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Active structural acoustic control uses a control metric that when minimized reduces the radiated

sound. Previous research has identified the weighted sum of spatial gradients (WSSG) control

metric and has shown that it is effective in attenuating the radiated sound power from a plate. The

WSSG control metric is computed using weighted measurements of the structural response from

four closely spaced accelerometers. In this work, it is shown that the weights used to compute

WSSG directly impact the control performance and further understanding into choosing appropriate

weights is presented. Weights optimized for single frequencies are investigated and shown to

achieve nearly the same performance as minimizing sound power. A set of parameter-based

weights for broadband frequency control is also proposed and analyzed. These parameter-based

weights are inversely proportional to the square of the flexural wavenumber and can be computed

using the ratio of the flexural rigidity to the mass per unit area. Both numerical and experimental

results are presented using parameter-based weights for simply supported and clamped plates. The

results show that the WSSG control using parameter-based weights is easy to implement and works

more effectively than previous methods. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4934730]

[NJK] Pages: 2986–2997

I. INTRODUCTION

Active control of structure borne sound using structural

control sources is referred to as active structural acoustic

control (ASAC) and offers several advantages in practical

applications. ASAC was introduced in the 1990s and since

that time considerable research has been reported.1–8 A key

issue in ASAC is how to accurately sense the radiated acous-

tic power using real-time structural sensors. Minimizing

volume velocity has been proposed and investigated by

numerous researchers.9–16 Volume velocity provides a good

estimation of the amplitude of the lowest-order radiation

mode at frequencies where the structure is smaller than the

acoustic wavelength. The advantages of this method are that

volume velocity can be measured using an array of evenly

distributed point sensors or using specialized shaped polyvi-

nylidene fluoride (PVDF) sensors. The drawbacks are that

it often requires a large number of sensors, and the control

approach becomes significantly less effective at higher

frequencies.

To control specific radiation modes of the structure,

some researchers proposed using a radiation modal fil-

ter.17–20 Designing a radiation modal filter usually requires

some a priori knowledge of the geometry, which also means

the radiation modal filter requires a unique design for differ-

ent structures. Other researchers developed a method called

discrete structural acoustic sensing, which does not use radi-

ation mode information but still relies on a prior knowledge

of the transfer function from the vibration field to the pres-

sure field.21–24 Radiation clusters were proposed as a further

improvement to minimizing volume velocity.25,26 With this

approach, the structural modes are divided into even and odd

modes. The even modes correspond to a set of volume veloc-

ity related modes, and odd modes correspond to a set of

non-volume velocity related modes. When controlling high

frequency noise, even and odd modes should both be incor-

porated into the cost function, while only even modes should

be incorporated into the cost function when controlling low

frequency noise.

Recently, a new control metric called the weighted sum

of spatial gradients (WSSG), which is based on measure-

ments from four closely spaced accelerometers, was investi-

gated and shown to significantly attenuate the radiated sound

power.27 WSSG consists of the weighted sum of the squared

displacement field, w, and the squared spatial derivatives,

@w=@x, @w=@y, and @2w=@x@y. Fisher et al. showed through

computer simulation that on a simply supported plate,

WSSG has less dependency on sensor location and is able to

provide better overall radiated sound power attenuation

levels than minimizing either volume velocity or structural

intensity.27 In addition, it was found that the weights applied

to the four quantities have an impact on the sound power

attenuation.

In this paper, the properties of WSSG are analyzed in

more detail. The optimized weights for a single frequency

are obtained through a simulated annealing method, and the

corresponding control effect is shown to be nearly as good

as minimizing the sound power. The weights for broadbanda)Electronic mail: jblotter@byu.edu
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excitation are also examined. A method to determine the

broadband weights based on the structural material and ge-

ometry is proposed and shown to have promise for a simple

practical implementation. Experimental results from apply-

ing WSSG to flat rectangular simply supported and clamped

plates are presented and discussed. It is shown that the

WSSG technique is a universal and easily implemented

method and can effectively attenuate the radiated noise from

vibrating flat rectangular plates. In Sec. II, a brief overview

of the WSSG plate model is presented. In Secs. III and IV,

simulated and experimental results are presented and com-

pared. The main conclusions are summarized in Sec. V.

II. THEORY

A. Dynamic model of the plate

The equations describing the vibration of both a simply

supported plate and a clamped plate are briefly reviewed

here for completeness. The governing equation for a vibrat-

ing plate is given by

D
@4

@x4
þ2

@4

@x2@y2
þ @4

@y4

 !
w x;yð Þ� �mx2w x;yð Þ¼F x;yð Þ;

(1)

where D is the bending stiffness, w is the transverse displace-

ment, �m is the mass per unit area, x is the excitation fre-

quency, and F is the amplitude of the force excitation.28 The

plate excitation is assumed to be time harmonic; therefore

the displacement and force expressions can be assumed to be

multiplied by ejxt, although not shown explicitly. This is an

assumption made throughout the remainder of this paper.

Also, for the current formulation, the plate will be assumed

to be excited by an array of point forces, so that Fðx; yÞ
¼
P

qfqdðx� xqÞdðy� yqÞ, with fq indicating the q th

applied force as a complex number, dð�Þ the Dirac delta

function, and xq and yq the location of the q th force.

The transverse displacement of the simply supported

plate is given by6

w x; yð Þ ¼
X

q

fq

qh

X1
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" #
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In Eqs. (2)–(4), q is the density of the plate, h is the thickness

of the plate, and g is the modal damping ratio. Lx and Ly are

the x and y dimensions of the plate. The bending stiffness, D,

is given by Eh3=12ð1� �2Þ where E is Young’s modulus

and � is Poisson’s ratio.

Although an exact analytical solution to Eq. (1) for

clamped rectangular plates is not available, a method assuming

the product of beam mode shapes as the eigenfunctions of the

plate can be used to provide an approximate analytical solu-

tion,29 which is given by

w x;yð Þ ¼
X

q

fq

X1
m

X1
n

Xm xqð ÞYn yqð ÞXm xð ÞYn yð Þ
D I1I2þ 2I3I4þ I5I6ð Þ� �mx2I2I6

;

(5)

where

Xm xð Þ ¼ J
kmx

Lx

� �
� J kmð Þ

H kmð Þ
H

kmx

Lx

� �
; (6)

Yn yð Þ ¼ J
kny

Ly

� �
� J knð Þ

H knð Þ
H

kny

Ly

� �
; (7)

JðuÞ ¼ coshðuÞ � cos ðuÞ; (8)

HðuÞ ¼ sinhðuÞ � sin ðuÞ: (9)

The subscripts m and n indicate structural mode numbers, and

the values for km and kn, the eigenvalues of the system, satisfy

coshðkÞ cos ðkÞ ¼ 1 : (10)

Also

I1 ¼
ðLx

0

Xð4Þm ðxÞXmðxÞdx; I2 ¼
ðLy

0

Y2
nðyÞdy;

I3 ¼
ðLx

0

X00mðxÞXmðxÞdx; I4 ¼
ðLy

0

Y00nðyÞYnðyÞdy;

I5 ¼
ðLy

0

Yð4Þn ðyÞYnðyÞdy; I6 ¼
ðLx

0

X2
mðxÞdx : (11)

Xmð�Þ and Ynð�Þ are the assumed shape functions, and X00mð�Þ,
Y00nð�Þ and Xð4Þm ð�Þ, Yð4Þn ð�Þ refer to the second and fourth spa-

tial derivatives, respectively. This method has been verified

and shown to accurately predict the natural frequencies

when compared to the Rayleigh–Ritz method and experi-

mental results for a clamped rectangular plate.30

In this paper, the radiated sound power for both theoreti-

cal and experimental results is obtained using the method of

elementary radiators and the radiation resistance matrix.31

The radiation resistance matrix discretizes the plate geome-

try and provides a simplified and computationally more

efficient method for calculating the radiated sound power at

low frequencies. It is derived by discretizing the plate into

elemental radiators and calculating the mutual radiation

impedances between each elemental radiator and all others.

This matrix is given, for a rectangular plate,31 by

R xð Þ¼x2q0DS2

4pc0

1
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where q0 and c0 are the density and the sound velocity of air,

respectively, rij is the distance between the i th element and

the j th element, k0 is the acoustic wavenumber in air, and

DS is the area of each element. Using the radiation resistance

matrix, the sound power is calculated as

PðxÞ ¼ vH
e ðxÞRðxÞveðxÞ ; (13)

where ve is a vector containing the velocity of each elemen-

tal radiator, and ð�ÞH signifies the Hermitian transpose.

B. Review of the WSSG theory

In this section, a brief overview of WSSG is provided.

A more complete derivation is given by Fisher et al.27 The

original concept of WSSG was developed with two objec-

tives. The first was that the control metric be as spatially

uniform as possible. This largely eliminates the sensitivity of

the performance on the error sensor location and would

require no prior knowledge of the structure. The second

objective was that the control metric should be correlated

with the sound power radiation, so that minimizing WSSG

would result in attenuating radiated sound power.

It was noted by Fisher et al.27 that the weighted combi-

nation of the four squared quantities, namely, the transverse

displacement w and the spatial derivatives @w= @x, @w=@y,

and @2w=@x@y, has the potential to fulfill these two objec-

tives. WSSG was thus defined as the weighted summation of

these four terms, each multiplied by a weighting value

(a; b; c; dÞ, so that a spatially uniform value can be formed,

as shown in Eq. (14) by

WSSG ¼ a wð Þ2 þ b
@w

@x

� �2

þ c
@w

@y

� �2

þ d
@2w

@x@y

 !2

:

(14)

While w represents the displacement in these terms, it should

be noted that for time harmonic excitation sources, velocity

or acceleration could equally be used.

One way to define the weights is in terms of the struc-

tural wavenumber. The wavenumber components of a sim-

ply supported plate in the x and y directions are km ¼ mp=Lx

and kn ¼ np=Ly, respectively. For a clamped plate, the com-

ponents in the x and y directions are km ¼ km=Lx and

kn ¼ kn=Ly, where km; kn are calculated through Eq. (10). It

can be shown that once the weights are chosen for each reso-

nance frequency as

a¼ 1; b¼ 1

km

� �2

; c¼ 1

kn

� �2

; d¼ 1

kmkn

� �2

; (15)

the WSSG field will have high spatial uniformity. This gen-

eral expression is significant because it shows that each term

is weighted by the corresponding wavenumber components

and allows for the selection of weights on plates with non-

ideal boundary condition or non-ideal shapes if the wave-

number components in x and y can be determined.

It is also recognized that the gradients associated with

the four terms of WSSG have noticeable similarities to the

global spatial properties of the first four radiation modes. It

is hypothesized that this similarity is connected with the

observed behavior that allows for a single or local measure-

ment on the plate to control the radiation mode shapes glob-

ally as opposed to volume velocity, which requires a global

measurement of the plate to control the first radiation mode.

These similarities suggest that WSSG may be effective at

targeting the first four radiation mode shapes for a plate and

will therefore be a good candidate for use in ASAC. It is

noted that WSSG is a local “point” measurement, while radi-

ated sound power is a global property, so it is improper to

say that there is a direct correlation between WSSG and the

radiated sound power. However, the four terms of WSSG do

correspond to the patterns associated with the first four radia-

tion mode shapes; this leads to the hypothesis that minimiz-

ing WSSG generally results in an attenuation of the radiated

sound power.

III. ANALYTICAL ANALYSIS AND SIMULATIONS

This section provides an analytical investigation of four

methods to compute the WSSG weights shown in Eqs. (14)

and (15). Insights regarding these methods are discussed.

Properties of the simply supported and the clamped plates

used in the following analysis are listed in Table I. Several

different disturbance, control, and sensor locations as

described by Table II are investigated.

A. Averaged weights for broadband frequency

Two methods of the four methods for calculating the

weights are presented in this section. The first method is fre-

quency dependent and uses the weights of the nearest reso-

nance frequency according to Eq. (15); the second method

uses a constant set of weights, which are obtained by averag-

ing all of the weights corresponding to every mode in the

frequency range of interest. In this work, all resonances in

the frequency range from 0 to 500 Hz are included in this

average. Actuator and sensor locations described in Table II

are used. While results will be shown for specific error

sensor locations, it has been observed that the attenuation

achieved for different sensor locations is nearly constant.

Figure 1 shows the simulation control results for the simply

supported plate and the clamped plate, respectively. In Fig. 1,

it is shown that frequency dependent weights and averaged

weights both provide good control across the whole fre-

quency range. Furthermore, there is generally relatively little

difference between the two methods. This implies that the

TABLE I. Properties of the simply supported and clamped plates.

Property Value

Length (x direction)ðLxÞ (m) 0.473

Length (y direction)ðLyÞ (m) 0.753

Thickness ðhÞ (m) 0.003

Young’s modulus ðEÞ (GPa) 68.9

Poisson’s ratio ð�Þ 0.334

Density ðqÞ (kg/m3) 2700

Damping ratio ðgÞ (%) 1
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weights used in WSSG are fairly robust and determining the

exact optimal values of the weights may not be critical to

achieve good performance.

Although the attenuation shown in Fig. 1(a) is signifi-

cant at many resonance frequencies, there is very little

attenuation achieved at 255 and 375 Hz. At these frequen-

cies, multiple closely spaced structural modes occur.

Because the frequencies of these modes are so close to each

other, the individual mode shapes superimpose on top of

each other and cause distortions in the resulting structural

response. These degenerate modes essentially add additional

degrees of freedom of motion to the plate.32 Thus there are

more degrees of freedom than degrees of control.

It is shown in Fig. 1(a) that by adding a second control

shaker, the two degenerate modes at 255 Hz are effectively

controlled. There are actually three degenerate modes around

375 Hz, and it is shown that two control shakers cannot

control these three modes. Results similar to Fig. 1(a) were

observed for several different configurations. Therefore

adding another control shaker is an effective way to control

the degenerate mode if there are multiple closely spaced

modes contributing to the radiated sound power.

B. Optimized weights for a single frequency

In Fig. 1, there is some amplification of the radiated

sound power at some off resonance frequencies. To deter-

mine the optimum weights used in WSSG for attenuating

radiated sound power and obtain the best control results

WSSG can achieve, a simple optimization problem was

defined as

min
a;b;c;d
ðSound Radiation Power After ControlÞ

subject to : ½a; b; c; d� 2 ½0; 1�:

The simulated annealing method is adopted to solve this

global optimization problem. Simulated annealing was

implemented in MATLAB using the simulannealbnd function.

TABLE II. Coordinates for the actuator and sensor locations.

Actuator/Sensor Configuration one location ðx; yÞ (m)

Disturbance ð0:445; 0:692Þ
Controller one ð0:422; 0:064)

Sensor ð0:245; 0:285Þ
Controller two (if applicable) ð0:230; 0:650Þ

FIG. 1. (Color online) Radiated sound

power for two methods of calculating

the WSSG weights. Dashed: uncon-

trolled sound power; dash dotted: con-

trolled with frequency dependent

weights; solid: controlled with aver-

aged weights. (a) Simply supported

plate, (b) clamped plate.
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The reason for restricting the weights to the range between 0

and 1 is that it is a normalized value. Figure 2 shows the

comparison of the control results by minimizing sound

power and by minimizing WSSG using the optimized

weights obtained through the simulated annealing method

for the simply supported and the clamped plate, respectively.

It can be seen from Fig. 2 that by using simulated annealing

to determine the optimized weights at each frequency,

WSSG is able to perform essentially as well as minimizing

the sound power for this configuration. This means that if the

optimized weights are found for each frequency, WSSG

(which only uses four accelerometers) can be used to maxi-

mize the attenuation of radiated sound power. During the

simulation process, it was also found that using only the first

three terms of WSSG, as compared to using all four terms of

WSSG, can be used to obtain good control results as shown

in Fig. 2. This indicates that the fourth term is not necessary

to use in WSSG, at least for these conditions. It will be

shown in Sec. III C that the fourth term in the WSSG expres-

sion can contain significant noise due to the derivatives of

experimental data. Therefore in the following analysis, the

fourth term of WSSG will not be used.

C. Parameter-based weights for broadband frequency

The simulated annealing method is able to find the

optimized weights for WSSG at each frequency. However,

a simple process to find the optimized weights, rather than

using the simulated annealing method, is more preferable

in real implementations. Figure 3 shows the first weight, a;
calculated through the simulated annealing method, as a

function of frequency. It can be seen that the weights

obtained at each frequency appear to be random and unsys-

tematic; thus, there is no discernable rule that can be estab-

lished to determine these optimized weights for each

frequency.

In this section, a method to determine the weights for a

broadband frequency range, based on parameters of the

plate, is presented and analyzed. In the analysis, the first

weight, a; is normalized to 1, and the fourth weight is

neglected due to the analysis in Sec. III B. Initially several

different cases corresponding to different materials and

thicknesses of the simply supported plate, but with the same

length and width, are examined. Table III shows the parame-

ters of the different simply supported plates. The actuator

and sensor locations are the same as in Table II. In Table III,

FIG. 2. (Color online) Comparison of

plate control results by minimizing

sound power and WSSG using the

optimized weights obtained through

the simulated annealing method.

Dashed: uncontrolled sound power;

solid: minimizing sound power; dash

dotted: WSSG using optimized

weights obtained through simulated

annealing. (a) Simply supported plate,

(b) clamped plate.
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the value of D=qh is also shown. Given that the wavenumber

can be expressed as

k2
f ¼

ffiffiffiffiffiffi
qh

D

r
x; (16)

it is noted that
ffiffiffiffiffiffiffiffiffiffiffi
D=qh

p
is inversely proportional to the

square of the transverse wavenumber. As a result, it will be

demonstrated later that this ratio of plate parameters can be

used in place of the square of the transverse wavenumber to

directly determine the proper values of the weights.

Figure 4 shows the total sound power attenuation from

20 to 500 Hz as a function of different weights (plotted on a

log scale) with each plot corresponding to different cases

shown in Table III. The darker the color, the greater the

attenuation achieved. For simplicity, only three cases are plot-

ted; the other three cases have the same trend as those shown.

The length and width of the plate for the different cases in

Table III are the same as depicted in Table I. On inspection of

Fig. 4, the dark region on each figure appears to be somewhat

complex. However, the darkest region in each figure has a rel-

atively large area; this means there is a large range of nearly

optimized weights. It is again apparent that choosing the exact

value of the optimized weights is less critical, once the proper

order of magnitude of the weights is determined. Hence in the

following analysis, there is little attempt to determine the

exact value of the optimized weights. Thus a set of (nearly

optimal) parameter-based weights will be identified in the

following analysis. For Fig. 4, the circular points in the

figures indicate the weights for the largest attenuation that can

be achieved. Table IV shows the optimum weights of differ-

ent cases, corresponding to the circular points in each of the

figures that result in the greatest attenuation of the radiated

sound power. It can be seen in Table IV that the increase in

the optimum weight values for the different cases corresponds

to increasing values of D=qh. According to Eq. (15), the

weights are shown to be inversely proportional to the wave-

number in the x and y directions. In these expressions, it is

assumed that the optimum weights are related to the trans-

verse wavenumber; this suggests that if the value of D is

known, the parameter-based weights can be obtained using

the results provided in Table IV and interpolating as needed

for the specific value of D=qh.

From this analysis, it is assumed that when the value of

D=qh remains almost the same, the broadband parameter-

based weights should remain almost the same. Hence two

other cases (simply supported case 7 and clamped case 8),

which are shown in Table IV, are considered in the follow-

ing analysis. These two cases have the same length and

width as shown in Table I. Figure 5 shows the corresponding

total radiated sound power attenuation as a function of the

weights. In Table IV, cases 2 and 7 are both simply sup-

ported with D=qh equal to 2.52 and 2.39, respectively. Their

transverse wavenumbers are similar. Furthermore, it can be

seen from Figs. 4(a) and 5(a) that the dependence of the

sound power attenuation on the weight values used is very

similar, and the parameter-based weights corresponding to

the circular point locations are the same. This indicates that

the assumption in the preceding text is reasonable. For dif-

ferent boundary conditions but with the same transverse

wavenumber, results can be compared using the data of the

simply supported case 3 and the clamped case 8 in Table IV

and the corresponding plots in Figs. 4(b) and 5(b). Although

the figures of the total radiated sound power attenuation as a

function of the weights are somewhat different in Figs. 4(b)

and 5(b), the dark regions indicating weights that yield near-

optimum attenuation are similar in shape and extent. Thus

the same parameter-based weights can be used effectively in

FIG. 3. The first weight obtained

through simulated annealing.

TABLE III. Material properties and plate thickness for simply supported

cases.

Case Modulus (Pa) Density ðkg=m3Þ Thickness ðmÞ D=qh (m4/s2)

1 6:89� 1010 10800 0.001 0.60

2 2:1� 1011 7800 0.001 2.52

3 6:89� 1010 2700 0.002 9.55

4 6:89� 1010 2700 0.003 22.92

5 6:89� 1010 2700 0.005 59.66

6 6:89� 1010 2700 0.020 954.57
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both cases. This further confirms that it is not critical to

determine the exact optimal value of the weights but rather

the order of magnitude. Therefore a reasonable practical

approach is to use the value of D=qh to directly determine

the parameter-based weights.

To confirm that varying configurations do not signifi-

cantly change the parameter-based weights, six additional

configurations with aspect ratios varying from 1 to 10 and

varying sensor and actuator locations were investigated. For

these configurations, the value of D=qh was fixed to be 2.39,

which is the same as case 7. The results are not shown here,

but as expected, it was found that the parameter-based

weights did not vary appreciably and that the value of D=qh
can be used to determine the parameter-based weights for

broadband frequency excitation.

Finally, the control results using broadband parameter-

based weights are compared with results using the averaged

weights utilized for Fig. 1. The material properties are the

same as in Table I, from which the value of D=qh can be cal-

culated to be approximately 24. Thus from Table IV, it can

FIG. 4. (Color online) Total radiated

sound power attenuation (dB) as a

function of different weights for differ-

ent simply supported plates with the

same length and width. (a) case 2, (b)

case 3, (c) case 6.

TABLE IV. Optimized weights for different cases.

Case Boundary condition D=qh log10b log10c

1 Simply supported 0.60 �3.14 �3.14

2 Simply supported 2.52 �3.18 �2.78

3 Simply supported 9.55 �1.86 �1.86

4 Simply supported 22.92 �1.86 �1.86

5 Simply supported 59.66 �1.86 �1.67

6 Simply supported 954.57 �1.67 �1.67

7 Simply supported 2.39 �3.14 �2.78

8 Clamped 9.55 �2.16 �1.86 FIG. 5. (Color online) Total radiated sound power attenuation (dB) as a

function of different weights for different cases. (a) case 7, (b) case 8.
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be determined that the parameter-based weights, b and c,

should be 0.014 (converting back from their logarithmic val-

ues). Figure 6 shows the control results obtained using

parameter-based weights and averaged weights for both the

simply supported plate and the clamped plate. For the simply

supported plate, it can be seen from Fig. 6(a) that using

parameter-based weights provides good control performance

except at around 255 and 375 Hz; this is similar to the aver-

aged weights. This has already been identified as being due

to degenerate modes. At other frequencies, the attenuation is

significant. However, because of the degenerate modes, the

total overall attenuation obtained using averaged weights

and parameter-based weights is only 2.60 and 4.12 dB,

respectively. For the clamped plate, there are no degenerate

modes, and almost all of the modes are attenuated signifi-

cantly. The total overall attenuation obtained using averaged

weights and parameter-based weights is 6.55 and 7.82 dB,

respectively.

To control the degenerate modes in the simply

supported plate, a second shaker is added to control the addi-

tional degree of freedom. Figure 6(a) also shows the compar-

ison of control results between averaged weights and

parameter-based weights for the simply supported plate

using two shakers (dashed line and dotted line). It can be

seen that adding a second shaker yields better control per-

formance at the degenerate mode around 255 Hz, as was also

shown in Fig. 1(a). For the other degenerate modes around

375 Hz, the parameter-based weights provide better attenua-

tion than the averaged weights. The total overall attenuation

for averaged weights and parameter-based weights is 1.98

and 4.23 dB, respectively.

The analysis in the preceding text indicates that effec-

tive sound power attenuation across the whole frequency

range can be obtained by using the parameter-based weights,

which can be directly obtained from the value of D=qh. It

generally provides control performance that is equal to or

better than obtained using averaged weights. Although there

are still some frequencies at which the parameter-based

weights do not perform better than the averaged weights, the

total sound power attenuation obtained using parameter-

based weights is still a little larger than using averaged

weights. Furthermore, it is much easier to determine the

parameter-based weights than the averaged weights, which

is the real advantage of using parameter-based weights.

FIG. 6. (Color online) Comparison of

control results using averaged weights

and parameter-based weights. (a)

Simply supported plate, (b) clamped

plate.
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Once the value of D=qh is known, the parameter-based

weights are determined. In Sec. IV, experimental results

obtained using both averaged weights and parameter-based

weights will be presented.

IV. EXPERIMENTAL RESULTS

A simply supported plate and a clamped plate were

both assembled using 6061-T6 rolled aluminum, which had

the same material properties and dimensions as the plate

used in the simulations (see Table I). The simply supported

boundary conditions were created by suspending the plate

in a stiff frame with set screws the points of which touch the

four sides of the plate, as shown in Fig. 7. The result of the

set screws contacting the edges of the plate is that they pre-

vent any transverse motion but allow rotation to provide a

near simply supported boundary condition. The clamped

boundary condition was created by placing the plate

between two stiff frames and bolting the frames together. A

picture of the clamped plate is also shown in Fig. 7.

Spatially dense velocity measurements across the plates

were made with a Polytec PSV-400 scanning laser Doppler

vibrometer (SLDV) to confirm the intended boundary con-

ditions were satisfied.

The plate was excited using a Labworks ET-126 shaker

attached to a signal generator and controlled with a Bruel

and Kjaer type 4809 vibration exciter. These shakers were

suspended from a stiff frame with bungee cords and attached

to the plate by gluing the individual stingers to the back side.

WSSG was measured at a point on the front side using four

accelerometers (PCB Model No. 352C68) spaced 0.0254 m

apart in each direction,32 as shown in Fig. 8.

Each of the terms in Eq. (14) was found numerically by

calculating finite difference estimates of the derivatives from

the accelerometer signals at each sampled time step. The

equations used to calculate each term are

w � s1 þ s2 þ s3 þ s4

4
; (17)

@w

@x
� s2 � s1 þ s4 � s3

2Dx
; (18)

@w

@y
� s1 � s3 þ s2 � s4

2Dy
; (19)

@2w

@x@y
� s2 � s1 þ s3 � s4

DxDy
; (20)

where si represents the instantaneous acceleration measured

by each accelerometer, and Dx and Dy represent the x and y
distance between the accelerometers, respectively, as shown

in Fig. 8. Accelerations are used interchangeably with

displacements with no impact on the result for minimizing

WSSG. There is a trade-off for choosing the distance

between the accelerometers, as discussed in greater detail in

Hendricks et al.32 If two accelerometers are placed too close,

they may read almost the same value, even though in princi-

ple, closely spaced sensors are able to better approximate the

derivatives in Eqs. (17)–(20). On the other hand, if acceler-

ometers are placed too far apart, the values read from

the accelerometers vary more, but the approximations in

Eqs. (17)–(20) deteriorate in accuracy. In addition, the fourth

term of WSSG shown in Eq. (20) has two orders of approxi-

mation; hence it has more numerical error than the

other three terms. This fourth term has already been shown

to have only a minor effect on the control performance in

Sec. III.

The calculation of each WSSG term was accomplished

within the DSP controller (based on the TI TMS C6713

processor), which implemented a modified filtered-x LMS

algorithm to optimize the phase and amplitude of the

FIG. 7. (Color online) The experimen-

tal setup for simply supported and

clamped boundary conditions.

FIG. 8. Schematic of accelerometer spacing used to measure WSSG.
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complex control force to minimize WSSG.27 The sampling

frequency was 4 kHz, and the convergence step size was

adjusted for each frequency to achieve rapid and stable

convergence. The SLDV was used to measure the velocity at

an array of points on the plate, and then sound power was

calculated using the method of elementary radiators used

previously for the simulations. A full schematic of the exper-

imental setup is shown in Fig. 9. To obtain accurate sound

measurements, the plate was placed in a window between

two acoustic reverberation chambers with the plate radiating

into the chamber with dimensions 5.69 m� 4.32 m � 2.49 m.

This provided a baffle between the two sides of the plate and

isolated the plate from any outside vibrations or noises.

Averaged weights and parameter-based weights for

WSSG were considered in the experimental work.

Experimental averaged weights were obtained by averaging

all of the weights corresponding to every mode in the fre-

quency range of interest, below 500 Hz. The weights corre-

sponding to each structural mode were chosen by making

WSSG as uniform as possible over the entire surface of the

plate. The parameter-based weights were obtained based on

the value of D=qh.

A. Simply supported plate

In this section, the radiated sound power reduction

obtained experimentally using averaged weights and

parameter-based weights is compared for the simply sup-

ported plate. The actuator and sensor locations are the same

as shown in Table II.

Figure 10 shows the comparison of control results

between using averaged weights and parameter-based

weights. Note that the frequency resolution for the experi-

mental results is 10 Hz. It can be seen that significant attenu-

ation is achieved from 40 to 200 Hz, which is consistent with

the simulation results shown in Fig. 6(a). The two degenerate

modes shown in Fig. 10 corresponding to the simulation

results are at 232 and 339 Hz now at which minimal attenua-

tion is achieved. In addition to the two degenerate modes,

there is also little attenuation at 303 Hz using both averaged

weights and parameter-based weights. The velocity response

at 303 Hz was plotted and it was found to be another degen-

erate mode. At higher frequencies above 250 Hz, the experi-

mental results using averaged weights did not result in good

attenuation. This may be due to the large numerical noise

that appears at higher frequencies due to the higher-order

spatial derivative of the experimental data used to compute

the fourth term in WSSG. The parameter-based weights do

not use the fourth term, which may lead to the better control

performance that is obtained at high frequencies.

Figure 10 also shows the comparison of the control

results between averaged weights and parameter-based

weights when using two control shakers. It can be seen that

compared with using just one shaker, more attenuation is

obtained at the degenerate mode frequency of 232 Hz using

two shakers. In contrast with the simulation results, the

degenerate modes at 339 Hz also experience some attenua-

tion using two shakers; this may be affected by the additional

loading effect of the shakers. At high frequencies, there is

significantly better control performance achieved than when

using just one shaker.

B. Clamped plate

The radiated sound power control results for the

clamped plate are presented in this section. The actuator and

sensor locations are the same as shown in Table II. Figure 11

shows the experimental comparison of the radiated sound

FIG. 9. (Color online) Schematic of the experimental setup.

FIG. 10. (Color online) Experimental

comparison of control results when

using parameter-based weights and

averaged weights for the simply sup-

ported plate.
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power control results between parameter-based weights and

averaged weights for the clamped plate. It can be seen that

good attenuation is achieved across nearly the entire fre-

quency range. Nearly the same attenuation is achieved for

both averaged weights and parameter-based weights from 50

to 300 Hz. Averaged weights were not as effective in the

region around 345 Hz; this is consistent with the simulation

results from 350 to 400 Hz shown in Fig. 6(b). At relatively

high frequencies, the averaged weights perform slightly

worse than the parameter-based weights. This may be par-

tially due to the noise inherent in the calculations by comput-

ing the higher order derivatives of the experimental data

used in the fourth term of WSSG for averaged weights.

V. CONCLUSIONS

In this paper, WSSG has been shown numerically and

experimentally to be an effective control metric for reducing

the radiated sound power from simply supported and

clamped plates. In implementing WSSG, it was found that

the weights used have a direct relation with the control per-

formance achieved. Numerical simulation demonstrated that

optimizing the WSSG weights at each frequency using a

simulated annealing process resulted in attenuation as good

as the optimal, but impractical, approach of minimizing

sound power. A more simple process than simulated anneal-

ing is preferable to find the optimized weights in real imple-

mentations. As a result, a method called parameter-based

weights for broadband frequency ranges was developed and

has been validated both numerically and experimentally.

The parameter-based weights are directly related to the ratio

of bending rigidity to area mass density (D/qh) of the plate,

which is inversely proportional to the square of the flexural

wavenumber. Both simulation and experimental results com-

pared well and indicated that parameter-based weights can

easily be obtained and provide significant control over rela-

tively large frequency ranges.
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