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Difficulties arise in attempting to discern the effects of nonlinearity in near-field jet-noise

measurements due to the complicated source structure of high-velocity jets. This article describes a

measure that may be used to help quantify the effects of nonlinearity on waveform propagation.

This measure, called the average steepening factor (ASF), is the ratio of the average positive slope

in a time waveform to the average negative slope. The ASF is the inverse of the wave steepening

factor defined originally by Gallagher [AIAA Paper No. 82-0416 (1982)]. An analytical description

of the ASF evolution is given for benchmark cases—initially sinusoidal plane waves propagating

through lossless and thermoviscous media. The effects of finite sampling rates and measurement

noise on ASF estimation from measured waveforms are discussed. The evolution of initially

broadband Gaussian noise and signals propagating in media with realistic absorption are described

using numerical and experimental methods. The ASF is found to be relatively sensitive to

measurement noise but is a relatively robust measure for limited sampling rates. The ASF is found

to increase more slowly for initially Gaussian noise signals than for initially sinusoidal signals of

the same level, indicating the average distortion within noise waveforms occur more slowly.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4906584]
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I. INTRODUCTION

High-velocity jets are loud, extended, directional noise

sources. Far from the source region, nonlinear effects need

to be accounted for to predict the levels and spectral proper-

ties of the propagated noise.1–4 However, it is not clear

whether nonlinear propagation effects are important close to

the source, or, if not, at what distance nonlinear effects begin

to be important. Several measures of the effect of nonlinear-

ity on a waveform have been proposed and reported. For

instance, analyzing spectral variations relative to an assumed

linear response, such as second-harmonic growth (like

Pernet and Payne5 and Rudenko6), can help identify nonlin-

ear processes. In addition, higher-order spectral techniques

have been used to study nonlinear noise evolution. These

consist of a pressure/squared-pressure quadspectral den-

sity1,2,7–12 that is related to the parametric source generation

in the Burgers equation, and bispectral analysis.3,4,13

Furthermore, a great deal of literature discusses the limiting

and asymptotic cases of the spectra (and associated correla-

tion functions) of propagating noise, both narrow and broad-

band.6,14–16 While other potentially useful measures of the

importance of nonlinearity have been defined, not all of

these measures have been thoroughly documented. The pur-

pose of this paper is to document analytically, numerically,

and experimentally obtained values of a statistically based

metric, called the average steepening factor (ASF), for wave-

forms propagating with prominent nonlinear effects.

The nonlinear propagation phenomenon of waveform

steepening may be characterized by both the statistical and

spectral features of the noise. Rudenko and Chirkin17 and

Webster and Blackstock18 showed that the probability

density function of the waveform remains stationary until

shocks form, which suggests that useful measures might be

based on the temporal rates of change of the pressure. The

statistics (i.e., skewness and/or kurtosis) of the waveform

time derivative have been used to characterize the nonlinear-

ity for initial sinusoids,19 noise in a plane-wave tube,20 and

jet10,21–26 and rocket27,28 noise. Baars and Tinney11 have

recently investigated a shock detection algorithm in the con-

text of supersonic jet noise propagation for such metrics as

number of shocks per unit time.

Another metric, which was proposed by Gallagher29 in

1982 and revived by Baars and Tinney,11 is the wave steep-

ening factor (WSF), defined as the ratio of the magnitude of

the mean negative slope to the mean positive slope of a

waveform. In mathematical terms,

WSF ¼ jE _p�½ �j
E _pþ
� � ; (1)

where E½ _p�� is the expectation value of the negative slopes

and E½ _pþ� is the expectation value of the positive slopes in a

waveform. Gallagher introduced the metric by noting that a

pure sine wave has a WSF of one and a sawtooth wave has a

WSF of zero, and then presented the WSFs of measured jet

noise waveforms along with several other metrics. Gallagher

compared the WSF at different measurement locations to

make qualitative conclusions about the importance of nonli-

nearity in jet noise propagation. More recently, Baars

et al.30,31 used the WSF in addition to the skewness of the

pressure time derivatives to study the importance of nonli-

nearity in model-scale, fully expanded, unheated Mach 3 jet
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noise. In particular, they found that the WSF and the skew-

ness of the pressure time derivatives both suggest that nonli-

nearity is not a dominant feature of near-field, model-scale

jet noise propagation. These findings were largely based on a

qualitative interpretation that the metrics lacked significant

variation over space.

This paper introduces the average steepening factor

(ASF), defined as the reciprocal of the WSF. Though poten-

tially confusing, we have chosen to redefine this measure in

a more intuitive and descriptive fashion so that it increases,

rather than decreases, with increasing manifestations of non-

linear propagation. As part of our analysis, we give a more

complete description of the meaning of the ASF, its behavior

in limiting and realistic cases, and examine its behavior

when applied to measured data.32 In Sec. II the ASF is calcu-

lated analytically for two benchmark cases—propagation

without linear attenuation as represented by the Earnshaw

solution with weak-shock theory, and propagation with

thermoviscous attenuation as represented by the Khokhlov

solution.33 In Sec. III we describe the effects of finite sam-

pling rates and measurement noise on the estimation of the

ASF. Finally, in Sec. IV we analyze numerical and experi-

mental measurements of high-amplitude noise propagation

in a plane wave tube-environment. From these numerical

and physical experiments, we find the ASF quantifies the

time-averaged effects of nonlinearity on a propagating

waveform.

II. ANALYTIC FORMS OF THE AVERAGE STEEPENING
FACTOR

Analytical expressions corresponding to limiting cases

of physical models often shed light on how a system will

behave in more general, complicated scenarios. For this

reason, we seek an analytical expression for the evolution of

the average steepening factor (ASF) of a waveform as it

propagates. As mentioned in Sec. I, the ASF is the inverse of

the wave steepening factor, or in mathematical form,

ASF ¼ 1

WSF
¼ E _pþ

� �
jE _p�½ �j : (2)

For a periodic signal the average negative slope is

E _p�½ � ¼ � P

Tneg

(3)

and the average positive slope is

E _pþ
� �

¼ P

Tpos

; (4)

where P is the pressure difference between the maxima and

minima within a period, Tneg is the duration of the negative

slope during a period, and Tpos is the duration of the positive

slope during a period. Since P cancels in the ratio of the ex-

pectation values, we find the ASF of a periodic signal

depends only upon the duration of positive and negative

slopes within a single period, and not the magnitude of the

pressure rise or fall. This means that even with the presence

of discontinuities in a waveform, which have infinite slope,

it is possible that the ASF will be finite. To aid the qualita-

tive understanding of the ASF, one period of an initially si-

nusoidal plane wave of frequency x at several values of r,

the distance from the source divided by the distance at which

the first shocks form, are displayed as a function of the re-

tarded time s in Fig. 1. The initial waveform has an ASF

value of exactly 1. By r ¼ 1=2, the ASF has nearly reached

2. At the shock formation distance, the ASF is only 4.5, de-

spite the presence of a shock at xs ¼ 0. Once all of the pres-

sure rise in a period is found inside the shock, at r ¼ p=2,

the ASF diverges.

The duration of positive and negative slopes, and there-

fore the ASF, may be found exactly for initially sinusoidal

plane waves propagating without linear absorption at any

distance from the source using the Earnshaw solution aug-

mented with weak-shock theory.33 In addition, the ASF for

an initially sinusoidal plane wave propagating with thermo-

viscous losses may be estimated for a portion of its propaga-

tion by considering the Khokhlov solution.33 These

analytical forms of the ASF of an initially sinusoidal plane

wave are presented below.

A. Earnshaw solution

The Earnshaw solution is an implicit solution to the

inviscid Burgers equation, which models plane wave propa-

gation of acoustic signals prior to shock formation. The

Earnshaw solution may be written as

p ¼ f /ð Þ;

/ ¼ sþ b

q0c3
0

xf /ð Þ;
(5)

where p is the acoustic pressure, f ðtÞ is the pressure function

at the source, / is the Earnshaw phase variable, s is the

retarded time, x is the distance from the source, c0 is the

small-signal sound speed, b is the coefficient of nonlinearity,

FIG. 1. A single period of an initially sinusoidal plane pressure wave at four

values of the dimensionless distance r (0, 1=2, 1, and p=2), along with their

respective values of the average steepening factor (ASF). The pressure p
normalized by the initial amplitude p0 is plotted as a function of the dimen-

sionless time xs, with x being the source frequency and s being the retarded

time. The circles denote the location of the maximum and minimum ampli-

tude in the period shown.
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and q0 is the ambient density.33 Equation (5) may be written

parametrically as

s; pð Þ ¼ /� b

q0c3
0

xf /ð Þ; f /ð Þ
 !

; (6)

which should be read as (retarded time of arrival, pressure

amplitude). The Earnshaw solution becomes multivalued at

a distance x ¼ �x � q0c3
0=bf ðsÞ, and beyond this point the

Earnshaw solution ceases to give physical predictions. After

�x, weak-shock theory may be used in tandem with the

Earnshaw solution to describe the propagation.

To find an analytical expression for the ASF using the

Earnshaw solution, we consider a periodic signal that con-

tains only one peak and one trough per period. The arrival

times of the peak and trough are denoted as smaxðxÞ and

sminðxÞ at a distance x from the source. Since the pressure

amplitude value in Eq. (6) does not change with distance,

then

smax xð Þ ¼ smax 0ð Þ � bf smax 0ð Þð Þ
q0c3

0

x;

smin xð Þ ¼ smin 0ð Þ � bf smin 0ð Þð Þ
q0c3

0

x: (7)

The duration of the positive slope within a single period is

then given as

sposðxÞ ¼ smaxðxÞ � sminðxÞ; (8)

where, without loss of generality, we have assumed that

smax > smin. If the period is T, then the duration of the negative

slope within a single period is simply snegðxÞ ¼ T � sposðxÞ.
For the initially sinusoidal case, f ðsÞ ¼ p0 sinðxsÞ,

smaxð0Þ ¼ p=2x, and sminð0Þ ¼ �p=2x for the period

s 2 ð�p=x; p=x�, which implies T ¼ 2p=x. This means

that

spos xð Þ ¼ p
x
� 2

bp0

q0c3
0

x (9)

and

sneg xð Þ ¼ 2p
x
� p

x
� 2

bp0

q0c3
0

x

 !
¼ p

x
þ 2

bp0

q0c3
0

x: (10)

Thus, the ASF is given as

ASF ¼ sneg xð Þ
spos xð Þ ¼

pþ 2r
p� 2r

; (11)

where r ¼ x=�x and �x ¼ q0c3
0=bp0x is the shock formation

distance for an initially sinusoidal signal. At r ¼ p=2 the

arrival times smax and smin are equal to each other for a given

period and the pressure rise is entirely represented as a shock

for the remainder of the propagation.34 The evolution of the

ASF according to the Earnshaw solution for all x � 0 may

be written as

ASF ¼
pþ 2r
p� 2r

; 0 < r <
p
2

1; r � p
2
;

8>><
>>: (12)

which is plotted in Fig. 2 as a function of r. For very small

values of r, the ASF � 1þ 4r=p, and for r! p=2, the

ASF � p=ðp� 2rÞ. There is no noticeable change in the

behavior of the ASF near r ¼ 1, the shock formation

distance, because the peaks and troughs are still separated by

a positive time determined by the Earnshaw solution despite

the presence of a shock in the waveform. At r ¼ p=2 the

Earnshaw solution predicts that the peaks and troughs arrive

at the same time, causing E½ _pþ� ! 1 and the ASF to

diverge. Similarly, for all r > p=2 the positive slopes are

represented by shocks, so the ASF remains infinite.

B. Khokhlov solution

Waves propagating through thermoviscous media can-

not generate true discontinuities, and therefore never have an

infinite ASF value. The evolution of arbitrary waveforms

propagating with thermoviscous absorption may be found

exactly using the Cole-Hopf transformation, which yields

the Mendousse solution in the case of an initially sinusoidal

signal.35 However, because the Mendousse solution is writ-

ten in the form of a ratio of infinite series it is difficult to

work with analytically, so several approximations have been

made to simplify it. One approximation that is particularly

useful in the present study is the Khokhlov solution.33 The

Khokhlov solution describes the evolution of an initially si-

nusoidal signal propagating from the location that weak

shocks form, r ¼ 3, to the distance where absorption again

dominates the propagation, r ¼ la, where la is a characteris-

tic absorption length.33 Usually, la ¼ 1=a, where a is the

absorption coefficient for the fundamental frequency.

The Khokhlov solution is given as

p sð Þ ¼ p0

1þ r
�xsþ ptanh

pC
2 1þ rð Þxs

� �� �
;

C > r > 3;

(13)

FIG. 2. Analytic expression for the average steepening factor (ASF) of an

initially sinusoidal plane wave from the Earnshaw solution as a function of

r, the distance from the source divided by the shock formation distance.
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where C ¼ la=�x is the Gol’dberg number. The Khokhlov

solution only models the period �p < xs < p.

Blackstock36 found the duration of the positive slope of

the Khokhlov solution to be

Dspos ¼
2p
x

2 1þ rð Þ
p2C

cosh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2C

2 1þ rð Þ

s
: (14)

The corresponding duration of the negative slope is the

period minus the duration of the positive slope, which is

Dsneg ¼
2p
x
� Dspos: (15)

Therefore, the analytical expression for the ASF of the

Khokhlov solution is

ASF ¼ p2C=2 1þ rð Þ
cosh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2C=2 1þ rð Þ

p � 1: (16)

(It may be useful to note that the ASF of the Khokhlov solu-

tion is approximately equal to the acoustics Reynolds num-

ber, which in this regime is the ratio of the period to the

shock width.14) For large values of C and for r close to 3,

Eq. (16) may be approximated as

ASF � 4 1þ rð Þ
p2C

1

ln 2
4 1þ rð Þ

p2C

� � : (17)

The ASF of the Khokhlov solution [see Eq. (16)] is shown in

Fig. 3 as a function of r for three Gol’dberg numbers. Since

the Khokhlov solution is only valid for 3 < r < C, the ASF

values shown are truncated accordingly. For large C the

waveform at r ¼ 3 is approximately a sawtooth wave, which

has an infinite ASF value. While the Khokhlov solution pre-

diction is only valid up to r ¼ C, it is expected that the ASF

would approach one as r!1, as thermoviscous absorption

would lead to further unsteepening of the waveform.

III. MEASUREMENT CONSIDERATIONS

The analytical expression for the ASF in the different

regimes provide the first step in quantifying the relationship

between the ASF and nonlinearity in measured signals. The

next step is to understand how the analytical expressions are

affected by measurement considerations such as finite sam-

pling rates and extraneous noise. Since real measurements

are acquired at a finite rate, rapid pressure changes may not

be adequately captured, and the resulting estimate of the

ASF of a measured waveform may not adequately represent

the true ASF. Another way the ASF of a measured waveform

may be misrepresented is by the presence of noise not asso-

ciated with the process of interest. For example, if one is

measuring the noise radiating from a source in a windy envi-

ronment, the wind noise would be considered measurement

noise. This measurement noise can change the mean positive

and negative slopes in a measured signal, and therefore sig-

nificantly alter the estimated ASF.

The effects of finite sampling rates for initially sinusoi-

dal signals propagating without linear losses and propagating

with thermoviscous losses are first considered. Then, a sim-

ple numerical study of the effects of measurement noise on

the estimate of the ASF of an initially sinusoidal signal is

presented.

A. Finite sampling rates

1. Earnshaw solution

In order to calculate an ASF estimate of a waveform, we

first find the regions of the waveform that are predicted to

have positive time-derivatives and the regions that are pre-

dicted to have negative time-derivatives. The boundaries

between the positive and negative slopes will have a slope

estimate of zero. For a sine wave, the time at which this

occurs, s0, is found by solving

Df

Ds
¼

f s0 þ Dsð Þ � f s0ð Þ
Ds

¼
sin x s0 þ Dsð Þð Þ � sin xs0ð Þ

Ds
¼ 0; (18)

where Ds is time between measurements. We may solve

Eq. (18) for s0 and obtain

s0 ¼
p
x

mþ 1

2
� 1

fr

� �
; (19)

where m ¼ 0;61;62;…, and even values of m represent

the transition from positive slope to negative slope estimates

and odd values of m represent the transition from negative

slope to positive slope estimates. The sample density, fr , is

the ratio of the sampling rate to the frequency of the initial

sinusoid. When fr is chosen to be an irrational number, over

a long measurement time every possible discretely sampled

slope will be represented. Therefore, due to the periodicity

of the waveform, the irrational fr, and the long measurement

time, averaging the slopes between s ¼ �p=2x� p=frx (s0

with m ¼ �1) and s ¼ p=2x� p=frx (s0 with m ¼ 0) yields

the average positive slope. Similarly, averaging the slopes

between s ¼ p=2x� p=frx (s0 with m ¼ 0) and s ¼ 3p=
2x� p=frx (s0 with m ¼ 1) will be the average negative

slope that would be estimated with the same assumptions.

FIG. 3. Average steepening factor (ASF) of the Khokhlov solution as a

function of r, distance from the source over shock formation distance, for

three values of Gol’dberg number.
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The method described for a sinusoidal wave may be

extended to the case of an initially sinusoidal plane wave

propagating according to the Earnshaw solution prior to

shock formation. Since the nonlinear distortion of a wave-

form prior to shock formation depends only upon amplitude,

the time delay between two points with the same amplitude

will remain the same. This means the nth time at which the

slope estimate will be zero, sn will follow the distortion

described by the Earnshaw solution, which is

sn rð Þ ¼ p
x

nþ 1

2
� 1

fr

� �
� r

x
cos

p
fr

� �
�1ð Þm: (20)

Assuming once again a long measurement time and an irra-

tional fr, we find the average positive slope estimate is

E
Dp

Ds

� �þ" #
¼ 1

s0 � s�1

ðs0

s�1

Dp

Ds
ds; (21)

where Dp=Ds is the forward-difference estimate of the pres-

sure derivative at a distance x from the source at the retarded

time s. Similarly, the long-time average negative slope esti-

mate is

E
Dp

Ds

� ��� �
¼ 1

s1 � s0

ðs1

s0

Dp

Ds
ds: (22)

Since the integral of Dp=Ds over an entire period is zero, the

integrals in Eq. (21) and (22) have the same magnitudes but

opposite signs. Thus, the ASF estimate of the discretely

sampled initially sinusoidal plane wave becomes

ASF ¼ pþ 2r cos p=frð Þ
p� 2r cos p=frð Þ ; 0 < r <

p
2
: (23)

The estimate of the ASF in Eq. (23) is plotted as a func-

tion of r in Fig. 4(a) for several values of fr (or sample-den-

sities). For comparison, the exact ASF values from the

Earnshaw solution assuming continuous sampling are also

plotted. The relative errors between the continuously

sampled ASF and the ASF estimates (1� ASFfr=ASFcont)

are plotted in Fig. 4(b). The error plot shows that, at least in

the pre-shock region, greater values of r generate greater

errors for a given sampling frequency. However, the errors

are quite small. As seen by the darkest curve in Fig. 4(b),

even fr ¼ 102 only has about 10% error at the shock forma-

tion distance. If we assume that less than 1% error is suffi-

cient precision, then it appears that fr > 103 is sufficient to

estimate the ASF for initially sinusoidal plane waves propa-

gating without linear losses prior to shock formation. Based

on the trends of the ASF estimate errors, it seems likely that

fr > 104 would be sufficient to estimate the ASF value for

all r. Another interesting feature of the plots of relative error

in Fig. 4(b) is the regularity of the decay with respect to fr.

Assuming that fr is large in Eq. (23) shows that the relative

error decays as fr
2.

It is important to notice that close to r ¼ p=2 the errors

in Fig. 4 become very large. This dramatic loss of accuracy

occurs as the total pressure rise time per period becomes

small relative to sampling period. This undersampling of the

pressure rise causes the estimate of the ASF to become sig-

nificantly lower than the true value.

2. Khokhlov solution

Assuming the value of fr, the sampling rate over the fre-

quency of the initially sinusoidal plane wave, is irrational

and the sample length is very long, the ASF of the discretely

sampled Khokhlov solution can be found by evaluating Eq.

(2) using Eqs. (21) and (22). The forward difference estimate

of the slope of the discretely sampled Khokhlov solution at

�p < s < p, which is needed to solve the integrals in Eqs.

(21) and (22), is

Dp

Ds
¼ p0 �xDsþ p tanh dx sþ Dsð Þð Þ � tanh dxsð Þ

	 
� �
Ds 1þ rð Þ ;

(24)

where

d ¼ pC
2 1þ rð Þ : (25)

The limits of integration may be found by setting Eq. (24)

equal to zero and solving for s. Calculating the maximum

and minimum s values and noticing that the integrals in

Eqs. (21) and (22) again have equal magnitude and opposite

parity, and the duration of the negative slope in a period is

2p=x minus the duration of the positive slope, so the ASF

may be written

ASF ¼ 2pd

tanh�1
ffiffiffi
B
p

=A
	 
� 1; (26)

where

fr ¼
2p

xDs
;

A ¼ fr � coth 2pd=frð Þ;
B ¼ 1þ fr

2 � 2frcoth 2pd=frð Þ: (27)

FIG. 4. (a) Average steepening factor (ASF) of an initial sinusoidal wave prop-

agating according to the Earnshaw solution assuming continuous sampling for

fr ¼ 102, fr ¼ 103, and fr ¼ 104. (b) Error of the ASF estimate using discrete

sampling relative to continuous sampling (1� ASFfr=ASFcont).
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The estimate of the ASF for the discretely sampled

Khokhlov solution is plotted as a function of r in Fig. 5(a)

for several values of fr (or sample-densities). For compari-

son, the exact ASF values assuming continuous sampling are

also plotted. The relative errors between the continuously

sampled ASF and the ASF estimates (1� ASFfr=ASFcont)

are plotted in Fig. 5(b). For the Gol’dberg number used for

Fig. 5 (C ¼ 1000), using fr ¼ 104 guarantees the ASF esti-

mate of the Khokhlov solution will have less than 1% error

for the entirety of the valid propagation range. The relative

error using fr ¼ 103 does not fall below 1% until about

r ¼ 14, and the relative error using fr ¼ 102 does not fall

below 1% until about r ¼ 196. As the old-age regime begins

at x ¼ la, which for C ¼ 1000 is r ¼ C ¼ 1000, fr ¼ 102,

103, and 104 yield decent estimates of the ASF (estimates

with relative errors less than 1%) well before this, where

shocks are likely to be significant. As with the relative error

of the initially sinusoidal plane wave propagating without

linear losses, the relative error of the initially sinusoidal

plane wave described by the Khokhlov solution also appears

to fall off regularly with increasing values of fr. Assuming fr
and C are large, the relative error of the ASF of the

Khokhlov solution also decays as fr
�2.

B. Measurement noise

Often a measured waveform contains evidence of

energy unassociated with the signal of interest or other fea-

tures due to the measurement process; this will be referred to

as measurement noise. It is desirable to know how measure-

ment noise affects the estimation of the ASF of a measured

waveform. The problem of finding the ASF of a signal

containing measurement noise depends upon the amplitude,

frequency content, and the statistics of the measurement

noise. In this section we provide general insights into how

the ASF depends on the amplitude and frequency of the mea-

surement noise.

Consider the simple case of a “noisy” measurement of

an initially sinusoidal wave propagating as a plane wave

without losses. For the sake of simplicity, we assume the

measurement noise is also sinusoidal but does not

necessarily have the same frequency and is uncorrelated

with the propagating signal. This situation could correspond

to a propagating signal of interest being modified by an

undesirable, strongly frequency dependent scattering pro-

cess. The ASF of this noisy signal may be estimated numeri-

cally for several relative measurement noise frequencies and

amplitudes. These estimated ASF values are plotted in Fig. 6

as a function of the ratio of the measurement noise frequency

to the fundamental signal frequency for several signal-to-

noise ratios (SNRs), at r ¼ 0:75 and at r ¼ 0:95. For both

propagation distances, the estimated ASF approaches the

pure signal value as the SNR becomes large and as the fre-

quency ratio becomes small.

The results shown in Fig. 6 may be qualitatively

described by considering limiting cases. Measurement noise

with very small relative frequencies may be considered a

hydrostatic pressure change relative to the signal. Since the

ASF is only a ratio of the slopes, the gradual change in over-

all pressure is insignificant relative to the signal, and so the

noiseless ASF is approached. On the other extreme, as the

measurement noise frequency becomes much greater than

the fundamental frequency of the signal, the oscillation of

the measurement noise dominates and the ASF estimate

approaches 1. It is interesting to note that, for a given SNR,

the relative frequency at which the ASF with measurement

noise deviates from the pure signal case is the same for dif-

ferent values of r. Additional comparisons at a variety of

propagation distances (not shown) show that this critical rel-

ative frequency is a function solely of the SNR.

FIG. 5. (a) Average steepening factor (ASF) of the Khokhlov solution with

a Gol’dberg number of 1000 assuming continuous sampling and assuming

fr ¼ 102, 103, and 104. (b) Error of the ASF estimate using discrete sampling

relative to continuous sampling (1� ASFfr=ASFcont).

FIG. 6. Average steepening factor (ASF) of an initially sinusoidal plane

wave propagating without losses to (a) r ¼ 0:75 and (b) r ¼ 0:95 (where r
is the distance over the shock formation distance) as a function of the fre-

quency of the added measurement noise (fn) over the fundamental frequency

of the signal (fs) for several signal to noise ratios (SNRs).
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IV. APPLICATIONS

While the analytical expressions of the ASF derived in

Secs. II and III are important benchmark cases, they are

somewhat limited in scope. For example, the evolution of the

ASF of an initially sinusoidally signal propagating with ther-

moviscous losses from the source to r ¼ 3 and the ASF of

initially Gaussian noise are not described. To gain insight into

how the ASF evolves for more general waveforms and sys-

tems, we turn to numerical and experimental techniques. The

following discussion covers a few examples and focuses on

comparing these more realistic cases with the analytical ones

and hence, better understanding of the behavior of the ASF.

A. Numerical simulations

This section first compares the ASF of initially sinusoi-

dal waveforms with different amplitudes propagated numeri-

cally37 with only thermoviscous absorption, with the

analytical predictions from Secs. II and III to provide a

benchmark for more complex cases. Then, the ASF of an ini-

tially sinusoidal waveform propagated with thermoviscous

absorption is compared with the ASF of the same waveform

propagated in a cylindrical duct environment. Finally, the

ASF of an initially sinusoidal signal and the ASF of an ini-

tially Gaussian, broadband signal, both propagated with only

thermoviscous absorption, will be compared.

The parameters for the numerical simulations are chosen

to represent realistic conditions. All of the initial waveforms

had a characteristic frequency of 1500 Hz and used a sam-

pling rate of 204.8 kHz, therefore giving a value of

fr ¼ 136:5. Each waveform used 218 samples, corresponding

to 1.28 s of data. The broadband signal was generated by tak-

ing spectrally white Gaussian noise and applying a fourth-

order Butterworth bandpass filter from 700 to 2300 Hz, with

the arithmetic mean being 1500 Hz. The absorption coeffi-

cient used to simulate propagation in a cylindrical duct was

derived using a cross-sectional radius of 2.54 cm (1.0 in) at a

temperature of 293.15 K, an ambient pressure of 0.85 atm,

and 20% relative humidity.38 These conditions were chosen

to be similar to the conditions of the experimental setup dis-

cussed below. The real part of the absorption coefficient in

the duct at 1500 Hz was chosen to be the 1500 Hz absorption

coefficient for the thermoviscous propagation cases. This

ensures the characteristic absorption will be the same for all

scenarios. A numerical, generalized, Burgers-type propaga-

tion scheme37 was used to predict the nonlinear waveform

evolution for one-dimensional propagation with either ther-

moviscous absorption or in a cylindrical duct environment.

The ASF of a given waveform was estimated by using a

forward difference numerical differentiation, calculating the

mean of the positive and negative derivative values, and

then taking the ratio of the average positive and negative

slopes.

The numerically predicted evolution of the ASF of ini-

tially sinusoidal plane waves with Gol’dberg numbers C ¼ 2

and 20, propagating with thermoviscous absorption is shown

in Fig. 7 along with the predicted ASF values from the

Earnshaw (lossless) and Khokhlov (C ¼ 20) solutions. The

variation in the Gol’dberg number comes from the initial

waveforms having differing amplitudes. In both cases, the

ASF approaches that found for the Earnshaw solution for

small r. As the distance from the source increases, the

numerically predicted ASFs depart from the Earnshaw

solution due to the presence of absorption. The ASF of the

C ¼ 2 wave departs from the lossless case more rapidly than

the C ¼ 20 wave because absorption is more dominant for

smaller Gol’dberg numbers. Since the Khokhlov solution is

only valid for 3 < r < C with very large C, it is not valid for

any part of the C ¼ 2 waveform, and it is not expected that

the C ¼ 20 waveform would have the same ASF as the

Khokhlov solution. This is demonstrated in Fig. 7. The great-

est difference between the ASF of the C ¼ 20 waveform and

the Khokhlov solution occurs at r ¼ 3. From the plots in

Fig. 7 and other comparisons, the largest ASF values for

initially sinusoidal signals with large Gol’dberg numbers

propagating with thermoviscous absorption occurs between

r ¼ p=2 and r ¼ 3. For smaller Gol’dberg numbers, the

maximum ASF value likely occurs closer to the source than

this range suggests.

The ASF for the C ¼ 20 waveform shown in Fig. 7 is

also shown in Fig. 8 along with the ASF for an initially

FIG. 7. Average steepening factor (ASF) of initially sinusoidal plane waves

with C ¼ 2 or 20, numerically propagated with thermoviscous absorption as

a function of distance over shock formation distance r. The analytical ASF

for the Earnshaw (Earn.) solution and for the Khokhlov (Khok.) solution

with C ¼ 20 are shown for reference.

FIG. 8. Average steepening factor (ASF) of an initially sinusoidal plane

wave numerically propagated with thermoviscous (TV) or tube-like (Tube)

absorption as a function of distance over shock formation distance r. The

thermoviscous case has a Gol’dberg number of C ¼ 20, while the tube-like

absorption has a Gol’dberg number of C ¼ 0:49, due to the increased

absorption.
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sinusoidal waveform propagating in a plane-wave tube envi-

ronment. The waveform propagating in the tube was chosen

to have the same amplitude as the C ¼ 20 waveform. Since

the absorption associated with boundary layer losses is much

higher at the fundamental frequency, the Gol’dberg number

associated with the waveform propagating with tube-like

absorption is only C ¼ 0:49. The greater importance of

absorption is apparent in Fig. 8 in that the greatest value of

the ASF for the waveform propagating with tube-like

absorption is 1.3, which is reached at r ¼ 0:6. Interestingly,

in the tube-like absorption case the ASF actually drops

below 1 for a little distance after the peak is reached. This

may be due to the strong dispersion associated with bound-

ary layer losses.39,40

We now consider the case of an initially broadband

Gaussian noise propagating with thermoviscous losses.

Before proceeding with the calculation of ASF, special care

must be taken to define what r means with respect to noise.

The dimensionless distance r for initially sinusoidal plane

waves is the distance from the source over the lossless shock

formation distance. Since the lossless shock formation dis-

tance is very case-sensitive for noise signals (it is actually

infinitesimally small for Gaussian white noise, given the fact

that the probability of increasingly steep slopes is never

identically zero), we use a characteristic shock formation

distance based off of the nonlinear distortion length defined

by Gurbatov and Rudenko,41

�xN ¼
q0c3

0

bx0

ffiffiffi
2
p

prms

	 
 ; (28)

where x0 is the characteristic frequency and prms is the root-

mean-square pressure. This deviates from the definition of

Gurbatov and Rudenko by a factor of
ffiffiffi
2
p

, so that as the

bandwidth of the noise goes to zero �xN ! �x. Thus, it is rea-

sonable to have r refer to x=�xN for initially random signals.

Furthermore, the Gol’dberg for random signals will be

defined in this paper as C ¼ ða�xNÞ�1
.

The ASF of an initially sinusoidal signal and the ASF

of an initially broadband, Gaussian noise signal, both with

C ¼ 20 and propagated using thermoviscous absorption, are

shown in Fig. 9. It is clear that the random signal does not

have ASF values as high as the initially sinusoidal signal and

that the peak ASF values come farther from the source for

noise than for initially sinusoidal signals (assuming the pres-

ent definition of �xN). On the other hand, it seems that for

large propagation distances, the ASF values for the noise

signal do not decay as quickly as for the sinusoidal case.

This suggests that, despite the presence of a small number

of very large peaks in the noise waveform, which will

quickly evolve into shocks, the ASF is dominated by the

much larger number of lower amplitude peaks, which

steepen more slowly. Therefore, the ASF may be more

accurately described as a measure of the average steepness

of a waveform.

B. Plane-wave tube experiment

A plane-wave tube was used to experimentally verify

some of the numerical results above. The tube was con-

structed of several 3.05 m long (10 ft), 2.54 cm (1 in) radius

PVC pipes connected end to end with PVC couplers. The

tube was driven at one end by a single BMS 4590 coaxial

compression driver and was terminated anechoically with

approximately a meter long piece of fiber-glass insulation at

the other end. Small holes for microphones were drilled in

the tube 0.4, 2.6, 5.6, 8.6, and 11.7 m from the driver. The

microphones were 3.18 mm (1/8 in) 40DD G.R.A.S. pressure

microphones, and they were mounted without grid caps in

the tube such that the diaphragms were flush with the inner

wall of the tube.

Portions of the waveforms measured for an initially

sinusoidal 1500 Hz signal are shown in Fig. 10, with the cor-

responding harmonics shown in Fig. 11. The amplitude of

the waveform measured 0.4 m from the driver is 547 Pa,

which corresponds to a lossless shock formation distance of

6.6 m and a Gol’dberg number of about 3.3. This means the

FIG. 9. Average steepening factor (ASF) of an initially sinusoidal signal

and the ASF of an initially Gaussian broadband noise numerically propa-

gated with thermoviscous absorption as a function of r.

FIG. 10. Portions of initially sinusoidal plane waves measured in a plane-

wave tube at five measurement locations, 0.4, 2.6, 5.6, 8.6, and 11.7 m from

the source.

J. Acoust. Soc. Am., Vol. 137, No. 2, February 2015 Muhlestein et al.: Average steepening factor evolution 647

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.187.202.92 On: Wed, 18 Feb 2015 20:30:35



last microphone is located at r ¼ 1:78. As is expected for a

plane wave with such amplitudes, the waveform demon-

strates significant steepening at each measurement location,

which is evidenced by the increase of harmonic energy with

distance close to the source. The effects of the plane-wave

tube absorption and dispersion are plainly evident in the

rounding of the shocks in the waveforms from the farther

microphones.39,40 It is also important to notice that there

appears to be some high-frequency measurement noise

(�12 kHz), i.e., ringing, in the waveforms measured at 8.6

and 11.7 m from the source. This ringing does not appear in

a numerical prediction of the 11.7 m waveform based on

the waveform measured 0.4 m from the source, shown in

Fig. 12. This noise may be due to high-frequency scattering

at the imperfect junctions between the pipe segments.

The ASF of each measured waveform shown in Fig. 10

is plotted in Fig. 13. For comparison, the waveform meas-

ured 0.4 m from the source was numerically propagated

from the source to r ¼ 2, and the ASF of the predicted

waveform was calculated. The input waveform was first

up-sampled by interpolation to 8 times the original sampling

rate to minimize errors in the numerical prediction of the

ASF associated with insufficient sampling rates. The numeri-

cally predicted ASF evolution, shown in Fig. 13, matches

the ASF values of the measured waveforms quite well for

the first three locations. However, the ASF values of the

waveforms measured at 8.6 and 11.7 m from the source are

significantly lower than the numerical predictions. In fact,

the 8.6 and 11.7 m ASF values are very similar to the 5.6 m

ASF value, which is somewhat surprising, given that the

8.6 and 11.7 m waveforms appear significantly steeper than

the 5.6 m waveform. A likely reason for the discrepancy

between the prediction and experiment is the increased prev-

alence of small-amplitude, high-frequency ringing in the

measured waveforms as shocks form. The small, positive

slopes of the ringing serve to reduce and eventually limit

the ASF value in this case. This example helps illustrate the

impact of measurement noise (in this case, high-frequency

ringing).

Gaussian-distributed, broadband (700–2300 Hz) noise

signals were also propagated in the plane-wave tube experi-

ment. The ASFs of noise signals measured in the plane wave

tube along with the ASFs of the waveforms predicted by

numerically propagating the waveform measured at the first

location to the subsequent measurement locations are shown

as a function of r in Fig. 14. Two experiments are shown:

FIG. 11. The first four harmonics of the waveforms shown in Fig. 10 as a

function of r, distance from source over shock formation distance.

FIG. 12. A portion of the waveform measured in a plane-wave tube 11.7 m

from the source with a portion of a waveform numerically propagated the

same distance.

FIG. 13. Average steepening factor (ASF) of an initially sinusoidal signal

measured at five normalized locations in a plane wave tube and the ASF pre-

dicted by numerically propagating the measured source signal as a function

of normalized location. At the source, the waveform has a Gol’dberg num-

ber of approximately C ¼ 3:3.

FIG. 14. Average steepening factor (ASF) of initially Gaussian noise meas-

ured at five normalized locations in a plane wave tube and the ASF predicted

by numerically propagating the measured source signal as a function of nor-

malized location. Two initial conditions are presented: C ¼ 3:2 (360 Pa) and

C ¼ 2:2 (262 Pa) at the first measurement location, 0.4 m from the source.
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one where the root-mean-square amplitude measured 0.4 m

from the driver is about 360 Pa (C ¼ 3:2), and one where the

root-mean-square amplitude at the same location is about

262 Pa (C ¼ 2:2). Similar to the numerical experiments

above, the ASF grows more slowly for noise signals

(C ¼ 3:2 case in Fig. 14) than for initially sinusoidal signals

(Fig. 13). The ASF values of the measured noise diverge

from the numerical prediction for the last two measurement

locations, as was the case with the initially sinusoidal signal,

but the difference between the prediction and measurement

for noise is significantly lower than for the sinusoidal case.

While there is still the ringing in the noise waveforms (not

shown), the broader spectrum and lower ASF values in gen-

eral may be contributing to the less severe discrepancy.

V. CONCLUSIONS

This paper has introduced the average steepening factor

(ASF) as a metric describing the average distortion that a

propagating wave undergoes due to nonlinearity. The ASF,

which is the inverse of the wave steepening factor defined by

Gallagher,29 has been shown to be a measure of the average

effect of nonlinearity on the propagation of initially sinusoi-

dal plane waves and initially broadband Gaussian noise.

Analytical expressions of the ASF for the Earnshaw and

Khokhlov solutions of the generalized Burgers equation,

provide benchmarks that have been used to guide the inter-

pretation of the values of the ASF obtained in numerical and

experimental cases. It was shown that reductions in finite

sampling rate do not significantly impact the estimation of

ASF as long as the ratio of the sampling frequency to the

characteristic frequency is at least 102 for waveforms

without near-discontinuities. However, the ASF appears to

be quite sensitive to extraneous measurement noise.

Comparisons of the evolution of the ASF between initially

sinusoidal signals and broadband Gaussian noise signals

were made both numerically and experimentally. In both

cases, the ASF grows more slowly for the noise than the

initially sinusoidal case. The analytical, numerical, and

experimental calculations in this study have increased the

understanding of the behavior of the ASF as a metric for

quantifying the average steepness of a waveform.
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