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The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. In
the interaction of a collisionless plasma with two electromagnetic waves, both with frequencies well above the
plasma frequency, energy is transferred from the high-frequency wave to the low-frequency wave via
stimulated Thomson scattering. This process is mediated by the nonlinear interaction of the plasma electrons
with a beat wave at the difference frequency between the two waves; this beat frequency must be well above
the plasma frequency. The gain coefficient for stimulated Thomson scattering is calculated both quantum
mechanically and classically, and identical results are obtained. The classical calculation also yields the first
nonlinear term in the index of refraction due to stimulated Thomson scattering, as well as the details of the
saturation of the gain and the index of refraction. The authors present explicit formulas for the gain
coefficient and the index of refraction, in the unsaturated limit, for both very cold and very hot plasmas.
The calculations indicate that it should be possible to detect stimulated Thomson scattering experimentally
by means of polarization enhancement. In an appendix, the theory of stimulated Thomson scattering is used
to treat the free-electron amplifier.

I. INTRODUCTION

This paper discusses the theory of stimulated
Thomson scattering. We show that when a colli-
sionless plasma is illuminated by two oppositely
directed electromagnetic waves of different fre-
quencies, energy is transferred from the high-
frequency pump wave to the low-frequency probe
wave via stimulated Thomson scattering. The
small signal gain of the plasma due to stimulated
Thomson scattering is calculated both quantum
mechanically and classically; the results are id-
entical.

The classical calculation is very fruitful, yield-
ing not only the gain but also the first nonlinear
correction to the index of refraction. Further-
more, these quantities are calculated in both the
saturated and unsaturated limits. Explicit expres-
sions for the unsaturated gain are given in two
limits; (i} the homogeneously broadened limit,
where the electron gas is very cold, so that the
spectral width of the radiation from spontaneous
Thomson scattering is determined by interruption
of the phase of the high frequency pump wave, and
(ii} the inhomogeneously broadened limit, where
the electron gas is very'hot, so that the spectral
width of the radiation from spontaneous Thomson
scattering is determined by Doppler broadening.
When saturation is important, the gain is calcula-
ted numerically; the results of these calculations
are given for the same two limits. The calculation
of the index of refraction is given in the same
limits, both for the saturated and unsaturated
cases. The gain and the nonlinear index of re-
fraction due to stimulated Thomson scattering
are shown to be large enough that they can be mea-

sured experimentally using polarization enhance-
ment of the sensitivity as introduced by Wieman
and HNnsch. ' From such an experiment, both the
electron density and the electron temperature of
the plasma can be determined.

Finally, it is shown in Appendix A that if the
unsaturated homogenously broadened gain formula
is transformed to a frame in which the electrons
are highly relativistic, the gain of the free-elec-
tron amplifier is obtained.

II. QUANTUM-MECHANICAL THEORY OF STIMULATED
THOMSON SCATTERING

Here we present the quantum-mechanical theory
of stimulated Thomson scattering following the
approach of Madey. ' Consider two oppositely di-
rected electromagnetic waves, of frequencies ~p
and +, incident on a plasma of electron density
n, . The probe wave, at freq uency e, is to stimulate
Thomson scattering of the pump wave, at frequen-
cy vp. The total rate of Thomson scattering of
photons into a mode, including both spontaneous
and stimulated photons, is y(n+ 1}, where y is the
rate of spontaneous Thomson scattering into the
mode, and g is the number of photons in the mode.
The net gain coefficient for stimulated scattering
into the mode is y/c minus the total loss rate from
the mode divided by c, where c is the speed of
light. The primary loss mechanism is the in-
verse process, in which the wave at frequency ~p
stimulates Thomson scattering of the wave at fre-
quency ~. We ignore other loss mechanisms.

We take the pump wave, of intensity Ip to be
polarized such that the polarization of the Thomson
backscattered radiation matches the polarization
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where 1/h&v, is replaced by g, the normalized
line shape centered about the recoil shifted fre-
quency. The net gain coefficient, including loss
from the inverse process, is given by

(2)
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In the homogeneously broadened limit, where the
electron gas is very cold and the spectral broaden-
ing of the Thomson scattering is the result of the
phase of the pump wave being interrupted after a
time 7, the normalized line shape is given by

and the net gain is

8m2v2n r2I, d sin2g

mvp dq Q 7) (~ ~p)p/

(4).

In an inhomogeneously broadened system, where
the spectral broadening of the Thomson scattering
is the result of Doppler shifts from the distribution
of velocities in the electron gas, and where f(v,)
is a normalized distribution function for electron
velocities parallel to the light beam, the net gain
is given by

of the probe wave. The spontaneous rate per unit
volume and per unit solid angle at which photons
are Thomson backscattered from the pump wave
is given by the equation

8 = (n,r,'I,) /(h(u, ),
where r, is the classical electron radius. In Eq.
(1) we have made use of the fact that the differen-
tial Thomson scattering cross section in the back-
ward direction is r,'. The polarized photons are
scattered into (~026m&, )/(2wc)' modes per unit volume
and per unit solid angle, where 6(dp is the band-
width of the scattered radiation. Thus, for light
of proper polarization,

y (2 wc}'R
C C(d pA QPp

2
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where

y = (mc'/8k~T)'"[((uo —(u)/(uo],

(8)

T is the temperature of the electron gas, and k~
is Boltzmann's constant. Dreicer has discussed
stimulated Thomson scattering. ' His results can
be used to derive Eq. (8) except for a difference
of a factor of 2p.

The gain mechanism of the free-electron ampli-
fier is essentially stimulated Thomson scattering. 4

In the free-electron amplifier, a relativistic elec-
tron beam, is incident on a spatially periodic
circularly polarized magnetic field. When trans-
formed to a frame of reference moving with the
electrons, the spatially periodic magnetic field
appears as a plane electromagnetic wave; it plays
the role of the pump wave. In Appendix A, we

show that Eq. (5), when transformed to the highly
relativistic e(ectron frame, is the same as the gain
formula for the free electron amplifier calculated
by others. ' '

Since Planck's constant does not appear in the
gain coefficient of the free-electron laser, a
classical approach might be expected to give the
same result. This was first suggested by Madey
et aL' Since that suggestion, many papers have
appeared exploring the classical interpretation of
both the free-electron laser and stimulated Thom-
son scattering. ' "" In Sec. III, we present a
classical calculation of the gain and dispersion of
a plasma in the presence of two counterpropagating
electromagnetic waves. The gain formula obtained
agrees, in the unsaturated limit, with that obtained
in this section. In addition, the classical calcula-
tion points up the transient nature of stimulated
Thomson scattering, and yields the saturation of
the effect due to nonlinear Landau damping.

III. CLASSICAL THEORY OF STIMULATED THOMSON
SCATTERING

A. Gain and dispersion in the plasma

In the limit that inhomogeneous broadening domin-
ates over homogeneous broadening, the net gain
at, or near, the line center is given by

8w'n, c'r', I, df(v, )
yn 3~+P d~g v =(Cup-(u)Cj'2(uP

For a Maxwell-Boltzmann distribution function,
the net gain is given by

32w nereIO d 2coovz~~ f( ) d
m(d d(d C j
&6sr'n, r', I,c 2(u, v, )~ df(v, )

%24)p c j dv,

(6}

Here we introduce sufficient formalism to de-
termine the gain and dispersion of a plasma, due

to stimulated Thomson scattering, in terms of the
motion of the electrons in the plasma. As in Sec.
II, we are interested in studying two oppositely
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directed electromagnetic waves, of angular fre-
quencies co and ~„propagating in a plasma. It is
convenient to work in the Coulomb gauge, where
V ~ A =0, so that the vector potential satisfies the
inhomogeneous wave equation

1 O'A 4m- 1- 84v'A- —
»

=-—J+—vc' 8t' c c 8t ' (10)

where J is the current. density and where C is the
scalar potential. The current density is given by

J e cPp IPVO v™ro„vp

x 5[r —r (r„v„t)]F(ro, v, ) .
The primed coordinates r and v' represent the in-
stantaneous position and velocity at time t of an
electron that at time t =0 was at position r, with
velocity v, . The electron distribution at time t =0
is F(r„v,), normalized so that its integral over
all velocities and over the plasma volume gives
the number of electrons in the plasma. In order
to study the two oppositely directed waves, we
seek a solution to Eq. (10) of the form

Xr =Ao yg =[(Eoc/QJO)e o sin(koz —(dot)

+ (Ec/&u) e "' sin(kz+ &et —)t))]x,

(12)

where the absorption coefficient for the pump
wave no, and the gain coefficient for the probe
wave n, are both expected to be extremely small
compared to either k, or k. %e take the plasma
to be optically thin so that a, l and o. l are both
much less than one; l is the length of the plasma
in the z direction. Note that n&0 corresponds to
gain for a wave propagating in the negative z di-
rection.

To determine a, we substitute Eq. (12) into
Eq. (10), multiply by cos(kz+ &ot —Q), and integrate
over the plasma volume V, and the coherence
time 7, to obtain

8g(d
c) =—, dt dr cos(kz +&et —)t))x Jc'M V7

CF.' 1 1
dr

8~ V, dtE ~ J (14)

where -E = E-e 'I'cos(kz+~t —)t))x and e 'I'= 1.
The left-hand side of Eq. (14) is the product of
-cv and the intensity I of the probe wave. The
right-hand side of Eq. (14) is the average of E ~ J
for the probe wave. Hence, Eq. (14) can be written
in the form

8pn' =- — -—1+- dt dr sin(kz +~t —)t))x JVzeE

~ ] 8me
dr, dv, dt sin(kz +(ot —)t))

V7 (oE

x v„'F(r„v,}. (16)

Since z and n' depend on the value of z and v„
along the particle orbits, useful expressions for
e and &' can be obtained only if the details of the
electron motion are known. This is the subject of
Sec. IIIB.

Henceforth, we droP the Prime notation, but we
remind the reader tkat these integrals are evalua-
ted along particle omits.

B. Particle orbits

Here we calculate the orbits of plasma electrons
under the influence of the two electromagnetic
waves. It is assumed that the gain and absorption
coefficients n and n, are so small that the wave
fields may be taken to be constant over the plasma
volume. The scalar potential 4 is neglected in
solving for the particle orbits; the criteria for
the validity of this procedure are discussed in
Sec. III F.

The Lagrangian for an electron with these ap-,

proximations is

dI 1 7—= -c)1= d—r — dt E J
~
.dzVr so

In a similar manner we obtain an expression for
the nonlinear index of refraction n

(13)

8we 7"

dr, dv, dt cos(kz +&et —@)VT Ec

x v„'F(r„v,).

L=-',mv' —(e/c)v A =-',m(v'„+v', +v', )

—(e/c) [(E,c/(o, ) sin(k, z —(u, t)

+ (Ec/)d) sin(kz +u&t - )t))]v„. (17)

In obtaining this expression we have assumed that
w» 2v/&o or 2v/&u„e"' '= 1, and ck/)d= 1, and we
have used Eq. (11) for J. In addition we have ig-
nored surface contributions to the integral, and
we have taken the plasma to be homogeneous in the
x direction, so that x. V(s)t)/st) = 0.

Equation (13) can be given a simple physical in-
terpretation by writing it in the form and

8I e. Eoc
P =—=mv —— o sin(k z —&u t)8v c Goo

+C+ —Bin()z + +i —) )) (16)

Since x and y are ignorable coordinates, there are
two constants of the motion
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Lagrange's equation for z yields

EpCkp Eck
mv, +— ' ' cos(k,z- &u,t)+ cos(kz+&ut- P) v„=0.

C (dp GO

Combining Eqs. (18) and (20), and setting ck, /&uo = 1 and ck/&u = 1 yields

(19)

(20)

mv, = (ep-„/mc)[E, cos(k,z —u&, t) +E cos(kz + ~t —P)]
—(e'/mc)[(EQ/2Iu, ) sin (2k,z —2&v, t) + (E'/2&v) sin(2kz +2u&t —2 p)

+ (EOE/~) cos(k z —&o,t) sin(kz + &ut —P) + (E E/&u, ) sin(k z —e,t) cos(kz + a&t —p) ] . (21)

The first four terms on the right-hand side of
Eq. (21) represent forces that oscillate at optical
frequencies. Assuming electron temperatures of
a few kilovolts, or less, and laser intensities of
about 10"W/cm', we find that these terms con-
tribute z displacements far less than the wavelength
of either electromagnetic wave. The first four
terms are therefore neglected. The last two terms
on the right-hand side of Eq. (21) are combined to
yield a low-frequency equation of motion

well above v, are not trapped; the potential only
causes a slight ripple in their 2 velocities.

It is convenient to make the change of variable

$ =(k, +k)Z =(k, +k)z —6&et- P, (25)

d'$
dtz, =-0'sin), (26}

so that Eq. (24) becomes the simple pendulum equa-
tion

d'z e'E EO

sin[�(ko

+k)z —Rd t —Q],d m'c&u
(22} 0' =(k, + k)e'E, E/m'c2= 2E,Ee'lm'c'.

z = z —[5&@/(ko + k)]t —P/(k, +k) .
In the z coordinate system, Eq. (22) becomes

d'z e'E,E
sin(k, +k)z.

dg' m'ceo

(23)

(24)

Equation (24) shows that in this frame the particles
move in a time-independent potential. Particles
with small 2 velocities are trapped in the minima
of this potential and execute harmonic motion.
Particles with z velocities on the order of v,
=[ e4' ,EE/m&oc(k, +k)]'I' are "barely trapped" in
the potential minima and tend to "stick" near the
peaks of the potential. Particles with z velocities

where &u = 2(&u, + ~) and 6' = ru, —&u. This accelera-
tion is a ponderomotive for ce produced by the
beating of the two electromagnetic waves. It is
the classical recoil force that causes stimulated
Thomson scattering. The oscillation of a particle
produced by the electric field of one wave com-
bines with the magnetic field of the other wave to
produce an acceleration in the z direction. This
low frequency acceleration can contribute displace-
ments comparable to the wavelengths of the two
electromagnetic waves for Ro ~ 10 'oo.

The physical significance of Eq. (22) can be seen
by making a Galilean transformation to a frame of
reference where the two waves are Doppler shifted
so that they have the same frequency:

and

(28)

Note that e' is a constant of the motion, analogous
to the energy of a pendulum. The two types of
solutions of Eq. (26) are now described.

1. Swinging soludons

These solations are characterized by the condi-
tion 0 (p (1, and satisfy the equation

sin(-,'$) =(e/2g) sn[Q(t —t,) ~p].

From Eq. (29) it follows that

( = e en[A(t —to) Iit'1.

(29)

(30)

The swinging, "sticking, " and rotating solutions
of the simple pendulum equation correspond, re-
spectively, to trapped, "barely trapped, " and un-
trapped particles in the reference frame described
by Eq. (23). An analysis of the free-electron laser
in terms of a pendulum equation has been given
by Colson. ' The solutions of the simple pendulum
equation are given in ter ms of Jacobian elliptic
functions. We use Milne-Thomson's notation for
these functions. " To describe the solutions, we
define two quantities e and Pby the equations

e' = $'+40'sin'(2$}
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The constants e and fp are determined by the ini-
tial values of $ and $ as follows:

sin( —,'&,) =sin{—,'[$(t =0)]] =(c/20) sn(-Qt, P),

~=(k, +k)z-5"t-y, ~, =(k, +k)z, y, and j,
=(k, +k)v„—5&v. We use Eq. (26} to perform the
time integration, and we note that the integrand is
periodic in $0. Ignoring end effects, we obtain

0

&. = &(t =0) =«n(-«.
l p).

(31)

(32)

2. Rotating solutions

These solutions are characterized by the condi-
tion p ~ 1 and satisfy

sin(-,']) =sn(-,'[e(t- t,)] ~ p ') (33)

]=~dnf-.'[~(t-t, )]~P '].
The constants e and tp are determined by

»n(zoo) =su[- z(~to) I p ']

5. =«n[-l(~t )Ip '].

(34)

(35)

Note that since dn(x~ p ) is always positive, Eq.
(36) requires that e have the same sign as $,.

The integrals on the right-hand side of Eqs. (13)
and (16) can now be evaluated by using v„obtained
from Eq. (18) and the simple pendulum solutions
for the z motion.

C. Gain coefficient in the homogeneous limit

Here we evaluate the classical expression for
the gain of a plasma due to stimulated Thomson
scattering [Eq. (13)] and obtain a simple formula
for it in the homogeneously broadened limit. The
distribution function P(r„v,) is assumed to be
spatially homogeneous and factorable in velocity
space, making it useful to define a reduced dis-
tribution function by

(37)

4ge'Pg, Ep

8 Emc(dp

Oo '/2 T

dv» dz, dt sin[(k, +k)z —5"t—P]
-'l /2 o

1
00

f(v~) =— dv„, dv»E(r„v, ),
88 00 «a 00

where f dv» f(v„) =1and where n, is the electron
density. The expression for v„obtained from Eq.
(18) is substituted into Eq. (13). In the resulting
expression, all terms with frequencies on the
order of G or 2G nearly time average to zero;
they are neglected. If a cylindrical plasma volume
of area 4 in the x-y plane and length / in the z di-
rection is used, Eq. (13) becomes

(k+kj (39)

This is the general expression for the gain coef-
ficient. A similar calculation yields n p. The
relationship between n and a.p is discussed in
Appendix B.

In the homogeneously broadened limit, Doppler
broadening is unimportant; this limit is obtained
by setting

f(($, +5u&)/(k, +k)) =(k, +k)5((, +5~). (40)

Using this distribution function, Eq. (39) becomes

n =(8m'r', n,r'I, /-(u, )J, (41)

where

Io = cE0/8m

and

(42)

4 'll

«.[i() 6 ].
mQ v' (43)

The expansion of the integrand of Eq. (44) is tedi-
ous, but straightforward; with the help of Ref. 17
we obtain

d sin 'gZ(5"', 0') =—
0 0 Q ——6 Q)T/2

(45)

As stated, the expansion for J in Eq. (43) is valid
when p«1 and when Qz ~1. This implies that
q»Qv. Equation (45) is also valid for values of
g ~Qz with the added restriction that Q7. «1. This
follows from an expansion of the integrand of Eq.
(43) in powers of Qq. with 5&v ~20. Hence, in the
unsaturated limit (Qw «1) the homogeneously
broadened gain coefficient is given by

It can be shown that J is a function only of 5(d7. and
Qz. For general values of 5~v and Q7. , J is diffi-
cult to evaluate analytically. In the limit that P
=(20/6&v)'« I and Qg ~1, however, it is possible
to obtain an approximate expression for J by ex-
panding the integrand of Eq. (43) in powers of P.
Note that in this limit, only rotating solutions are
used, so the Eq. (43) canbe written

J'=, , d$, edn ' — +6+ . (44}
4 '

. &(t-t} 2Q"

x/(v„}. (38)

We now change variables from z, zp, and v,p to
Spy /gal Ip d si

mh) de 7l ) l g= - 6~T/2
(46)
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in exact agreement with the quantum-mechanical
expression, Eq. (5).

When Qy is no longer small, the gain saturates.
The gain saturates because of the phase mixing of
the trapped and nearly trapped electrons as in
nonlinear Landau damping of plasma waves. To
calculate the saturation behavior, the integral in
Eq. (43) is performed numerically, using Eqs. (27}
through (36). The homogeneously broadened gain
saturates more easily near g=O than in the wings
of the line shape. Figure 1 shows J(Rue, Ql ) as a
function of 5~v for selected values of Qv. Figure
2 shows J(5&el, Qr) as a function of Q~ for selected
values of 5+7.

D. Index of refraction in the homogeneously broadened limit

Here we calculate the index of refraction of the
plasma, using the same assumptions about the dis-
tribution function and the plasma volume as in
Sec. IIIC. The expression for v„obtained from
Eq. (18) is substituted into Eq. (16). In the result-
ing expression, the high-frequency terms are
time averaged, and the variables g, g„and v p

are changed to g, g„and g, to obtain

kcl( )t
(d )( 2e n E

&o & ( &o i rnl&aroE(k, +k)
OO

x d o d, dtcos ', 47

the general expression for the index of refraction.
In the homogeneously broadened limit, Eq. (40}

is used to obtain

limit that p&1, we obtain

1-2 2 f t-to 20
2 e j (50)

In the limit p«1 and when Ql. s 1, a first-order
expansion in P yields

d t'1 sin2g)K(hei, Ql ) =—
)
——

dn&n 2lI') n= ~ ga
(51)

for q»Q7. This expression is also valid for
g ~Qz if Qz«1. Hence, in the unsaturated limit
(Ql «1) we obtain

~(u l,' 8m'n, r',c7'I,
(d J tB(d(do

d 1 sln2lI )
dq q 2q' ) „g~,(2 (52}

0 7 I I I I I

0.6
0.5
0.4
0.5

K

where the third term on the right-hand side may
also be obtained by applying the Kramer-Kronig
relations, with respect to 6~, to the gain formula
(46).

If Qw is no longer small, the index of refraction

where

Bm'n, r', cr'I,
CO ) (do(OS2

(48)
O. I

-O.l

-0.2

K= 2 3 dt d ocos (49) 0 I 2 3 4 5 6 7 8 9 IO II I2

8~ 7;

Like the function J defined in Sec. IIIC, K can be
shown to be only a function of Roe. and Qv. In the

FIG. 3. K as a function of 6~v for selected values of
Qy.
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must be calculated numerically. Figure 3 shows
K(6+r, Qr) as a function of 6vw for selected values
of Qr. Figure 4 shows K(6+r, Qr) as a function of
Qv. for selected values of 5~. Note that like the
homogeneous gain, the homogeneous dispersion
saturates more easily near g =0 than in the wings
of the line shape.

tion function f(v,) .In this limit, the slope of the
electron distribution function is nearly constant
over the width of the homogeneous gain curve.
Setting

((ko+k) (ko+k) ((ko+k)]

in the integrand of Eq. (55) and using the result
that f sin'X/X' = w yields for the inhomogeneously
broadened gain in the unsaturated limit

32w'r', ng, df
m(do(ko+k) dvg „-(~ ~) 12~

8w'r', c'ngo df
3

m(do dies „,=(~ -~) /3

in agreement with the quantum-mechanical result,
Eq. (7).

If the gain is allowed to saturate, then the homo-
geneous gain curve is no longer given by Eq. (45).
The saturated homogeneous gain curve is flattened
near the center, but is still an odd function of 5~y
as shown in Fig. 2. We define a function M(X, Qr)
by

E. Gain and the index of refraction in the

inhomogeneously broadened limit M(X, Qr) =Jt J(-2A. ', Qw)dk, (58)

(53)

can be combined to yield the equation

a dr'.n.&'r,
m(00(ko+ k)

x dof I J((6(g-o)r, Qr) .o

~ OQ 40+k j (54)

In the unsaturated limit, Eq. (45) gives the ex-
pression for J(6&or, Qr); substituting it into Eq.
(6V) and integrating by parts yields

32w'r,'ng,
m(o, (k, + k)'

Ro 2A. sin2A.

k, +k (k, +k)r

where A= —,'(o —Rr)r In the inhom. ogeneous limit,
the width, in A., of the distribution function is much
larger than the width of the homogeneous gain
curve. This limit is described by the condition

%'hen the electrons in a plasma have a distribu-
tion of velocities, the gain can be obtained as a
simple convolution of the homogeneous gain formu-
la with the electron distribution function. Equa-
tions (39)-(41), and the expression for the distri-
bution function

df
ting

=((do- Q))C/2 QPO-

(60)

ff '

50-
~ ~

(
~ ~ ~

2.0-

and integrate Eq. (54) by parts to obtain an equa-
tion for the saturated inhomogeneous gain coef-
ficient

32 w'r', ng,
mz, (k, +k)'

x deaf'i „+„„i M(X, Q7). (59)
, ( gm 2X

~k, +k ,k+kr/

If the distribution function is much wider than M,
Eq. (59) may be written

32''r n I
mu&, (k, +k)'

v,/c» (u&r) (56)
0 I.O 2,0 5.0 4.0

where v, is the width, in velocity, of the distribu- FIG. 5. b, as a function of 07.
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wher'e

e(()x}=f I( X, Rx}C e f=XA-2X;(}x)ae.

where y is given by Eq. (9) and where

Z'(y) =—Re(. p f dx ) (67)

x f( „)rC((e )te Re}x(-xet' g
I, ko+k

(62)

In the unsaturated limit, Eq. (51) is used to obtain

~&a

' 32m'r', cn,rI, d
(o (u(d,m(k, +k) d(5(d)

k, +k ((o —5&@)7.
x dgf

sin(o —5(u)7
l~

(v-5(d)'v' j (63)

In the inhomogeneous limit, the distribution func-
tion is nearly constant, in 0, over the center of
the integral of the homogeneous dispersion curve.
Since this curve is odd, the center of the integral
of the homogeneous dispersion curve makes only
a small contribution to the index of refraction.
There is, however, a significant contribution from
the wings of the integral of the homogeneous dis-
persion curve; in fact, since the integral of
1/(o —5(d)~ diverges, it samples the entire width
of the distribution function. It is convenient to re-
place the fairly complicated integral of the homo-
geneous dispersion curve by a simpler function that
also contributes nothing for 0 near 5(d, and that
has the same behavior for ~v~» 5((}. Such a function
is P[1/(&r —5(())7.j, where P stands for principal
value. ln this approximation, Eq. (63) becomes

~(o 't' 32m'r', cnp,
(d~,m(k, + k)

„)( & "& f( l(k, + ))e)(
((d(5(d) o —5&@

(64)

If the distribution function is Maxwellian, we have

(65)

and Eq. (64) becomes

K J kgT0
(66)

(61)

The quantity 6(Q7) is shown in Fig. 5.
The index, of refraction can also be expressed,

in the inhomogeneously broadened limit, as a
convolution of the homogeneous expression with
the distribution function. Using Eqs. (4V) and (48)
we obtain

~((} 8}fr,cn,r I
(() (()(d(}Sf(k()+k)

is the derivative of the real part of the plasma dis-
persion function for a real argument. "

If the index of refraction is allowed to saturate,
then K(5&ug, Qc) changes near 5(d =0, but remains
nearly the same as in the unsaturated limit for
Ru» 1/v; since nearly all of the contribution to
the inhomogeneous dispersion comes from the
wings of the integral of the homogeneous disper-
sion curve, the inhomogeneous index of refraction
essentially does not saturate.

It is interesting to note that the way the folding
together of the distribution function with the homo-
geneously broadened line shape, (d/dq)(sin'q jq'),
gives rise to the first derivative of the distribution
function in the inhomogeneously broadened limit
[Eq. (5V)] is completely analogous to the way the
first derivative of the distribution function appears
in the Landau-damping formula. In the physical
derivation of Landau damping by Dawson, " the
same function (d/dx)(sin'x/x') appears in exactly
the same way. Indeed, the unsaturated gain due
to stimulated Thomson scattering arises from a
process analogous to linear Landau damping,
while the saturation mechanism discussed in Sec.
IGC-IGE is analogous to nonlinear Landau damp-
ing.

F. Effect of. finite electron density on stimulated
Thomson scattering

The discussion of stimulated Thomson scattering
in Secs. IGA-GIE applies when the electron den-
sity is very low. In those calculations the gain and
index of refraction are obtained by adding up the
contributions to the current from each electron in
the plasma, assuming that the electrons are inde-
pendent, i.e., the motion of the electrons is cal-
culated ignoring the electrostatic fields produced
by the changing positions of the electrons. In this
section we discuss the gain due to stimulated
Thomson scattering from a cold plasma (the homo-
geneously broadened limit) with a finite plasma
density.

The gain is obtained using a perturbation expan-
sion of the fluid equations for the plasma. electrons.
The electrons are neutralized by a background of
ions whose motion is neglected. We assume that
at time t =0, two counterpropagating electromag-
netic waves are suddenly present in a cold, sta-
tionary, neutralized electron fluid. A perturba-
tion expansion of the fluid quantities is carried
out as follows:
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.n =n, +6n(z, t),
v =v, + 6v(z, t)z,

where 6v«v„
E = [E,e 0"cos(k,z —~,t)

-Ee ""' cos(k z +or t- y)]x

+6Z(z, t)2,

where 6E«E, E, and

(68}

(69)

(70)

the probe wave at frequency ~, and a plasma wave
at frequency co~. When 5 co» ~~ the interaction is
far off resonance; in this limit the three-wave pro-
cess gives the same gain as stimulated Thomson
scattering. When 5v =+~ the interaction is on
resonance, and the plasma wave grows as a result
of a three-wave parametric instability driven by
the ponderomotive force of Eq. (22). When 6~ =&a~

stimulated Raman scattering occurs; the gain co-
efficient obtained from Eq. (78) is

B =[E,e "0'~' cos(k,z —ur, t)

+Ee ""'cos(kz+~t —(t))]g. (71}

8m'r,'n, v I, sin'vp-
(80)

The velocity v, represents the response of the
fluid to the electric fields of the two counterpro-
pagating waves, and Oyer, 5v, and 5F. describe the
effects of the nonlinear ponderomotive force dis-
cussed in Sec. IIIB [see Eq. (22)]. The fluid equa-
tions are linearized to obtain

85v e - e
v, x B-—5EI. ,8t mc ' m

v, =(e/mc)X,

(72)

(73)

= -4me6n,
88

(74)

86n 86v

subject to the initial conditions

6n I, , =O, 6v I, , =0, 6Z I, ,=0.

(75)

('76}

Note that we have assumed that the plasma oscil-
lations coritained in these equations are undamped.
A discussion of the effects of damping is found in
Ref. 20. From these equations, the perturbed
transverse current 6J = -e5Qvy is obtained and
substituted into Maxwell's equations yielding

1 8K 4me
V x B —— = — (n, + + 6n)v, .

C 8t C
(77)

where

87P'Y K~7' Io
Sl (do ~ fdV/2

(78)

I sin'(q+-', e,v) s)n'(q —ga,v))
(()(,T (YJ + z(d& r) (T'/ —q&d&t)

(79}

As arp. approaches zero, P approaches (d/dq)
x(sin')7/q') in agreement with the results obtained
in Secs. II and III C.

The fluid calculation describes the interaction
of three waves, the pump wave at frequency co„

As in Sec. IIIC, the gain coefficient is obtained by
averaging Eq. (77) over space and fast time scales.
The result of this calculation is

Three-wave parametric instabilities have been ex-
tensively studied, ""especially by Cohen et al. ,

""
and are reviewed in Ref. 25. Our results look
different from those usually obtained because we
have solved the initial value problem rather than
Fourier transforming in the time at the outset.

The calculation presented is valid as long as the
electrons can be described by the electron fluid
equations; when crossing of charge sheets occurs,
the fluid equations are no longer adequate. It is
then necessary to follow each electron, as was
done in Sec. III. Charge sheet crossing becomes
important when Q~ is no longer small. It is, in
fact, this phase mixing of the electrons that pro-
duces the saturation of the gain as described in
Sec. IIIC. Thus, the perturbation expansion of
the Quid equations of motion cannot describe
saturation; but in the limit that Qv'«1, the homo-
geneously broadened gain formulas of Sec. III C
agree with the gain calculated from the fluid equa-
tions for the transient coupling of the t-wo counter-
propagating electromagnetic waves and a plasma
wave.

One last comment is in order. For a hot inhomo-
geneously broadened plasma in which &ov(h„~ /c
» co~, the independent electron model of Sec. III
is correct, i.e. , electrostatic effects may be
neglected.

G. Proposed experimental detection of stimulated
Thomson scattering

Here we discuss a proposed experiment to detect
stimulated Thomson scattering. Figure 6 is a
schematic diagram of the apparatus of the pro-
posed experiment. In order to evaluate the pos-
sibility of detecting stimulated Thomson scatter-
ing, we must assume reasonable values for cer-
tain experimental parameters. We assume that
the plasma is produced by a pinch discharge, and
that it has an electron density of n, =10"cm ' and
an electron temperature of k~T, = 10 eV. These
parameters are reasonable for a pinch discharge. "
We assume that the pump laser has a pulse dura-
tion of 3 nsec and an energy per pulse of 1.0 J at a
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wavelength of 694.3 nm. We also assume the pump
laser has a waist diameter at focus of 0.01 cm
and hence a Rayleigh range of Z„=mv2O/X =4.5 cm.
The pump intensity at the focus is I, = 2.1 x 10"
W/cm'. If the plasma is completely ionized (i.e. ,
the neutral gas pressure is negligible) then the
pump laser will heat the plasma primarily by
inverse bremsstrahlung. The percentage increase
in the electron temperature due to heating by the
focused laser beam is on the order of 5%, a toler-
able perturbation to the plasma. " A broad-band
dye laser centered at wavelength 694.3 nm is
used as the probe laser. The dye laser has an
energy per pulse of 10 ' J and a pulse duration of
3 nsec. The dye laser has the same waist and
Hayleigh range as the pump laser. Plasmas and
lasers with these properties are available.

The peak gain coefficient is z =2.8x 10 ' cm '
at a wavelength of 700.4 nm with the assumed ex-
perimental parameters. We note that v,„„„&o/c
is more than five times as large as the plasma
frequency. The single-pass gain product for the
stimulated Thomson scattering is a l = ng~ = 1.3
x 10 '. Although the gain product is sxnall, it is
possible to detect by the use of polarization en-
hancement as introduced by Wieman and Hhnsch. '
Polarization enhancement may provide a three-
orders-of-magnitude increase in signal to back-
ground. In this situation the light transmitted by
the blocking polarizer is increased by 130% above
the light transmitted without stimulated Thomson
scattering. We believe that with existing plasmas
and lasers it will be possible to detect stimulated
Thomson scattering.

The probe beam can be analyzed with a low-
resolution grating monochrometer and detected
with a multielement detector array. The measure-
ment of the gain for A. &694.3 nm or absorption for

X& 694.3 nm as a function of A. will yield both n,
and T, for the plasma. If a 30-element array with
33% quantum efficiency were used, then each of
the 30 elements would detect about 3.5x 10' dye-
laser photons. This number assumes the dye laser
has an energy of 10 ' J per pulse and assumes an
extinction ratio of 10 ' for the crossed polarizers.
If the signal-to-noise ratio for the detector array
were limited by photon statistics, then an intensity
modulation of 1.7x 10 ' would just be detectable.
This corresponds to the gain from a plasma with

~,= 1.3x 10"cm ' and 7, =10 eV. Stimulated
Thomson scattering may be useful as a diagnostic
for laboratory plasmas and arcs. One additional
advantage of using stimulated 'thomson scattering
as a diagnostic is that spontaneous emission from
the plasma would not be a major source of noise.
A small gain or absorption is detected with a near
diffraction limited probe laser beam. The probe
laser beam is spatially filtered after traversing
the plasma. Since all the stimulated photons are
emitted into the same small. solid angle as the
probe beam, only the spontaneous emission into
this small solid angle acts as a background noise
source.
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APPENDIX A: FREE-ELECTRON AMPLIFIER

The free-electron amplifier is an interesting
example of the stimulated Thomson scattering
process. Madey' presented a quantum-mechani-
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~ =L/yv =L/yc. (Al)

cal theory of this effect, and Elias, Fairbank,
Madey, Schwettman, and Smith' performed the
first experiment demonstrating the effect. Deacon,
Elias, Madey, Ramian, Schwettman, and Smith"
subsequently built a free-electron laser. Hopf,
Meystre, Scul. ly, and Louisell' showed that the
free-electron amplifier could be explained using
a classical theory. Their classical theory of the
free-electron amplifier agrees with. the quantum-
mechanical theory. Ichimaru and Iwamoto, ' Col-
son, ' Dawson, Kwan, and Lin, ""Sprangle, "
Cocke, " and Kroll and McMullin" have also pre-
sented classical calculations of the performance
of free-electron amplifiers and lasers. Hopf et al.29

have discussed some aspects of the saturation of
the free-electron amplifier.

Here the free-electron amplifier experiment is
analyzed briefly in terms of the theory of stimula-
ted Thomson scattering. In the free-electron
amplifier, highly relativistic electrons are shot
down the axis of a helical magnetic field in the
presence of an electromagnetic wave propagating
in the direction of the electron velocity. The
electromagnetic wave was observed to increase,
or decrease, -in intensity as the electron energy
was varied. It is useful to view this experiment
from the rest frame of the electrons. In this
frame, the transverse part of the helical field is
approximately a left-circularly-polarized electro-
magnetic pump wave; the electromagnetic probe
wave is Doppler shifted to a lower frequency.
Thus, except for the difference in polarization,
the free-electron amplifier corresponds to the
physical situation discussed in this paper. Assum-
ing that the electron beam is monoenergetic, we
expect Eq. (46), properly Lorentz transformed
and modified for circularly polarized light, to
give the small signal gain of the free-electron
amplifier.

It is a simple matter to carry out the calcula-
tions in Sec. III for circularly polarized light to
obtain the following results. If the two oppositely
directed waves have the same circular polariza-
tion, the gain coefficient is zero. If they are of
opposite circular polarization, the gain coefficient
is twice as large as for plane polarized light. In
the free electron amplifier, these effects are ob-
served.

The quantities in Eq. (46) are related to quantities
in the free-electron amplifier by the Lorentz
transformation. Kith the assumption that v= c,
these quantities are the following:

(i) lf L is the length of the helical field and y
is the Lorentz factor for the electrons, then the
coherence time y is given by

(ii) If v* is the probe-wave frequency in the
laboratory frame, then the probe-wave frequency
in the electron frame is given by

(A2)

(iii) If X, is the period length of the helical field,
then the pump-wave frequency in the electron
frame is given by

(o, =2vyv/x, -=2myc/X, . (A3)

(iv) If 8 is the magnitude of the transverse part
of the helical magnetic field in the laboratory,
then the intensity of each linearly polarized com-
ponent of the circularly polarized probe wave is
given by

Io =cy 1P/Bw. (A4)

(v) If n* is the electron density in the laboratory,
then the electron density in the electron frame is
given by

n =n*/y.

(vi) If q =2m/A. „ then the homogeneous line-
shape variable g is given by

rl = ,'Ru7. = —,'-L-(~*/2y'c —q) .

(A5)

(A6)

The gain per pass of the amplifier can be calcu-
lated by finding the spatial separation 1.' in the
electron frame between the following two events:
(a) the front of the probe wave enters the helical
field, and (b) the front of the probe wave leaves
the helical field. Application of the Lorentz trans-
formation with v= c shows that L —= L/2y, so that
the gain per pass in the electron frame is given by

G = La/2y . (A7)

='(" '"8
(AB)

where P is a filling factor that gives the fraction
of the electromagnetic-wave cross section that
interacts with the electron beam (assuming that
the wave cross: section is larger than the'electron-
beam cross section), and where q is given by Eq.
(A6). Equation (AB) agrees with the results ob-
tained by others. ' '

Since this is just the logarithm of the ratio of the
intensity at event (a) to that at event (b), Eq. (A7)
also gives the gain per pass in the laboratory.
Hence, the small signal gain coefficient in the lab-
oratory, n*, is given by

G r~*8'X,I.'I" d sin'g
2mc2y'
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(A9)

In evaluating Eq. (A9) for the free-electron
amplifier, care must be taken in evaluating y, it
is reduced from its value when the electrons are
outside of the helical field since the electrons
spiral down the helix. The factor y is given by

mc'[I + (X'r B')/47r'mc']'I' '

where E is the electron energy.
When the parameters of the free-electron-am-

plifier experiment are used to calculate the peak
gain per pass G from Eg. (AB), lt ls found to be
5.4%. The experiment measured a peak gain per
pass of 7%.

may be used to calculate the absorption coefficient
of the pump wave n„ the result obtained is that
e, and a are connected by the relation

o.I= o.oi, ,

where 'I is the probe-wave intensity, and I, is the
pump-wave intensity. Since I ~e ', and I, ~e
Eq. (Bl) can be written in the form

dI dIO

dZ d2'

APPENDIX B ' RELATIONSHIP BETWEEN Qo AND Q

In Secs. IIIA and IIIC, the gain coefficient of the
probe wave n is calculated. ,The same procedure

i.e. , at all values of z, I-I, is a constant. Hence,
to the degree of approximation employed in this .

paper, the electrons act as intermediates, trans-
ferring energy from one wave to the other.
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