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uation,10,11 and seismic imaging12,13 (see
selected references for recent work in
these areas). The application of TR to
nondestructive evaluation allows local-
ization of cracks,10 which are nonlinear
scatterers, and linear passive scatterers.11

It will likely soon be shown that TR can
be used to locate acoustic emission
events, as work-in-progress continues.

To illustrate the application of TR to
nondestructive evaluation, we will
describe a basic TR experiment. During
the forward propagation step, a source
signal is broadcast from location A in a
bounded sample. A reversible transducer
at location B collects the directly propa-

gated signal from A and reflections of the source signal from
the various possible reflected paths between A and B. The sig-
nal recorded at B is then reversed in time and during the back-
ward propagation step is broadcast from the reversible trans-
ducer at B. This second broadcast signal traverses the propa-
gation paths traversed during the forward propagation step.
The energy broadcast along each respective path is timed such
that they will simultaneously arrive at A.

Reverse time migration (RTM) is a variant of TR com-
monly used in seismology applications to image scatterers of
interest in the ground. Anderson et al. recently demonstrated
that RTM may be fully implemented experimentally in 2-D
laboratory samples to image scatterers on an inaccessible side
of a laminated plate in places where these scatterers may par-
tially be due to delamination.11 To image scatterers using
RTM, the aforementioned TR experiment is carried out as
normal, however during both the forward and backward
propagation steps the vibration of the wave field at various
points within a region of interest (ROI) must be sensed, (with
a scanning laser vibrometer for example). RTM imaging cor-
relates the arrivals of energy at specific times at a particular
scatterer during the forward propagation with corresponding
arrivals of energy at analogous times at the same scatterer
during the broadcast and convergence of energy of the back-

Introduction

Signal processing is used extensive-
ly in physical and engineering
acoustics, with applications in

nondestructive evaluation, machine
and structural monitoring, tracking
and localization, and elsewhere. The
goal of signal processing is to extract
desired information from noisy and
uncertain measurements. In this
process we exploit both statistical
analysis and properties of acoustic
wave generation and propagation to
separate extraneous components of the
measurements from the signal of inter-
est. To illustrate signal processing in
physical and engineering acoustics, we present three exam-
ples of signal processing that illustrate different methods
and approaches to the problem of extracting desired infor-
mation from measurements. The first example uses the
symmetry of reciprocal wave propagation and timing of
reflections to detect flaws (cracks) in plates. This is an illus-
tration of a signal processing technique that exploits a prin-
ciple associated with physical acoustics. The second exam-
ple uses a sophisticated statistical approach to determine
the condition of gears in a gearbox from accelerometer
measurements. Machine condition monitoring is a large
area of engineering acoustics—motivated by both cost and
safety. The final example shows how combining informa-
tion from different sound sources improves the ability to
locate the origin of a bullet fired from a firearm.

Time reversal
Time reversal (TR)1 is a method of locating and character-

izing sources and to intentionally focus energy at a selected
location in space.2,3 The original time reversal experiments
were conducted by Parvulescu and Clay in the early 1960s to
demonstrate the reproducibility of signal transmissions in the
ocean.4 The technique has found applications in SONAR,5

communications,6,7 medical ultrasound,8,9 nondestructive eval-
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ward propagation (after these last set of data have been
reversed in time). To the degree that the energy broadcast
during the backward propagation step retraces the forward
propagation paths, RTM allows imaging of passive scatterers.

Figure 1a illustrates the forward propagation of a RTM
experiment conducted in free space with a source at A, a
reversible transducer at B and a scatterer at C. The forward
signal is emitted from A after 7 time units. This forward sig-
nal is then directly received at B at a time of 11 units and the
reflection off of C arrives at B at a time of 12 units. The for-
ward signal arrives at C at a time of 10 units. The signal
recorded at B is now flipped in time and used as the source
signal for the backward propagation depicted in Fig. 1b (we
color the two emission signals from B to aid visualization of
this step). The red signal from B directly travels to A and
arrives at a time of 6 units. The red signal from B also
reflects off C and arrives at A at a time of 7 units. The blue
signal from B also directly travels to A and arrives at a time
of 7 units (constructively interfering with the reflected red
arrival producing the purple recorded signal). The blue sig-
nal from B also reflects off of C and arrives at A at a time of
8 units. The signal at A is typical of a symmetric time rever-
sal focus signal.14 The signal recorded at C consists of the red
signal delayed by 2 time units and the blue signal delayed by
2 units. Now, if the signal recorded at C is reversed in time
and compared to the signal recorded at C during the forward
propagation step, one will notice that the green arrival and
the red arrival are synced in time. The traditional RTM
image, I, is found through computing the cross correlation
of the forward signal, F, at position (x,y) with the backward
signal, B, at (x,y), after this later signal has been reversed in
time,

where ℑ represents a Fourier transform, * represents phase

conjugation, and –t represents a time reversal. The magnitude
of the image Ix,y is then typically displayed to locate scatterers.
Anderson et al. found that this traditional imaging condition
does not work well in a highly reverberant medium and instead
used the following imaging condition with better results

The experiments conducted by Anderson et al. found
that scatterers of a high impedance relative to the sample
impedance showed up as minima in the Mx,y image. In anoth-
er experiment at the Los Alamos National Laboratory, the
question of whether Mx,y could distinguish between low and
high density scatterers was investigated15. This experiment
utilized a nearly semicircular aluminum plate of dimensions
6.54x179x396 mm (pictured in Fig. 2a). The characters
“LANL” are milled out of the plate at a depth of 3.23 mm and
a width of 10 mm. The characters “EES-11” are cut out of a
2.64 mm thick steel plate with a width of 10 mm and glued
onto the plate. The removal of plate material for the “LANL”
characters should present an incident wave with a low
impedance scatterer, while the addition of material for the
“EES-11” characters should present a high impedance scat-
terer. In this experiment a single transducer (labeled as S in
Fig. 2a and is slightly not in view for the photograph) is used
as the source with a single receiver transducer (labeled as R

Fig. 1. Illustration of the reverse time migration process in a free space with a scat-
terer at location C. The propagation times for each path are included for the read-
er’s reference. (a) Forward propagation step. (b) Backward propagation step.

Fig. 2. (a) Photograph of a semicircular aluminum plate which has the letters
“LANL” milled out of it and steel letters “EES-11” glued onto it15. S and R denote
the source and receiver transducers named according to the forward propagation
usage. (b) RTM image of the other side of this plate (mirror image is displayed).
Amplitude is in dB units with an arbitrary reference.

(1)

(2)
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in Fig. 2a). A scanning laser vibrometer scans the forward
and backward propagation wave fields on the other side of
the plate. The ROI in this experiment includes all of the char-
acters with approximately a 1 mm spacing between scan
points. The image Mx,y of the characters is displayed in Fig.
2b. The characters “LANL” are clearly visible as maxima of
Mx,y. The characters “EES-11” are not quite as visible. It is
expected that these would show up as minima just as the high
impedance scatterers used in the work of Anderson et al. The
reason for the poorly visible “EES-11” characters may be due
to the thickness of the plate relative to the wavelength, result-
ing in a smaller impedance contrast from the “EES-11” letters
to the aluminum plate than the impedance contrast in the
Anderson et al. experiments.

Thus, RTM imaging for nondestructive evaluation of
bounded plate samples may be used to image passive scatter-
ers and locations of disbonding of those scatterers. This pro-
cedure may be carried out to image scatterers on the opposite
side of a thin plate if that side is inaccessible. It may also
prove to distinguish between high and low impedance scat-
terers. The work of Anderson et al. illustrated that high
impedance scatterers showed up as minima in an RTM image
and the work presented here shows that low impedance scat-
terers show up as maxima, but further work needs to be done
to determine why the high impedance scatterers considered
here did not show up as minima.

Independent component analysis applied to non-
invasive gear health monitoring

The non-invasive monitoring of the health of gearbox-
es16 has been a very active area of research over the past two
decades. The capability to predict gear failures from
accelerometer-based measurements of the gear meshing
vibration signal is of great importance in industries such as
the aerospace industry (e.g., helicopter gearboxes). If one
can predict failure, then gears can be swapped during regu-
lar scheduled maintenance. This prevents accidents and
saves money due to unscheduled down time. The main con-
cept in gear health monitoring is that the meshing of the
gear and pinion (Fig. 3) gives rise to a vibration signal that
propagates to the gearbox case where it is measured by
accelerometers. The challenge is that, in real systems, many
vibration signals arise due to vehicle motion, shaft imbal-
ances, mode shape vibrations of the gearbox case, etc. All of
these are also present at the measurement points necessitat-
ing the development of signal processing approaches that
can isolate and analyze the gear mesh signal from the unde-
sired signals (noise). Past condition-monitoring techniques
of gearboxes have used many different signal processing
approaches such as synchronous time series averaging,17

amplitude and phase demodulation,18 time–frequency distri-
bution,19 and wavelet analysis.20 The use of statistical signal
processing approaches have also taken hold in gear tooth
failure detection.21 Non-linear adaptive algorithms for inde-
pendent component analysis (ICA) have been shown to sep-
arate unknown, statistically independent sources that have
been mixed in dynamic systems. This example illustrates the
application of an information maximization based blind-

source separation algorithm (a type of independent compo-
nent analysis) to the prediction of gear failures. It is shown
that ICA can be used to detect impulsive and random
changes in the gear vibration data.

In typical gearbox setups, the pinion drives the gear
through rotational motion where force is exerted on the gear
teeth where the pinion teeth come into contact with the gear
teeth. A common failure of the gear teeth occurs when a crack
occurs at the base of the tooth due to material fatigue (Figure 4).

The crack formation at the base of the tooth begins to
cause the tooth to flex when the pinion exerts force on the
tooth. Because the tooth flexes, there is a slight delay in the
rotation of the gear causing a modulation of the meshing
vibration signal. It is this modulation that fault monitoring
algorithms attempt to detect before the tooth actually fails.

Having measured the signals at several locations on the
gearbox surface, the next task is to separate the gear-pinion
meshing signal and determine whether a change (or modula-
tion) occurs during the gear-pinion contact period. One can-
didate algorithm for performing these tasks is the blind-
source separation algorithm (BSS).

Figure 5 shows a high level diagram of the BSS algo-
rithm. The approach assumes that there are r independent
source signals that are linearly mixed by a mixing matrix A.
This linear mixing is the mathematical model for signals
from multiple sources arriving at each accelerometer. The
signals X(t) are then measured at the accelerometer points
and fed into the BSS part of the algorithm. BSS attempts to
minimize the mutual information between accelerometer
channels (i.e., measurements made at several points on the

Fig. 3. Simple spur gear and pinion setup.

Fig. 4. Crack formation and growth at the base of a gear tooth.
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gearbox surface). This forces the independent sources Ŝ into
separate channels. The weight matrix W, once learned, is ideal-
ly A-1. By observing changes in the trace of the weight matrix W,
one can observe points where the algorithm diverges (i.e.,
where there are abrupt statistical changes in the signals). By
plotting the trace of W as a function of the gear tooth locations,
the modulation of the meshing signal can be detected. Figure 6
gives a plot of the trace of W versus gear tooth number for a
healthy gear and for the same gear at a later time as it begins to
fail. The point of the future failure is very visible in the lower
plot. This approach provides the possibility to non-invasively
monitor the health of gears or other types of rotating machin-

ery such as bearings using measurements made at the gearbox
(or machine) surface and can in theory separate out all of the
unwanted signals that are present in the mixture of signals at
the measurement points. This allows an analysis of the “clean”
signatures alone. This is the reason that ICA/BSS algorithms
have seen wide application from voice processing to the isola-
tion of sounds in the human chest cavity.

Acoustical signal processing methods for localizing
gunshots

To an unalerted listener, the sound of gunfire represents
an aural event in the soundscape that evokes a reaction of

surprise tempered by curiosity. However, in
engineering acoustics it represents a tran-
sient acoustic signal generated by the dis-
charge of a firearm from which information
can be extracted such as the location of the
point of fire22 (localization) and the type of
firearm (classification). The sound pulse
generated by the discharge of a bullet from a
firearm is referred to as the muzzle blast or
in military parlance—the report. The
acoustic energy propagates at the speed of
sound travel in air and expands as a spheri-
cal wavefront (of constant phase) centered
on the point of fire. Because the propagation
of the sound through the atmosphere is
omnidirectional, it can be heard from any
direction, even behind the firer. If the lis-
tener is positioned forward (towards the
front) of the firer and the bullet travels at
supersonic speed, then a second transient
signal, which is referred to as the (ballistic)
shock wave is heard. To the listener, the ori-
gin of the shock wave occurs at a point Pn
(referred to as the detach point), which is
located at a distance xn along the trajectory
of the bullet—see Fig. 7. When the listener
is near the trajectory, the sound pulse (or
sonic boom) is extremely loud. Similar to
the muzzle blast wave, the shock wavefront

Fig. 5. High level diagram of the Blind Source Separation Algorithm.

Fig. 6. Result of Blind Source Separation Processing for a healthy gear (top) and for a gear that is beginning
to break (bottom).
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travels away from its point of emission at the speed of
sound. But, unlike the muzzle blast wavefront, it expands as
a conical surface with the trajectory and nose of the bullet
defining the axis and apex of the cone respectively. The
angle θn (see Fig. 7) at the apex of the cone is referred to as
the Mach angle, whose sine is equal to the reciprocal of the
Mach number, which is defined as the ratio of the bullet’s
speed v to the speed of sound c.23 A casual listener will hear
the shock wave before the muzzle blast and instinctively look
in the direction of its origin (the detach point) and confuse it
with the actual direction of the firer, which coincides with the
direction of the muzzle blast that arrives later—see Fig 7.

By sensing these signals at spatially-separated sensors
and applying various acoustical signal processing methods
for sound source localization, it is possible to estimate the
position of the firing point. One method, which relies only on
the muzzle blast, is referred to as passive ranging by wavefront
curvature.24 The simplest sensor configuration for this
method consists of three equally-spaced microphones posi-
tioned along a straight line—see Fig. 8. The basic principle is

Fig. 7. Acoustic transient signals–the muzzle blast is generated at the point of fire and
the ballistic shock wave originates from the detach point along the bullet’s trajectory.

Fig. 8. Source-sensor geometry for passive ranging by wavefront curvature.

Fig. 9. Variation with range of (a) relative range error and (b) bearing error for
localizing the point of fire at five ranges using passive ranging by wavefront curva-
ture of the muzzle blast wave only.

Physical and Engineering Acoustics 21

to estimate the wavefront’s radius of curvature, which corre-
sponds to the range of the firing point. Knowing the speed of
sound travel in the atmosphere (c) and the intersensor sepa-
ration distance (d), and measuring the differences in the
arrival times (τ12 and τ23) of the muzzle blast wavefront at
adjacent sensor pairs, enables the calculation of the source
range R (from the middle sensor) and source bearing β (with
respect to the array axis).24 The results of applying this
method to the passive ranging of real gunshot data from five
different firing positions are shown in Fig. 9; typically 260
rounds were fired from each position. The variance of the
source range estimates increases with range, while the bear-
ing estimates for the serial conducted at the longest range
(475 m) have a bias error which could be attributed to atmos-
pheric refraction of the sound or uncertainty in the ground
truth data of the firing position. The variances of both the
range and bearing estimates can be reduced by increasing the
effective sensor separation distance (d sin β).24

A second method, which uses both muzzle blast and
shock wave information, is referred to as the ballistic model-
based method for passive ranging of direct fire weapons.25

Measuring the differences in the arrival times (∆τn=r/c-t(xn)-
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sn /c) and arrival angles �n of the muzzle blast and shock
waves at a sensor node n (a small baseline sensor array)
enables the range r to be estimated—see Fig. 7. For a bullet
travelling with a constant velocity (V), the range is,25

r=c∆τn/(1-cos�n). In practice, range estimates based on the
constant bullet velocity assumption can have significant
errors (especially at long source ranges), necessitating the
development of a ballistic model-based approach that
accounts for the deceleration of the bullet along its trajecto-
ry. The shock wavefront is better represented (visualized) as
a half prolate spheroid (pointed oval shape like an American
football) for a decelerating bullet, rather than as a conical
surface for a bullet travelling with a constant velocity. The
ballistic parameters, which must be known a priori or esti-
mated in situ, are the bullet’s initial velocity and the ballistic
constant (which depends on the bullet’s mass, cross-section-
al area and aerodynamic drag). The results of applying this
method to the passive ranging of real gunshot data from the
five different firing positions are shown in Fig. 10. When
compared with the passive ranging by wavefront curvature
method (Fig. 9), the variances of the ranges of the firing posi-
tions are reduced when estimated using the ballistic model-
based method, most notably at the longer source ranges. The
converse is true for the bearings of the source positions

because of the shorter baseline of the sensor array used with
the ballistic model-based method. Additionally, when the
source ranges are estimated using the conventional method
which assumes a constant bullet velocity, they are found to
have significant bias errors especially at the longer firing
ranges. Also, the radial error, which is defined as the separa-
tion distance between the estimated and actual firing posi-
tions, is found to be dependent on the caliber of the bullet—
the conventional method’s radial errors are much larger for
5.56 mm rounds than for 7.62 mm caliber ammunition.

Currently under development is a third localization
method26 that relies only on the ballistic shock wave informa-
tion, which is advantageous when the received muzzle blast is
absent due to the use of a sound suppressor (silencer) or weak
due to the high transmission loss (spreading loss plus absorp-
tion loss) suffered by the acoustic signal when its propagation
path from source to sensor is long. Another advantage of this
method occurs when there is simultaneous fire from differ-
ent firing positions as each shock wave signal is not required
to be associated with a corresponding muzzle blast signal as
is the case with the ballistic model-based method. A new
method proposed by the authors is simultaneous localization
and classification, which uses both the muzzle blast and shock
wave information received by a next-generation network of
spatially-distributed unattended ground sensors comprising
“low-cost sensor nodes operating on shoestring power budgets
for years at a time in potentially hostile environments without
hope of human intervention.”

Summary
In this article we have presented three examples of signal

processing approaches in physical and engineering acoustics.
In time reversal, we exploit a principle in physical acoustics
to enhance the detection of flaws in plates and structures. In
gearbox monitoring we show how sophisticated statistical
techniques such as principle component analysis and blind
source separation can be employed to solve a difficult and
important problem in structural and machine monitoring.
Finally, in point of fire localization we see how both wave-
front curvature and shock front propagation can be com-
bined to improve estimates of the origin of a bullet fired from
a gun. We hope this gives a flavor of the variety of approach-
es and applications of signal processing to physical and engi-
neering acoustics.AT
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