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alternately + and —,on a line of length P. Their
interaction is the two-dimensional Coulomb force

v(x-x')
( ) i x,-x,

)

one-dimensional systems with long-range inter-
actions often have critical points. )

We thank J. J. Hopfield and P. Nozieres for
discussions and use of their work before publica-
tion.

The chemical potential is given by

e "=P
and the free energy f(T) per unit length deter-
mines the ground-state energy according to

F(fP) e'-"o-e '" )~

In a subsequent Letter we will show that the
point e =0 (for small J) is a critical point of this
system, separating the region where the charged
pairs are all associated from that where some
are ionized, the latter being the region of zero
net spin. It is fascinating that the simple-ap-
pearing Kondo system is isomorphous with one
which certainly has at least one critical point
and possible more. (It is a commonplace that
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By using a functional integral formulation of the theory of itinerant ferromagnets above
the Curie point, we show that for strong Coulomb interaction U, there are localized mo-
ments exhibiting a characteristic Curie-law susceptibility with the correct free spin-&
limiting value of the Curie constant. For weak U the same formulation gives a Pauli-
like susceptibility, again with the proper limit, while for intermediate values the theory
gives a smooth interpolation between the extreme cases.

The presence of local-moment aspects in band
ferromagnetism has long been a bafQing problem.
The most striking example of this is iron. The
high-temperature susceptibility, neutron scatter-
ing, alloy experiments, etc. , a11 point to the
presence of localized moments, while transport
properties show unambiguously the itinerant
character of the d electrons. ' We report here on
the first results of a new theoretical apyroach to
such systems. The theory is based on an exact
transformation of Stratonovich' and Hubbard'
which eliminates the two-body interaction in fav-
or of a Gaussian average over fluctuating one-
body potentials. We concentrate here on the
paramagnetic phase, leaving cooperative effects
for future publication.

Since there is little short-range order at high

Ho + peg pnoQ+'E(f c+n~
k, a a

+ g[Vqcj, tcz +H.c.],
k, o

H, = Unyyny)

aU(nest n~g:) + a-U(n~t +-n~))

(la)
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temperatures, we expect the problem to be equiv-
alent to an aggregation of one-center problems.
The one-center problem can be represented by
an Anderson model4 of an "impurity" atom im-
mersed in an effective band. While orbital de-
generacy (Hund's rule) is important in practice,
most of the essential features are already con-
tained in the nondegenerate orbital model treated
here.

The Hamiltonian is H, +H„where if 0 =—~1,
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In Eq. (1b) we have used n~, '=n~, . The second
term of H, can be absorbed into Ho by defining
6y ~ = E(g ~+ g U. Following Hubbard, MGhlschlegel'
has shown that the partition function can be writ-
ten as the Gaussian functional average over an
effective "magnetic" field $(r) of the partition
function Z($) for a one-body Hamiltonian:

1
Z = t u$(r) exp[ nf-o g'(v)d7]Z((), (2a)

Z(~) =T~(r e~f, [-Pe«
+ c)(T)(n ~ Iv -n +1g }]d'r), (2b}

where c =- (2o'tIU)'I', and T is the ordering sym-
bol for the fictitious "imaginary time" v. '

To evaluate Eq. (2), it is convenient to Fourier
analyze $(v):

$(r) = Q one """, Qn —-211V, $„=$ „*. (3)

variables, and is defined by

+mn ~m n Gn ~ +nn

Clearly K describes the scattering of the virtual-
level electron by the fluctuating field [((r )—$o],
with the v-averaged effects included in zero or-
der. The nth term in the power series expansion
of the Tr ln term can be represented by a single
closed-loop diagram with n e lines attached.

Zo()o) in Eq. (6) is the value that Z($) [Eq.
(2b)] takes on if ((7) is replaced by its 7 average
$o. Explicitly, for the symmetric case, e&+sU
=0, and for large PI',

Zo()o) 2&)ot -1~ c$o

PI'
ln 1+

By introducing a dimensionless coupling con-
stant, X, multiplying e, it follows that

=(Qf, d7 c((7)on v)

~n Gnn+ n (4)

where v„'=-ocg„. G „. is the one-particle
Green's function which satisfies the Dyson equa-
tion:

a oa OaQ~~. = t ~ 5~~. +~~@~ v~ ~G~~~, (5a)

Gn =(foehn Peyo+o'-c(o+fPI sgno)n)

en = (2n + 1)71. (5b)

I is the virtual level width vN(0) ~V~'.

Using the Fredholm solution of Eq. (5a) and the
relations

TrN = BD/'BAD-=e ' '"&. '

for the Fredholm numerator and denominator, it
is straightforward to show that an exact expres-
sion for Z is

Z=f d4o II 2fd'gnexp(-~ g Ig. l'
u)0 p ~oo

+Q Tr ln(1-K )jZo()o), (6

where Jd'$„denotes an integral over the complex
)„plane. ' The Tr ln term takes account of the
fluctuating parts of the effective field, i.e., the
g„'s for v c0. K' is a matrix in the frequency

where G~' is the z ero-order one- electron Green' s
function in the presence of the v-averaged poten-
tial -oc(„
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FIG. 1. Effective free energy for a v-independent
field $ o. The curves are labeled by U/wI'.

where & is the partition function for Ho with e&
replaced by e~,. In Fig. 1 we plot (w$o'-lnZo)/P,
which is the effective free energy for a v-inde-
pendent field (o, for several values of U/n I'.'

When calculating the partition function, it is
useful to distinguish four separate regimes of the
parameters |II' and U/vl". (1) U/ml'«1. This
corresponds to a nonmagnetic impurity with weak
exchange effects. (2} U/ml'»1 and T»TK,
where T K is a Kondo-like temperature of order
(U/ks)e '~"r. This corresponds to a strongly
localized moment above the Kondo regime.
(3) U/nl'» 1 and T & TK. This is the Kondo re-
gime where the localized moment tends to be
averaged to zero. (4) U/vl'-1. This is an inter-
mediate regime which is characterized by large
fluctuations in the size and direction of the local-
ized moment. '

In case (1) only small-amplitude fluctuations $„
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contribute appreciably to Z, so that the expan-
sion of Tr ln(1-E) to order )t„[' suffices in this
case (the linear terms vanish). On perform'

2

01 ming
the d $„ integrations one finds

2

Z=f.«.s '"Z.(h.)»=V.(h.), (9a)
P) 0

where the "polarization bubble" is, for p&0,

Oag Oa

mQ (0 +2PI') P I' +c'( 2

and cp„= y „. For )0„/pl'~ «1, y„becomes

Ifl. lR 1- "R+~ .~ (10)

where R = [1+(chic/PI'] '.' In this small-(U/
n I') limit one can also expand lnZ, to order $o',

as one can see from Fig. 1 since the effective
free energy has a single minimum at the origin
and large positive curvature in this case. This
procedure is exact in this limit and is equivalent
to the random-phase approximation including
both bubble and ladder diagrams with correct
spin counting.

One can see from Fig. 1 that in case (2) the
dominant contributions to the partition function
will come from values of $, near the two minima.
By inspection of Eq. (9) it is clear that for $,
near the minima the v &0 contribution is small,
thereby justifying the Gaussian approximation
for the )„ integrals in this $o neighborhood. For

$, far from the minima, a careful treatment of
the v W 0 terms shows that the entire $, integrand
in Eq. (6) is negligible. Therefore Eq. (9a) gives
an accurate value of Z so long as the integral is
carried out only near the minima in effective
free energy.

In case (3) the small energy arising from scat-
tering from the vicinity of one minimum to the
other must be carefully included. Fluctuations
about a given minimum are correctly included in
Eq. (9); however, the infrequent hopping from
minimum to minimum must be treated separate-
ly 11

In case (4) a number of low-frequency $„'s
give appreciable non-Gaussian contributions to
Z. This problem is presently under study.

To obtain the static magnetic susceptibility of
this system, we use the relation X = (1/P) [S' lnZ/
eh'~~j, 0 where h is a magnetic field applied in the
z direction. Since the Zeeman energy enters ad-
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FIG. 2. Plots of the dimensionless quantities (g
-Xb»d)I'/ps vs pF. The full lines are calculated di-
rectly from Eqs. (9a) and (11); the dashed lines are
calculated by neglecting Tr ln(1-K) in Eq. (6) as ex-
plained in the text. The asymptote for large U/wF is
the correct Curie law for a free spin 2. For small U/
7tI', the correct exchange-enhanced Pauli susceptibilit
is obtained.

cep s zy

ditively in H with c$,/P, one can shift the origin
of $, by Pp sh/c so that, aside fromm, the Zee-
man energy appears only in the Gaussian factor
in Eq (.6). It follows that

X=,l +
U

[2 (h.')-1]+Xbana,2pB pg

where ($0') is given by inserting $0' into the in-
tegrand of Eq. (6) and dividing by Z.

The numerical results for the susceptibility as
a function of temperature are shown in Fig. 2.
It is interesting to note that for U/wI'»1, the
susceptibility is Curie-like over a wide tempera-
ture range. For large U/ml', the susceptibility
approaches the Curie law appropriate for a free
spin--,' moment. For U/sl'«1, X is essentially
temperature independent, corresponding to a
weakly- enhanced Pauli susceptibility.

In regimes (1) and (2) the curves in Fig. 2

were calculated from Eq. (9) as discussed above.
In regime (4), U/n I'-1, the curves in the figure
were calculated using the exact expression [Eq.
(6)] for Zc but neglecting the Tr ln term of Eq.
(6). This approximation corresponds to neglect-
ing finite frequency fluctuations of the effective
field. Work is currently proceeding to include
the contribution of terms for finite v in regime (4).

The coupling between moments, which is a two-
center problem in first approximation, is cur-
rently under study. Extension to degenerate or-
bitals will be undertaken in the near future.
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A simple explanation of the Kondo effect is shown to follow from a functional integral
form of Anderson's dilute-alloy model.

This Letter describes a new approach to the theory of dilute magnetic alloys. The nonperturbational
energy lowering associated with the Kondo effect is shown to be a simple consequence of the statis-
tics of fluctuations on the impurity site.

This theory uses a transformation due to Hubbard to replace the two-particle interaction by a Gaus-
sian average over Quctuating one-particle potentials. ' To apply Hubbard's transformation, Ander-
son s dilute-alloy Hamiltonian' must be written in the form

Xo=gsA, nkg+Qedo+ VQ[C~ Cd +Cd~ C~ ],
ko o ko

R = —'U[(nd) —(Sd ) ],

where

nd nay +nd)

~d~ = n d&
—n d&.

Straightforward application of Hubbard's method gives the partition function Z as the double func-
tional integral

Z =Z,f6x5y(T, exp( fd7 [mx'jp+ -~y'jp+X, ] I),

where

X,= (mU/P)"'[x(r)S, (v)+iy(T)n (r)].


