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INTRODUCTION

A number of current problems of interest in active noise control involve the need to
control the sound field in an enclosure. Attenuating the sound pressure at a microphone
in the enclosure typically results in a relatively small region of control, often referred to
as a zone of silence. In an effort to increase the region of control for practical
applications, as many as 32-48 microphones have been used to achieve a broader region
of control [1,2,3]. In an attempt to simplify the control architecture, an alternative control
method for achieving a more global control of the field has been developed. The method
is based cm sensing and minimizing the total energy density at discrete locations, rather
than the squared pressure as has been done previously.

Previous work using this energy density method in one-dimensional enclosures has
indicated that significant improvement in the overall attenuation may be possible [4,5].
This improvement can be attributed to the fact that sensing the energy density provides
the capability of observing all modes contributing to the acoustic field. As a result of the
increased observability, the spillover problem that often leads to localized control when
minimizing the pressure field is largely avoided.

In this paper, the energy density control approach is extended to three-dimensional
rectangular enclosures. Numerical results are presented to compare the attenuation of the
global potential energy that can be achieved by minimizing the energy density and the
acoustic pressure in the enclosure. These results are also compared with the control that
one would achieve by minimizing the total potential energy in the enclosure, which has
been suggested as the optimal theoretical solution [6].

THEORETICAL DEVELOPMENT

For an active control application, the acoustic field in a rectangular enclosure can
be thought of as consisting of two components: the pressure due to the primary source(s),
and the pressure due to the secondary source(s). In general, the control that can be
achieved in the enclosure will depend on the location of the sources, the location of the
error sensors used, and the choice of the performance function chosen for the control
system. The purpose of this paper is to compare the control that can be achieved using
several different performance functions, for a given arbitrary source and sensor
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configuration. A.. a result, for the results shown below, there has been no attempt to
optimize any of the source or sensor locations. The focus is simply to compare the
performance that can be realized for a given configuration. This corresponds to the
situation that often occurs in practice, where one has limited control over the possible
locations for sources and sensors. Given this objective, a single primary source and a
single control source are also assumed to simplify the configuration.

The pressure field in the rectangular enclosure can be represented in terms of the
modes of the enclosure as

Here, N denotes a triple sum over the indices (1, m, n) corresponding to the x-, y-, and z-
direct ions. The functions WN correspond to the eigenfunctions of the enclosure, Q=
designates the complex control source strength, and the coefficient.. AN and BMare the
modal coefficients associated with the primary field and the secondary control field,
respectively. (The source strength of the primary source is included in the AN
coefficients.) The objective of the active control system is to optimize the value of the
source strength, QC, so as to minimize a chosen performance function.

In this paper, three different performance functions for the control system are
investigated to compare their global performance. The first performance function
corresponds to the global potential energy in the enclosure. This function was suggested
by Nelson, et al. [6], since it provides a global measure of the energy in the field. While
this approach is attractive for analytical work, it is problematic for experimental
implementation, due to the lack of appropriate sensors to obtain a global measure of the
potential energy. The second performance function invest igated corresponds to the squared
pressure at a discrete location(s). This is the approach most often taken in practice, and
corresponds to minimizing the pressure magnitude at discrete points in the enclosure.
While this approach lends itself well to experimental implementation, it often leads to the
production of localized zones of silence, rather than the broad global attenuation often
desired. The third performance function investigated correqxmds to minimizing the total
energy density at a discrete location(s). This approach also makes use of a local
measurement, but the measurement of energy density potentially yields more global
information than is obtained from a pressure measurement. These three performance
functions cm be expressed as:

I P2 d“Jp= —

2pc2
I

Jp = ~ p2(ii) (2)
i=1

Here, the subscript pe refers to potential energy, the subscript p refers to the squared
pressure, and the subscript ed refers to the energy density, and 1 indicates the number of
error sensors used.

Using the expression for the pressure given in Eq. (1), these three performance
functions can be minimized to yield the optimal control source strengths. The results of
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this “minimization can be expressed as:

(3)

In the results that follow, the optimal control source strengths have been determined
for each of the three performance functions investigated, and with these source strengths,
the acoustic pressure throughout the enclosure can be determined by means of Eq. (1).

NUMERICAL MODEL

To investigate the control of the acoustic field in an enclosure, the global potential
energy in a rigid rectangular enclosure was determined numerically, both without and with
control, for each of the three performance functions shown in Eq. (2). The assumption of
rigid boundaries yields eigenfunctions of the form

W“(.ii) .Cos[qcos[qcop) (4)

where Lti Ly, L, are the dimensions of the enclosure along the three axes. The dimensions
of the enclosure modeled are 1.93 m x 1.54 m x 1.22 m, which corresponds to an existing
experimental enclosure at Penn State University. Given the dimensions of the enclosure

and the source and error sensor locations, which were arbitrarily chosen, the modal
coefficients AN and BMwere first determined, from which the optimal source strengths as
given in Eq. (3) can be determined. From the optimal source strengths, the global
potential energy in the enclosure can be calculated. Due to the orthogonality of the

modes, the potential energy can be expressed as

Ep=~ i (A+B.Q=) (A;+f3;Qc”) .
4~c2 N@

m

As well, the pressure field in the enclosure was also determined using the calculated
optima I source strengths to gain insight into the global control effects associated with each
of the performance functions investigated. In computing the pressure field and global
potential energy, the infinite sums indicated in Eqs. 1, 3, and 5 were truncated to include
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the first” 1120 modes.

RESULTS

For the results presented here, a single primary source and a single control source
have been used. The primary source was arbitrarily located at (x,y,z) = (O.1, 0.4, 0.4), and
the control source was located at (x,y,z) = (1.4, 1.0, 1.0). As mentioned previously, no
attempt was made to optimize these locations. Given that there is only a single control
source, it is not possible for the control source to significantly attenuate the global energy
at frequencies where multiple modes contribute significantly to the acoustic field.
However, it is still reasonable to look at the control effects using the three performance
functions chosen to gain insight into the global nature of the control schemes. This is
particularly true since one of the performance functions is the global potential energy,
which will yield the minimum overall potential energy in the enclosure for any chosen
configuration.

For minimizing the potential energy, no error sensor is used, as the performance
measure is the global energy. For minimizing the squared pressure and the energy density,
a single error sensor was used, located at (x,y,z) = (1.2, 0.6, 0.6).

A global measure of the control is given by the potential energy in the enclosure
both before and after the control is applied. Figure 1 shows the potential energy in the
enclosure, as calculated from Eq. (5), as a function of frequency. From these results, it
can be seen that minimizing the potential energy yields the lowest global energy, as is to
be expected. However, minimizing the energy density at the single point chosen yields
potential energy results that are comparable to minimizing the potential energy at most of
the frequencies shown here. On the other hand, minimizing the squared pressure leads to
an increase in the global potential energy in the enclosure at most frequencies. This can
be seen more clearly in Figure 2, which shows the attenuation in the potential energy that
is achieved using each of the three control approaches. The negative values of attenuation
at most frequencies for the squared pressure control indicate an increase in the energy in
the enclosure, while controlling the energy density provides attenuation of the global field
that approximates the control of potential energy reasonably well.

‘Additional insight into the control effect achieved with each of the control
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@Im 1. Potential energy in the enclosure.
no control; _ _ potential energy; . . . . squared
pressure; _ . _ . energy density.

Igure 2. Attenuation of potential energy in the
enclosure. potential energy; . . . . squared
pmsure; _ _ energy density.
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approaches can be obtained by looking at the pressure field that results when the control
is applied. There are some frequencies where the global potential energy that results from
control is comparable with all three methods. Due to space limitations, results for such
cases are not shown here, but it has been found that the nature of the controlled field is
rather similar for all three control methods. There are other frequencia% characterized by
a significant difference in the attenuation of the global energy achieved when minimizing
the potential energy or energy density, as opposed to the squared pressure. One example
of this is the spectral peak at 166.3 Hz, which corresponds to the (1,0,1) mode. It can be
seen from Figure 2 that controlling the potential energy or energy density produces an
attenuation of the potential energy in the range of 11-14 dB. However, controlling the
squared pressure produces an increase of the potential energy of approximately 15 dB.
Figures 3 and 4 show the relative sound pressure level for two different cross-sectional
planes of the enclosure, given by z = 0.8 m and z = 1.0 m. For the (1,0,1) mode, the error
sensor (located at z = 0.6 m) is near the nodal plane of the mode given by z = 0.61 m.
As a result, if the squared pressure is controlled, the error sensor is largely incapable of
detecting the dominant mode in the enclosure, and as a consequence, the control solution
results in a general increase in the sound pressure levels throughout the enclosure. On the
other hand, since the energy density control approach is also sensitive to velocity
components of the modes, it is capable of detecting the dominant mode in the enclosure,
and yields a much more satisfactory solution.

CONCLUS1ONS

Three active control methods have been investigated to compare the global
attenuation that can he achieved in a rectangular enclosure. For a given configuration, the
method of controlling energy density often provides attenuation of the global energy in the
field that is comparable to minimizing the overall potential energy. On the other hand,
minimizing the squared pressure has a tendency to produce localized control effects, in
which the pressure is attenuated significantly in the area of the error sensor, but at the
expense of increasing the overall energy in the field.
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Figure 3. Relative sound pressure level in the z = 0.8 m plane: a) No control; b) Potential energy

minimized; c) Squared pressure minimized; d) Energy density minimized.
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‘igutv 4. Relative sound pressure level in tbe z = 1.0 m plane: a) No control; b) Potential energy
minimized; c) Squared pressure minimized; d) Energy density minimized.


