the resonant value of 
WJ fitiP for peak u shifted upward by 20%, while that for 
peak b shifted up by 3%. This means that inertial effects 
are important as the Brillouin limit is approached, but for 
longer plasmas where the resonances occur away from the 
Brillouin limit, they may be safely neglected. Hence we are 
fairly confident that we are able to calculate the diocotron 
and plasmalike resonances of two-dimensional plasmas in 
tilted magnetic fields with the numerical method described 
here. 

TABLE I. Comparison between the left- and right-hand sides of Eq. (37) 
as the length of the plasma is changed. As the plasma gets long, the ratio 
of the two sides of the equation approaches one and the resonance moves 
farther from the Brillouin limit. In the longest plasma the two sides of the 
equation differ by less than 5%. In all of these calculations, the plasma 
radius was one-half of the wall radius. 

1.55 1.37 0.720 
2.29 1.79 0.816 
3.05 2.22 0.874 
3.80 2.65 0.913 
5.29 3.53 0.955 

V. CONCLUSIONS 
We have found a simple perturbation expansion which 

allows us to calculate the linear response of a non-neutral 
plasma to a tilted magnetic field. The results of this calcu- 
lation agree quite well throughout the bulk of the plasma 
with the previous three-dimensional equilibrium calcula- 
tion. The largest disagreements come at the ends of the 
plasma where nonlinear contributions to the perturbed 
density are starting to become important. This expansion 
allows us to calculate the perturbed velocity in the plasma, 
but this is very small compared to the equilibrium flow and 
only produces deviations from the tilted field lines that are 
of the order of the CYZ, concentrated at the ends of the 
plasma. We speculate that this flow might possibly cause 
mixing, and therefore increase the transport in such a 
plasma. We are also able to use the perturbation expansion 
to find the zero-frequency resonances discussed by Keinigs’ 
and others in full two-dimensional geometry. 
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