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INTRODUCTION

To globally minimize the sound pressure level in an enclosure, it has
generally been accepted that the appropriate quantity to minimize is the
potential energy in the field [1). However, this presents problems for practical
implementation, since the potential energy is obtained by spatially integrating
the field, which is generally not feasible using discrete transducers. Thus, the
general procedure has been to minimize the squared pressure signal from a
number of discrete transducers, as an approximation to minimizing the potential
energy [1-4]. Indeed, if an infinite number of transducers were used, the sum
so obtained would approach the true value for the potential energy obtained by
spatially integrating the field.

For regular enclosures, where it is possible to determine an optimal location
for the microphone, the method of minimizing the squared pressure has worked
well. However, for applications where the enclosure is not regular, and it is not
easy to determine the best microphone location, this method has not been as
effective. The reason for this is that the method simply minimizes the squared
pressure at a number of discrete points, rather than the potential energy in the
field. This paper outlines an alternative control strategy for minimizing the
potential energy in the field. This strategy comes closer to providing optimal
control than does the method of minimizing the squared pressure.

REPRESENTATION OF THE FIELD

The pressure in any enclosure can be represented in terms of its normal
modes. For simplicity, a one-dimensional enclosure will be considered to
develop the concepts in this paper. Such an enclosure would be represented by
a closed duct, where the cross-section is such that all cross-modes of the duct lie
well above the frequency of interest. For an enclosure with a "primary" source
creating the undesirable disturbance and a "secondary" source to control the
sound field, the pressure field can be represented by
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where 'ljJn(x) represent the modes of the enclosure (assumed to be normalized

such that foL'IjJ: dx - L ),Q. represents the source strength of the control source,

and the An and B; are defined according to
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Here, L is the length of the enclosure, k is the disturbance wavenumber, k; is the
wavenumber for the nth mode, rn is the angular frequency, p is the fluid density,
Qpis the primary source strength, and xpand Xc are the locations of the primary
and control sources, respectively.

For a closed duct with cross-section dimensions axb, the total potential
energy in the volume of the enclosure, V, can be found using Eq. (1) as

E - fa fb fL..!!f.dxdydz - ~E(A + B Q )(A" + B'Q') . (3)
p )0 )0)0 4pc2 4pc2 n-o n n c n n c

If the An and B; coefficients are represented in vector form, the potential energy
can be expressed as

E - ~rAHA+AHBQ +Q'BHA+Q'BHBQ]
p 4pc2t c c c c '

where the superscript H represents Hermitian. From this expression, the
quadratic dependence of the potential energy on the secondary source strength
can be clearly seen. Following standard minimization procedures, the optimal
source strength is found to be

(5)

This expression represents a result which has appeared a number of times in the
literature [1]. The important point is that to arrive at this result, it is necessary
to use the orthogonality property of the modes in the enclosure.

ALTERNATlVE CONTROL SCHEMES

Just as the modal structure of the field can be used to analytically
determine the optimal solution for minimizing the potential energy, the modal
structure can also be used to determine the control source strength and the field
properties for other control schemes. Three control schemes have been
investigated for a closed duct, and the results will be compared with the optimal
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solution in Eq. (5).
As mentioned previously, the most common control scheme involves

minimizing the squared pressure at a discrete point. Using Eq. (1), an expression
for the squared pressure at a discrete point can be obtained, which will also be
quadratic with respect to Qc' Minimizing the squared pressure leads to an
expression for the control source strength given by

Q __ 1:'-0 An'iJn(X)

c,p 1:'-0 Bn'iJn(X)
(6)

where x. represents the "error" location, where the squared pressure is being
minimized. By comparing Eq. (6) with Eq. (5), one can clearly see that the
control source strength obtained by minimizing the squared pressure is not in
general the same as the optimal control source strength to minimize the potential
energy. The reason for this lies in the fact that the optimal solution utilizes the
orthogonality of the eigenfunctions in performing the spatial integration, while
no such orthogonality is involved in minimizing the squared pressure. Thus, the
question arises as to whether some other minimization criterion exists which will
come closer to emulating the orthogonality which leads to the optimal solution.

An alternative control scheme to minimize the potential energy in the field
would be to minimize the total intensity at a discrete location. The rationale in
choosing such a function is that the intensity represents an energy quantity, and
hence one might expect to minimize energy by minimizing the intensity. As
with the previous schemes, the intensity is a quadratic function of the control
source strength, so that standard minimization techniques can be used. For a
one-dimensional enclosure, the result of minimizing the intensity is that the
optimal control source strength is found to be the same as that given in Eq. (6)
for minimizing the squared pressure. Thus, for such an enclosure minimizing
the intensity at a discrete location will result in the same performance as simply
minimizing the squared pressure. It should also be pointed out that if standard
intensity measurement techniques are used, two sensors will be required to
obtain the intensity measurement, whereas only a single sensor is required to
minimize the squared pressure.

A third control scheme involves minimizing the total energy density at a
discrete location. Minimizing the squared pressure really minimizes the
potential energy density at a discrete location, whereas minimizing the total
energy density minimizes both the kinetic and potential energy densities. The
energy density is also a quadratic function of the control source strength and, if
standard procedures are used, the resulting optimal source strength is found to
be

(7)
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where FnI is defined according to
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(8)

This result reveals that the solution obtained by minimizing the total energy
density would agree with the optimal solution in Eq. (5) if FnI = 1'InI, where 1'Inl

represents the Kronecker delta function. Thus, the properties of the FnI function
will determine how closely this scheme can approximate the optimal solution.

The control schemes presented above have been investigated numerically
for a rigid one-dimensional enclosure, and some of the results will be presented
below.

RESULTS

For the results presented here, a rigid-walled duct of length L has been
assumed, so that the eigenfunctions for the duct can be represented by

(9)

where k; is given by nxil: Here it is assumed that the duct cross-section is
sufficiently small so that the cross-modes do not contribute significantly. A
single primary source is located at x = 0, and a single control source is located
at x = 0.359 L. To obtain accurate convergence, a sufficient number of modes
must be included from the infinite sums. For two- and three- dimensional
enclosures, it has been found that this generally involves retaining at least
several thousand modes. For the one-dimensional enclosure here, it was found
that good results were obtained by including 50 modes. As a check, several
cases were tested including 100modes, and it was found that the results agreed
to within less than 0.1 dB.

For each configuration investigated, the optimal source strength was
calculated using Eqs. (5)-(8) for the case of minimizing the potential energy, the
squared pressure at a discrete location, and the total energy density at a discrete
location. With these source strengths, the total potential energy in the enclosure
was then determined by means of Eq. (3) for the case of no control and the cases
of minimizing the potential energy, the squared pressure, and the energy
density.

For a regular enclosure such as is represented here, it has been shown that
effective control can be obtained by minimizing the squared pressure at a sensor
located in the comer of the enclosure [1], which corresponds to the end of the
duct in the present case. Figure 1 shows the results obtained with the error
sensor located near the end of the closed duet (x = 0.98 L) as a function of
excitation wavenumber (frequency) for the various control schemes discussed
above. For these conditions, minimizing the squared pressure should produce
near optimal results, and for most frequencies, it can be seen that this is the case.
It can also be seen that for all frequencies, minimizing the energy density at the
sensor gives essentially identical control as minimizing the squared pressure.

For general enclosures, it may be difficult to determine a good location for
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Figure 1. Total potential energy in the duct. For the squared
pressure and energy density, the discrete sensor is located at the
position x =O.98L.

the sensor if one desires to minimize the squared pressure. Thus, it is also of
interest to compare the performance of the control schemes for the case where
a poor location for the error sensor is chosen. Figure 2 shows the results ob
tained with the error sensor located at the center of the duct (x = 0.5 L) for the
various control schemes. This represents a poor location for minimizing the
squared pressure, as all of the odd modes have a pressure node at this location.
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Figure 2.Totalpotentialenergyin the duct. For the squared press
ure and energydensity, the discretesensoris locatedat the position
x = O.5L.



304 Noise Control Elements

As can be seen, minimizing the squared pressure generally does a poor job in
this case when the excitation frequency is close to the frequency of one of the
odd modes. On the other hand, minimizing the energy density at the sensor
produces results which are nearly optimal, except for the frequency range corre
sponding to a wavenumber of about 13. For this sensor location, minimizing the
energy density leads to results which are clearly better than minimizing the
squared pressure.

Figure 3 presents another example comparing the control schemes when
only a single minimization sensor is used. In this case, the location of the error
sensor was randomly selected to be at a location which was thought to be not
necessarily good nor bad. In this case, the sensor is located at a position given
by x = 0.872 L. It can be seen that minimizing the squared pressure provides
poor control for frequencies lying between the 1st and 2nd modes, as well as for
frequencies below and at the 4th mode. With the exception of the frequency
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Figure 3. Total potential energy in the duct. For the squared press
ure and energy density, the discrete sensor is located at the position
x =O.872L.

range just above the 4th mode, minimizing the energy density provides consider
ably better control throughout the frequency range shown. The general trend
which has been observed is that minimizing the energy density never seems to
provide control which is significantly worse than minimizing the squared
pressure, and in most cases provides control which is significantly better than
minimizing the squared pressure. Furthermore, except for a few isolated
frequencies, minimizing the energy density leads to control which is in general
reasonably close to the optimal solution of minimizing the total potential energy
in the duct. Thus, it seems that the function Fn, in Eq. (8) above performs
approximately the same function as the orthogonality which led to the optimal
solution for minimizing potential energy. This subject deserves further study in
the context of three-dimensional enclosures.

The disadvantage of using energy density as the quantity to be minimized



Sommerfeldt et al.: Active Noise Control; 38.2 305

_..- NoCon1roI

······Sqund~ ..

,- PotIn!lIII E'*Vf
1 Energy DenIlty

20

30

i
f 1:+---t-\-":-i-+----+-iI:-+l:\-':-~--i+_+_I:_+~+f~
J-10

·30

305
.4JJ..--~-~----,--~-~-~

o 10 15 20 2li
ExdlIIIon Wavtnumller (k)

Figure 4. Total potential energy using multiple sensors. Squared
pressure sensor locations: x =0.02, 0.2, 0.4, 0.6, 0.8, 0.98L. Energy
density sensor location: x = 0.5L.

is that it cannot be measured with a single sensor, as the squared pressure can.
To investigate this idea, the controlled field was calculated using measurements
at multiple discrete points to implement the control schemes. Figure 4 compares
the results obtained by minimizing the squared pressure at six points with those
obtained by minimizing the energy density at a single location. The results for
the energy density parallel those shown in Figure 2. However, even with six
pressure sensors being used, the potential energy in the controlled field is not
minimized as well as when using the energy density. To measure the energy
density using standard two-microphone techniques requires two microphones
for a single point, so that these results would correspond to using six micro
phones for minimizing the squared pressure and two microphones for
minimizing the energy density.

Another multiple sensor case is shown in Figure 5. In this configuration,
eight sensors are used for minimizing the squared pressure, while two "energy
density" sensors (i.e. four microphones) are used for minimizing the energy
density. Minimizing the squared pressure at the eight sensor locations results
in control which is reasonably close to optimal throughout the frequency range
shown. However, in general the overall control using the squared pressure at
eight locations is no better than using the energy density at two locations (four
microphones). In addition, it can be recognized that for this case, the control ob
tained using two energy sensors is nearly optimal throughout the entire
frequency range.

CONCLUSIONS

The expansion theorem, whereby the field is represented in terms of its
modes, provides a powerful means of being able to investigate the active control
of enclosures using various control schemes. Using this approach, it is possible
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Figure 5. Total potential energy using multiple sensors. Squared
pressure sensor locations: x =0.02, 0.1, 0.2, 0.3, 0.4, 0.,5 0.75, 0.98L.
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to obtain analytical results for various control schemes which make it possible
to understand how well various schemes might be expected to perform. The
numerical results have demonstrated some of the problems which have been
known relating to the use of the squared pressure as the quantity to be
minimized in an active control system. The use of total energy density at
discrete points has also been investigated, and it has been found that this scheme
generally performs better than (and certainly no worse than) minimizing the
squared pressure. As well, if multiple error sensors are used, it generally
requires fewer sensor locations to achieve comparable control if the energy
density is minimized rather than the squared pressure.

Several areas remain to be investigated. Since energy density cannot be
measured directly, the effect of errors in estimating the energy density needs to
be investigated, to determine how much the control could be expected to be
degraded. In addition, these concepts can be extended to three-dimensional
enclosures to develop alternative control schemes for minimizing the sound in
general enclosures. In particular, the scheme of minimizing intensity should be
looked at again in the context of three-dimensional enclosures, to determine if
the control would be the same as for minimizing the squared pressure, as it is
in one-dimensional enclosures.
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