Cold nuclear fusion in the Earth
E. Paul Palmer

Citation: AIP Conference Proceedings 228, 616 (1991); doi: 10.1063/1.40680
View online: http://dx.doi.org/10.1063/1.40680
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/228?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
The theory of nonthereshold cold fusion in solids (experimental addendum: Observation of fast neutrons and tritium)
AIP Conf. Proc. 228, 894 (1991); 10.1063/1.40725

Examination of the possibility of cold nuclear fusion occurring within the Earth’s mantle
AIP Conf. Proc. 228, 646 (1991); 10.1063/1.40682

Coldnuclear fusion within the core of the Earth?
AIP Conf. Proc. 228, 611 (1991); 10.1063/1.40679

Nuclear fusion in Jupiter

The effect of electron screening and velocity distribution on protondeuterium fusion rates in Jupiter
AIP Conf. Proc. 228, 584 (1991); 10.1063/1.40677
Evidence that p-d or d-d fusion could be occurring in the earth stimulated the original laboratory search for cold fusion. That evidence is reviewed here. It is found that the geologic ratio of heat to 3He is too high to be explained by the usually accepted fusion processes. Laboratory evidence indicates that fusion can be made to occur in processes of fracture and high strain rate similar to earth processes. An extension of the Oppenheimer-Phillips theory of neutron tunneling is advanced to illustrate alternate fusion paths which could explain the high heat/3He ratio. The search for fusion as a source for additional heat and non-primordial 3He is further stimulated by recent data and analysis indicating that radioactivity can supply less than five percent of the earth’s heat budget. Evidence of deep convection suggests that primordial 3He should have been lost in early earth formation and in ongoing outgassing. In this paper, only surface-related (seawater) deuterium is considered.

INTRODUCTION

A laboratory search for hydrogen-isotope fusion in solid matter was suggested by evidence that such fusion occurs in the earth.\(^1\) The locations and concentrations of the fusion product 3He hinted that some combined action of pressure, temperature, and catalyst could be occurring in some deep-earth situations to produce fusion analogous with cold muon-catalyzed fusion.\(^2\) A muon acts as a heavy electron and binds the hydrogen atoms in a molecule close together causing fusion in about 10^{-9} sec and giving the products 3He $+$ γ for p-d fusion and either 3He $+$ n or t $+$ p for d-d fusion. The radioactive tritium decays into 3He with a half life of 12.4 yr. If the analogy with muon-catalyzed fusion were correct, the 3He could have come from fusion in the earth, and earth processes could be mimicked in the laboratory.

Deuterium is the prominent candidate as a fusion fuel in the earth because of its relative ease of fusion and its adequate abundance. Deuterium from seawater is incorporated in crystal structure, trapped in sediments and crustal rock, and is subducted into the earth’s upper mantle at converging plate margins. It is conducted deep into the crust in cracks at spreading regions.\(^3\) The amount of deuterium contained in a rock determines the total possible production of energy and fusion products, and the fusion rate constant in any particular geologic milieu determines whether measurable concentrations of heat and nuclear products can be
The purposes of this paper are to examine evidences of fusion in the earth, to relate these to laboratory and theoretical reports, and to advance arguments that fusion is a possible and a likely explanation for several geologic phenomena. Quantitative estimates are made for a few processes and show that low-rate fusion could produce the observed heat from the deuterium present in rocks with only minimal depletion of the fuel. However, the observed concentration of nuclear products is too low to be compatible with observed heat production if the standard p-d or d-d fusion model given above is the only process acting. The reasons to continue to press the investigation of fusion, in spite of this discrepancy, are that tantalizing geologic evidences continue to exist, laboratory and theoretical work are beginning to produce relevant information, and the long-entrenched dogma that U/Th/K radioactivity produces the earth heat is being seriously questioned. This work will be briefly reviewed. Fusion in core and mantle and other energy sources such as latent energy of phase change need to be continually reexamined, but only mantle fusion will be considered here. Possible observations and experiments to help resolve questions will be noted throughout the paper.

VOLCANISM

A typical geologic phenomenon is volcanism at subducting plate margins. The energy required to heat and melt a sedimentary rock and produce magma is about 2X10^6 J/kg, and friction has been proposed as the source of this energy. The maximum mechanical energy available comes from gravitational potential energy over a height not much more than from mid-ocean ridge to deep trench. This is about 2X10^5 J/kg, enough to deform rock but not enough to melt it. It is unlikely that any process can concentrate this diffuse energy source into an active volcano. Heat flow from surrounding rock is possible, but the thermal energy supply from the cold cores of continents is limited, and the constant subduction of material cools any underlying hot mantle rock. A possible source of energy internal to the rock is attractive.

A kilogram of subducting sedimentary rock contains about 30 g water containing about 2X10^{20} deuterons. Since each p-d fusion produces 5.4 MeV energy (8.7X10^{-13} J), about 2X10^{18} p-d fusions per kilogram are required to produce magma. Even if fusion produces all of the heat of volcanism, only about one percent of the available fuel is used in the process, and much is left for other deep-earth thermal processes.

To estimate the rate of fuel consumption requires an estimate of the time of production of the heat. Assume that this is the time of transit of the subducting rock on a slant path through a zone of volcanism from about 100-km to 300-km depth. This could require about 4X10^7 years or 1X10^{15} sec. Using these numbers, a fractional rate of fusion (meaning the fraction of the deuterons present which actually fuse in the given time period) can be estimated.

\[
\frac{2X10^{18} \text{ atoms fusing}}{(2X10^{20} \text{ atoms present} \times 1X10^{15} \text{ sec})} = 1X10^{-17} \text{ sec}^{-1}.
\]
This fractional rate of fusion is equivalent to a first-order reaction rate constant and can be expressed as "deuteron fusions per sec. per available deuteron." Note the assumption made here, that fusion dominates the energy processes in converging-plate volcanism.

This estimated fractional depletion of the deuterium fuel, based on heat production, can be compared with depletion estimated from measurements of the 3He fusion product. Outgassed lavas at the surface often contain small amounts of 3He, about 3×10^{13} atom/kg.\(^5\) A rough estimate of the content before outgassing might be about 100 times this or 3×10^{15} atom/kg. This postulated 3He production would require fusion of 3×10^{15} deuterons which is about 1/1000 of the number calculated as necessary to produce the magma. The fusion rate to produce this estimated 3He product is about 1×10^{-20} fusions per sec. per deuteron.

A better estimate of rate constants cannot be made at this time because the rate of fusion is only barely observable and cannot be varied for study in either earth or laboratory. Differences between p-d and d-d fusion cannot be determined yet. Geologic information applicable to this rate problem is available at hot spots everywhere on earth in the form of data on the material input, the geologic processes occurring, and the output products. Materials being subducted and water influx are partially known; deformation and material transport at depth are partially known; heat, radioactivity, and fusion-product output are partially known. These data need to be reexamined and new data collected with a search for fusion in mind.

EARTH HEAT LOSS

The fusion rate constants estimated above are local constants considering only the results of fusion in a particular material. Global constants can be estimated by relating average heat-loss rates and 3He production rates of the whole earth to the total active deuterium fuel source. Again, assume that the source is just the deuterium in sediment subduction and related to sea water.

The number of hydrogen atoms being subducted per second per meter of length of a subduction zone can be estimated by conservation of mass.

$$N = TS \rho f_1 f_2 A/M$$

where T is the thickness of the water-bearing sediment, S is the rate of subduction, ρ is the density of the rock, f_1 is the fractional weight of water in the rock, f_2 ($=1/9$) is the ratio of hydrogen to oxygen in water, A is Avagadro's number, and M is the atomic weight of hydrogen. Assuming values of $T=1000$ m, $S=0.025$ m/year, $\rho =2.2 \times 10^6$ g/m3, and $f_1=0.03$, gives $N=4 \times 10^{21}$ hydrogen atoms subducted per second per meter of length of the subduction zone. A deuterium/hydrogen ratio of 1.5×10^{-4} results in a crudely estimated subduction rate of 7×10^{17} deuterium atoms per second per meter of plate margin.

This rate of subduction can be extrapolated to the entire earth by assuming all the broken-up subduction zones of the earth to have a total length of about one circumference of the earth or 4×10^7 m. This gives a total rate of 3×10^{25} subducted deuterons per second. For an upper limit on fusion power, suppose a...
steady state were achieved and all this deuterium eventually fused in cycles of hundreds of millions of years from time of subduction to upwelling. For p-d fusion, the rate of energy production would be 2.4×10^{13} W. Averaging this power over the area of the earth, 5.1×10^{14} m2, gives 0.05 W/m2. Comparing this with an estimate of the actual average heat flux of 0.06 W/m2, indicates that fusion could be a significant energy source for the total earth heat budget even neglecting possible core hydrides.

This whole-earth rate of utilization of fuel is modest as it was in the case of volcanism. The oceans contain about 10^{43} deuterons, enough for 30 billion years of fusion at this rate of depletion. Higher estimates of hydrogen subduction have been made based on the rate of creation of new sea bed at spreading regions with concurrent subduction of water in sedimentary rocks. All estimates indicate that deuterium fuel is in adequate supply.

These data allow the calculation of an upper-limit fusion-rate constant for the whole earth. Again assume a simple first-order rate constant.

$$\Delta N = k \cdot N \cdot \Delta t$$

ΔN is proportional to the actual heat-loss rate (use 0.06 W/m2); N is proportional to the possible heat loss rate (use 0.1 W/m2); Δt is an earth convection-cell time (use 6×10^8 years or 2×10^{16} sec). These values gives a rate constant k_1 of 5×10^{17} sec$^{-1}$. The agreement here with the previously calculated rate constant is fortuitous considering the rough estimates used for input values. A number for a rate constant for whole-earth fusion can be calculated by the same method as above but based on 3He rather than heat. The average outgoing flux of 3He is reported as 8×10^5 m$^{-2}$ sec$^{-1}$ or 4×10^{20} sec$^{-1}$ for the whole earth. The possible maximum flux, neglecting core hydrides, is equal to the deuterium subduction rate, perhaps 3×10^{25} sec$^{-1}$. Assuming the time scale again of 2×10^{16} sec, the rate constant is 6×10^{22} fusions per deuteron per sec. This is 10^{-5} below the whole-earth rate constant calculated using heat. As with subducting-margin volcanism, the rate calculated using heat is several orders of magnitude higher than the rate obtained using fusion products.

TRITIUM

Tritium, a d-d-fusion product with a half life of 12.4 years, is found in volcanic gases and hot-spring waters. Concentrations above those in the normal atmosphere were measured before H-bomb testing as well as since. An interesting event was the atmospheric tritium "pulse" recorded during the eruption of Mt. Ulu on Hawaii in Feb.-Mar. 1972. This eruption produced what was possibly the greatest lava flow ever recorded as well as an extensive and long-duration tritium plume averaging 70 tritium atoms per milligram of air. The width of the plume, encompassing the Mauna Loa monitoring station to the northwest and Oahu in an arc to the north-east, and an unusual reported wind of about 8 mph toward Honolulu, allow a rough estimate to be made of the amount of tritium released, about 10^{23} atoms or 5000 Ci. This is an unlikely radiation "leak" from a man-made source and is not consistent with Soviet H-bomb tests made five months
This tritium is not consistent with the volcanic release of stored H-bomb-contaminated rain water which would require a 7.5-cm (3-inch) rainfall containing 3000 TU (tritium units) to cover an area 80 X 80 km (50 X 50 mi) and all the collected water to be released in one eruption. 3000 TU is in the upper range of contamination levels recorded in rainfall and was not recorded at Manua Loa.

If this tritium were from d-d fusion in the earth, it must have resulted from injection of seawater into a body of magma supplying the volcano. The short half life of tritium precludes travel in a slow mantle convection system or from the core. The amount of tritium is too small to prove fusion as a source of earth heat. Bullard gives an estimate of 3.5X10^8 m^3 of lava from the Mauna Ulu eruption over a 39-month period. Suppose that one-eighth of this, 4.4X10^7 m^3 or 1X10^11 kg, came during the most active time when the wind blew toward the monitoring station. Assuming that the tritium released, 10^23 atoms, was a large fraction of the tritium contained in the 10^11 kg lava, gives 10^12 tritium atoms per kg of lava. To produce this would require 10^12 d-d fusions per kilogram of lava, far below the 10^14 fusions calculated previously as necessary to produce magma. The 10^12 tritium atoms per kg of rock is a lower-limit estimate; some would remain in the rock and not be measured, and most would probably decay after formation before being ejected from the volcano.

If this tritium observation is not due to contamination or faulty measurements, it is of great significance. It would demonstrate earth fusion and would indicate a shallow source for this particular type fusion. Such measurements could help differentiate between p-d and d-d fusion by simultaneous ^3He and tritium measurements. They could help distinguish between sea water leakage into magma and slow subduction of deuterium, and they could furnish data for rate calculations. Many more such measurements need to be made with particular attention paid to careful collection of concurrent ^3He and tritium data.

EVALUATION OF FUSION-RATE DATA

The standard geologic explanation for all these observations is that radioactivity in the core produces the heat, a primordial source of ^3He was collected in the original formation of the earth and is now revealed by slow outgassing of the mantle, and tritium is a contaminant from the nuclear age. Further, if the heat is not from radioactivity, it is from gravitational potential energy expressed in latent heat of phase change at mantle, liquid-core, and solid-core interfaces. This is thought to adequately explain the heat and the fact that the nuclear product ^3He appears at a level 10^{-3} to 10^{-5} below that necessary to agree with the heat data. No fusion is indicated in the standard model.

In examining the possibility of fusion in the earth to supplement or contradict this model, two facts stand out: (1) There is an abundance of the fuel of choice, deuterium. Only sea-water deuterium has been considered here, and a total amount of 10^{43} atoms can be estimated. Estimates of core deuterium indicate up to 100 times this amount, and this is concentrated in the region of highest temperature and pressure, the most likely region for fusion. A store of mantle...
deuterium has not been considered here. (2) If heat data and ^3He data are reasonably valid, fusion analogous to muon-catalyzed fusion is not the dominant heat source because ^3He concentrations appear to be too low to agree with heat data; other fusion processes need to be examined.

OPPENHEIMER-PHILLIPS REACTION

Nuclear reactions, not analogous with muon-catalyzed fusion, can possibly produce both heat and fusion products in the ratios observed, and they are more probable since they require less activation energy. One such process is the Oppenheimer-Phillips reaction described in more detail, and with some extensions, in the Appendix. In this, an energetic deuteron reacts with a target nucleus and dissociates. The neutron tunnels into the target nucleus, and the proton is ejected with high energy. This is the main exothermic reaction which produces the heat. In a small fraction of the events, the energetic proton goes on to react with a deuteron to produce ^3He; otherwise it loses its energy in the host material. This type reaction should produce heat and ^3He in roughly the observed ratios. In an even smaller fraction of the events, the first excited deuteron can react with another deuteron in fusion analogous to muon-catalyzed fusion and produce tritium and neutrons in addition to ^3He.

A test comparing fusion following the Oppenheimer-Phillips model with fusion analogous to muon-catalyzed fusion, can be made using deuteron ion bombardment on targets of pure materials and earth-like materials which are loaded with deuterium and hydrogen. This was the method used by Lawrence, McMillan, and Thornton in the experimental work leading to the Oppenheimer-Phillips theory: it has been used in the measurement of deuterium loading of materials in "hot-fusion" research, and it was used in one fusion-rate-constant measurement noted in the next section. Modern particle detectors can measure all the nuclear products, their energies, and their production threshold energy. This work has not been aggressively pursued.

LABORATORY MEASUREMENTS OF FUSION

Numerous reports of measurements of fusion products indicate that d-d fusion can be made to occur at low rates under conditions far removed from those in the interior of stars or in high-temperature plasma-fusion devices. Unfortunately, these measurements have not been adequately controlled and quantified and must be accepted with reservation as evidence for fusion in the earth. The first laboratory results were obtained in metals in both D_2O-containing electrolytic cells and in D_2-gas pressure cells undergoing thermal stress. Possibly of greater significance in geology are the reports of d-d fusion in deuterides undergoing moderate shock, in energetic chemical reactions, and in fusion in SiO_2 in a deuterium-gas plasma.

A few laboratory measurements of a fusion rate constant have been reported. The first, from the earliest measurement of nuclear products in the
laboratory,\(^1\) gave \(10^{23}\) fusions per sec. per deuteron. A second, from Soviet deuteron-ion implantation experiments,\(^2\) gave \(6 \times 10^{19}\) fusions per sec. per deuteron. Note that both these values come from experiments using high-concentration deuterium in a metal lattice and do not apply directly to a geologic situation. In spite of this, there is some value in comparing earth and laboratory rates. Theory suggests that the p-d-fusion rate constant is 100 times greater than the comparable d-d constant for low-energy fusion.\(^2\) Comparing only numbers, and not the possible physics involved (blindly extrapolating the rates to geologic fusion), the highest measured value implies a p-d-fusion rate high enough to produce the heat of volcanism. The low value came from an experiment having low deuterium concentration and might be approaching an unknown second-order rate constant applicable to \(^3\)He production. These very tenuous relations between laboratory and earth science can only be considered hints, and they await development into demonstrations or refutations of earth fusion.

A different-type result, from several different types of experiments, does not give a fusion rate but gives the ratio of tritium production to neutron production.\(^2\) This ratio is reported to be \(10^8\) (within a few orders of magnitude). This is in contrast to a t/n ratio of about one for muon-catalyzed fusion and for the Soviet ion-implantation studies noted above. If proven true, the circumstances leading to these strangely different results must be unravelling and related to geologic processes.

GEOGRAPHY OF ENERGY, FUSION PRODUCTS, AND RADIOACTIVITY

An appealing argument encouraging further investigation of cold fusion in the earth is that of elegant simplicity. The world-wide distribution of nuclear products very roughly divides with all the radioactivity-related materials in the old cold continents and all the fusion ashes, mainly \(^3\)He, in the hot spots. Plate-margin and mid-plate hot spots are well known for their anomalously high \(^3\)He concentrations, and they lack the concentrations of U/Th/K and the decay products expected if radioactivity were the heat source.\(^5,27\) The continental granites (which were once hot spots, of course) contain the U/Th/K products.

If fusion were a major heat source, there would be no concern about different material reservoirs and different geologic processes for heat diffusion, noble-gas diffusion, and radioactive-material transport from the interior of the earth, as has been proposed.\(^2\) Rather, the problem becomes one of analyzing fusion evidence and evaluating the core and the surface materials as sources.

If surface deuterium did supply the energy for the earth's positive heat balance, the bumpy nature of the core would indicate convection cells in the mantle extending to the core and involving it.\(^2\) Subduction over hundreds of millions of years could build up concentrations of deuterium that would, in time, completely change the geography of heat sources. Something as deep and extensive as this is necessary to explain the shifting hot spots which split continents, form island chains, and cause magnetic reversals.

The overall lack of evidence for adequate radioactivity in the earth, and the
paucity of 4He outgassing, lead to the growing conclusion that U/Th/K can supply less than five per cent of the earth's internal heat. Resolving this disagreement with standard geologic wisdom is fundamental to ongoing development of tectonic theory and to the purposes of this paper. In view of this, evidences for fusion should be thoroughly scrutinized.

The occurrence of high concentrations of 3He in diamonds seems to be more compatible with a fusion source rather than a primordial source. The 3He concentration is highly variable both in individual diamonds and throughout a diamond bed. Barberi argues that this is not compatible with incorporation of 3He from a primordial source into the diamond at the time of its formation but is compatible with fusion in hydrogen-trapping impurities. In contrast to this, 4He is more uniformly distributed as if by incorporation from the environment.

The mineral Josephinite is iron-nickel rich and contains high concentrations of 3He. It is thought to be a likely example of a core material which appears on the surface of the earth. It also qualifies as an evidence for deep-earth fusion since iron-nickel alloys form hydrides which could be fusion sources.

TRIGGERING FUSION IN THE EARTH

Fission fragments and radioactive-decay products have energies well above the few keV required to overcome the Coulomb barrier for d-d or p-d fusion, and these particles might trigger fusion reactions at very low rates in deuterium-bearing materials. The energetic products from one fusion reaction might cause further chain reactions under favorable conditions. Cosmic-ray particles may cause fusions to occur, and they can produce spallation products, containing 3He, in earth materials and in subducted meteoric dust. Some of these sources might be detectable but are not significant contributors to earth heat or to major fusion-product concentrations.

Mineral deformation in the earth is known to produce electrical effects, from piezoelectricity and fracturing, with voltages in the range of the few keV required to produce fusion. "Fracto-fusion," or particle acceleration by the voltages produced in crystal fracturing, has been proposed and investigated as a fusion trigger. Molecular "Coulomb explosions" can occur where nuclei are accelerated as their binding electrons are stripped away in violent deformations or collisions. These all serve as high-energy or "hot-fusion" explanations for experimental cold-fusion results.

Laboratory investigation of these effects has been limited, and controlled variation of parameters seems to be missing. Previously noted work in impact, crushing, and heating/cooling may have provided some conditions approaching those in the upper mantle of the earth. Relations between actual physical conditions in the systems and the rates of production of fusion products have not been determined. Much more work in this area can be done to either validate the hints of fusion or to provide null experiments related to geology.

SUMMARY AND RECOMMENDATIONS
The implied quest in all this is to find whether or not the heat engine driving plate tectonics is significantly dependent on hydrogen-isotope fusion for energy. If not, are the traces of fusion ashes on earth of local origin or do they come from a star? This is of more than casual interest because of the rising doubts of the major significance of U/Th/K in tectonic processes. Progress will come first from geologic research. 3He must be related to all significantly different heat sources. It will be difficult to distinguish fusion products coming from the core, from surface material, from primordial sources, and from cosmic contamination. Determining patterns of relations among different source materials, source locations, subterranean processes, and observed products will continue to be the major guide in finding answers to the questions of origins of heat and fusion products.

Laboratory research must proceed from the known to the unknown, beginning with hot fusion (perhaps ion-beam bombardment of selected materials\(^{37}\) or exploding wires of deuterium-containing materials\(^{38}\)) where fusion results are certain, and then progressing to "cooler" fusion. Fusion observed in violent material deformation must be controlled, measured, and related to geologic processes.\(^{39,40}\) Limits and bounds on fusion processes are not now available and are not being actively sought; but they can be obtained by the suggested progression from energetic to less energetic conditions. Sensitive fusion detectors, particularly neutron detectors,\(^{41}\) are now available worldwide for this work. Hopefully, theorists will be motivated to examine low-rate, geologically important problems.

CONCLUSIONS

At this time, no laboratory experiment can provide a "knob" that controls any parameter and increases or decreases cold fusion at will. No theory can provide a direction to go to find and control cold fusion. Materials science cannot give detailed knowledge of hydrogen-isotope behavior in materials under the pressure, temperature, and distortion environments met in geologic processes. Hints from geology are the best sources presently available for direction in both experimental and theoretical research toward understanding fusion in solid matter.

REFERENCES

Reference 3, p358. Also gives subduction rate of water of 10^{15} g/a, equivalent to 4×10^{26} d/sec.

V.F. Zelenskiy, V.F. Rybalko, A.N. Morozov, G.D. Tolstolutskaya, V.G. Kulish, S.V. Pistyak, and I.S. Martynov, "Experiments on cold nuclear fusion in Pd and Ti saturated with deuterium by ion implantation," Kharkov Physical-
Cold Nuclear Fusion in the Earth

17T. Mizuno, et.al., "Neutron evolution from annealed palladium cathode in LiOD-D$_2$O solution," Electrochemistry 57, 742-743 (1989)

24Reference 14. First-order rate constant obtained from system with unusually high deuterium concentration.

APPENDIX: THEORY OF CATALYZED FUSION

There are no complete theoretical results to guide geological research in cold fusion, so only the most general principles based on energy conservation will be invoked. This section is included to show that fusion paths other than those met in muon-catalyzed fusion are energetically possible and that contradictions which arise between production rates of heat and 3He and in the ratios of fusion products 3He, tritium, and neutrons may have simple solutions.

It is energetically possible for low-atomic-weight isotopes to fuse to produce heavier ones in conformity with the Einstein relation $E = mc^2$, and the only requirement is that the mass of the fusion products be less than the mass of the reactants. The Coulomb barrier ordinarily prevents fusion, but quantum-mechanical tunneling allows fusion, under favorable conditions, even if the nuclei do not approach each other within ordinary nuclear dimensions. Muon-catalyzed fusion results illustrate this conclusion. The deuterium nuclei separation, when bound by a muon, is about 3×10^{-13} m which is about 100 times the size of the nuclei involved, and tunneling is required for fusion.\(^2\) This distance can be achieved in d-d collisions with energy of about 1.5 keV. Tunneling reactions between hydrogen isotopes and heavy elements are less likely because of the greater repulsion of the higher-charged nuclei. However, heavy elements may be
important in searching for geologic fusion because they probably provide the best matrices in which to hold hydrogen isotopes together and create conditions aiding light-isotope fusion.

Experiments by Lawrence, McMillan, and Thornton and theory by Oppenheimer and Philips\(^{12}\) showed that the neutron from a deuteron projectile having a few hundred keV energy could tunnel into relatively heavy target nuclei (Na, Al, Si, Cu) in an exothermic reaction. Neutron tunneling probably occurs at lower threshold energies than full-nucleus tunneling, and the Oppenheimer-Phillips effect, with variations, could be fundamental in cold fusion research.

The basic neutron-tunneling reaction, using deuterium, is

\[
\text{d} + \text{x(A)} \rightarrow \text{p} + \text{x(A+1)} + Q_1.
\]

The deuteron loses its neutron, and the target element \(\text{x}\) captures the neutron and increases its nuclear mass from \(\text{A}\) to \(\text{A}+1\). In an extension of this reaction, the energetic proton or the excited target nucleus might interact individually with other deuterons, protons, or target nuclei. Also, the product-complex of proton, neutron, and target might interact as a unit with other nuclei, particularly deuterons or protons. The basic reaction of Eq. 1 and a few extended reaction possibilities are shown in Fig. 1. The reactions are shown as being sequential, but that is only for clarity, and they may be multi-body reactions.

As another extension of the theory, it is energetically possible for the target nucleus to lose a neutron to the deuteron producing a triton and a target nucleus of mass \(\text{A}-1\). This can happen with only a very few isotopes.

\[
\text{d} + \text{x(A)} \rightarrow \text{t} + \text{x(A-1)} + Q_2.
\]

Again, the energetic products might interact individually with deuterons, protons, or other target nuclei, or the product-complex might react as a whole. Various possibilities are given in Fig. 1. Because the primary reaction (2) is so rare, possible multi-body reactions are of most interest in this case. These may be related to the high t/n ratios observed in some experiments. Note that if the "target" is a proton or deuteron, the reaction is analogous to muon-catalyzed fusion and produces the same products. For "targets" of heavier elements, the nuclear products are not necessarily t and \(^3\text{He}\), and such products as protons and altered "neutron-rich" isotopes are produced. These would be difficult to detect in a geologic setting, even with large energy release, since the "altered" isotopes are among those already present from neutron reactions in the stars.

Table I is a listing of the energies for the different processes of Fig. 1 for a few selected elements. The common light elements of earth materials, those which have the lowest Coulomb barriers, Li, Be, B, C, N, and O, are prominent candidates to catalyze neutron-tunneling fusion. Quantum-mechanical considerations governing reaction paths and rates, and strong, electromagnetic, and weak forces, are as important as energy and Coulomb barrier in controlling fusion, but these will not be considered here.
Fig. 1. Possible pathways for neutron-tunneling reactions. Energy Q is given for each path segment; total energy is found by adding path-segment energies. Reactions are shown sequentially but may be multi-body. A few reactions using products from the first reaction are illustrated.
Table I

Calculated energy in atomic mass units for Eq. 1 and 2 and for reactions of Fig. 1. Multibody-reaction energy may be positive even with first-step energy negative. For example for 7Li: $Q_2 = -0.001068 \text{ a};$ $Q_{2.0} = 0.005398 \text{ a};$ $Q_{2.1.1} = 0.17815 \text{ a}.$ Thus $Q_2 + Q_{2.0} = 0.00433 \text{ a}$ and $Q_2 + Q_{2.1.1} = 0.01675 \text{ a}.$
<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATO 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ATO 1</td>
<td>1.0078252</td>
<td>99.985</td>
</tr>
<tr>
<td>ATO 2</td>
<td>2.0141022</td>
<td>0.015</td>
</tr>
<tr>
<td>ATO 3</td>
<td>3.0160497</td>
<td>0.0006</td>
</tr>
<tr>
<td>ATO 4</td>
<td>4.0302959</td>
<td>0</td>
</tr>
<tr>
<td>ATO 5</td>
<td>5.0333771</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET H- 1</th>
<th>TARGET H- 2</th>
<th>TARGET H- 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>-3.485871E-08</td>
<td>4.329466E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>0.043295</td>
<td>0</td>
</tr>
<tr>
<td>Q1.1</td>
<td>4.329466E-03</td>
<td>-7.969235E-03</td>
</tr>
<tr>
<td>Q1.11</td>
<td>0.0058977</td>
<td>0.0102272</td>
</tr>
<tr>
<td>Q1.12</td>
<td>0.0053291</td>
<td>0.0096586</td>
</tr>
<tr>
<td>Q1.2</td>
<td>4.329431E-03</td>
<td>-3.63977E-03</td>
</tr>
<tr>
<td>Q1.21</td>
<td>0.0053291</td>
<td>-0.0026401</td>
</tr>
<tr>
<td>Q2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q2.0</td>
<td>0</td>
<td>-3.485871E-08</td>
</tr>
<tr>
<td>Q2.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q2.11</td>
<td>2.321313E-02</td>
<td>1.888362E-02</td>
</tr>
<tr>
<td>Q2.12</td>
<td>0</td>
<td>0.0011213</td>
</tr>
<tr>
<td>Q2.13</td>
<td>0</td>
<td>0.0019413</td>
</tr>
<tr>
<td>Q2.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q2.21</td>
<td>0</td>
<td>4.329456E-03</td>
</tr>
<tr>
<td>Q2.22</td>
<td>0</td>
<td>0.0164954</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ATO 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ATO 1</td>
<td>3.0160297</td>
<td>0.00014</td>
</tr>
<tr>
<td>ATO 2</td>
<td>4.0026031</td>
<td>99.99986</td>
</tr>
<tr>
<td>ATO 3</td>
<td>5.0122966</td>
<td>0</td>
</tr>
<tr>
<td>ATO 4</td>
<td>6.0188928</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET HE- 3</th>
<th>TARGET HE- 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>1.970357E-02</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0153741</td>
</tr>
<tr>
<td>Q1.1</td>
<td>-3.416535E-03</td>
</tr>
<tr>
<td>Q1.11</td>
<td>0.0256013</td>
</tr>
<tr>
<td>Q1.12</td>
<td>0.0250327</td>
</tr>
<tr>
<td>Q1.2</td>
<td>1.628703E-02</td>
</tr>
<tr>
<td>Q1.21</td>
<td>0.0172867</td>
</tr>
<tr>
<td>Q2</td>
<td>0</td>
</tr>
<tr>
<td>Q2.0</td>
<td>-0.0153741</td>
</tr>
<tr>
<td>Q2.1</td>
<td>1.970357E-02</td>
</tr>
<tr>
<td>Q2.11</td>
<td>3.509523E-03</td>
</tr>
<tr>
<td>Q2.12</td>
<td>-0.0185823</td>
</tr>
<tr>
<td>Q2.13</td>
<td>-0.0177623</td>
</tr>
<tr>
<td>Q2.2</td>
<td>0</td>
</tr>
<tr>
<td>Q2.21</td>
<td>0</td>
</tr>
<tr>
<td>Q2.22</td>
<td>0</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>ATOMIC NMBR.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>LI</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5.0125381</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6.0151247</td>
<td>7.5</td>
</tr>
<tr>
<td>7</td>
<td>7.0160039</td>
<td>92.5</td>
</tr>
<tr>
<td>8</td>
<td>8.022487</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9.0268015</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET LI-6

<table>
<thead>
<tr>
<th>Q1</th>
<th>5.397765E-03</th>
<th>-2.061349E-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1.0</td>
<td>-0.0010683</td>
<td>0.0045356</td>
</tr>
<tr>
<td>Q1.2</td>
<td>-2.061349E-04</td>
<td>1.962465E-03</td>
</tr>
</tbody>
</table>

Q1.1	.0112955	0.0056916
Q1.1.2	.0107269	0.005123
Q1.2.1	5.19163E-03	1.75633E-03
Q1.2.2	.0061913	0.002756

TARGET LI-7

<table>
<thead>
<tr>
<th>Q2</th>
<th>0.0006391</th>
<th>-0.0010683</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2.0</td>
<td>3.690365E-03</td>
<td>5.397765E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>1.952272E-02</td>
<td>1.781532E-02</td>
</tr>
</tbody>
</table>

Q2.1	-0.0025691	-0.0042765
Q2.1.3	-0.0017491	-0.0034565
Q2.2.1	0	-4.292444E-04
Q2.2.2	0	0.0117367

TARGET BE-9

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7.0169289</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8.0053078</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9.0121855</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>10.0135343</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>11.0216655</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET BE-9

<table>
<thead>
<tr>
<th>Q1</th>
<th>4.928165E-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1.0</td>
<td>-0.005987</td>
</tr>
<tr>
<td>Q1.2</td>
<td>-1.854235E-03</td>
</tr>
</tbody>
</table>

Q1.1	.0108259
Q1.1.2	.0102573
Q1.2.1	3.07393E-03
Q1.2.2	.0040736

<table>
<thead>
<tr>
<th>Q2</th>
<th>0.0049302</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2.0</td>
<td>-6.007349E-04</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0135686</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>2.381382E-02</td>
</tr>
</tbody>
</table>

<p>| Q2.1 | .001772 |
| Q2.1.3 | .002542 |
| Q2.2.1 | -8.638444E-03|
| Q2.2.2 | .0035275 |</p>
<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8.0246093</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9.0133321</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10.0129387</td>
<td>19.8</td>
</tr>
<tr>
<td>11</td>
<td>11.0093052</td>
<td>80.2</td>
</tr>
<tr>
<td>12</td>
<td>12.0143536</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>13.0177798</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET B- 10

<table>
<thead>
<tr>
<th>TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>9.910465E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.005581</td>
</tr>
<tr>
<td>Q1.2</td>
<td>1.228565E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.0158082</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0152396</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.113903E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0121387</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0023409</td>
</tr>
<tr>
<td>Q2.0</td>
<td>6.670365E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0133247</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.654272E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0055491</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0047291</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-1.556564E-02</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>-0.0033997</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10.0168098</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>11.0114317</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>98.9</td>
</tr>
<tr>
<td>13</td>
<td>13.0033544</td>
<td>1.1</td>
</tr>
<tr>
<td>14</td>
<td>14.0032419</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15.0105995</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET C- 12

<table>
<thead>
<tr>
<th>TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>2.922565E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>0.0014069</td>
</tr>
<tr>
<td>Q1.2</td>
<td>6.389465E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.0088203</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0082517</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>9.31203E-03</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0103117</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0133792</td>
</tr>
<tr>
<td>Q2.0</td>
<td>1.770867E-02</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0073256</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>5.504424E-03</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0165874</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0157674</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-2.070485E-02</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>-0.0085389</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>ATOMIC NMBR.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
</tr>
<tr>
<td>12</td>
<td>12.0186412</td>
</tr>
<tr>
<td>13</td>
<td>13.0057384</td>
</tr>
<tr>
<td>14</td>
<td>14.0030743</td>
</tr>
<tr>
<td>15</td>
<td>15.0001078</td>
</tr>
<tr>
<td>16</td>
<td>16.0061033</td>
</tr>
<tr>
<td>17</td>
<td>17.0084498</td>
</tr>
</tbody>
</table>

TARGET N- 14

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>14</td>
<td>14.008597</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15.0030702</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15.994915</td>
<td>99.762</td>
</tr>
<tr>
<td>17</td>
<td>16.9991329</td>
<td>.038</td>
</tr>
<tr>
<td>18</td>
<td>17.9991598</td>
<td>.2</td>
</tr>
<tr>
<td>19</td>
<td>19.0035777</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20.0040784</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET O- 15

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>12</td>
<td>12.0186412</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>13.0057384</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>14.0030743</td>
<td>99.63</td>
</tr>
<tr>
<td>15</td>
<td>15.0001078</td>
<td>.37</td>
</tr>
<tr>
<td>16</td>
<td>16.0061033</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>17.0084498</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET N- 14

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>14</td>
<td>14.008597</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15.0030702</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15.994915</td>
<td>99.762</td>
</tr>
<tr>
<td>17</td>
<td>16.9991329</td>
<td>.038</td>
</tr>
<tr>
<td>18</td>
<td>17.9991598</td>
<td>.2</td>
</tr>
<tr>
<td>19</td>
<td>19.0035777</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20.0040784</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET O- 16

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>14</td>
<td>14.008597</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15.0030702</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15.994915</td>
<td>99.762</td>
</tr>
<tr>
<td>17</td>
<td>16.9991329</td>
<td>.038</td>
</tr>
<tr>
<td>18</td>
<td>17.9991598</td>
<td>.2</td>
</tr>
<tr>
<td>19</td>
<td>19.0035777</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20.0040784</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET O- 17

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>14</td>
<td>14.008597</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15.0030702</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15.994915</td>
<td>99.762</td>
</tr>
<tr>
<td>17</td>
<td>16.9991329</td>
<td>.038</td>
</tr>
<tr>
<td>18</td>
<td>17.9991598</td>
<td>.2</td>
</tr>
<tr>
<td>19</td>
<td>19.0035777</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20.0040784</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET O- 18

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>14</td>
<td>14.008597</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15.0030702</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15.994915</td>
<td>99.762</td>
</tr>
<tr>
<td>17</td>
<td>16.9991329</td>
<td>.038</td>
</tr>
<tr>
<td>18</td>
<td>17.9991598</td>
<td>.2</td>
</tr>
<tr>
<td>19</td>
<td>19.0035777</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20.0040784</td>
<td>0</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>ATOMIC NMBR.</td>
<td>TERMS</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>17</td>
<td>17.0020955</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>18.009365</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>18.9984045</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>19.9999871</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>20.9999504</td>
<td>0</td>
</tr>
</tbody>
</table>

TARGET F- 19

<table>
<thead>
<tr>
<th>TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>4.694365E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0003649</td>
</tr>
<tr>
<td>Q1.2</td>
<td>6.313666E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.0105921</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0100235</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.100803E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0120077</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>-0.0044795</td>
</tr>
<tr>
<td>Q2.0</td>
<td>8.808965E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0031065</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.400412E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0076877</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0068677</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-7.586045E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>0.0045799</td>
</tr>
</tbody>
</table>

TARGET NA- 23

<table>
<thead>
<tr>
<th>TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>5.085365E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0007559</td>
</tr>
<tr>
<td>Q1.2</td>
<td>7.283565E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.0109831</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0104145</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.236893E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0133686</td>
</tr>
</tbody>
</table>

TARGET MG- 24

<table>
<thead>
<tr>
<th>TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>5.479665E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0011502</td>
</tr>
<tr>
<td>Q1.2</td>
<td>9.523065E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.0113774</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0108088</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.500273E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0160024</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0110308</td>
</tr>
<tr>
<td>Q2.0</td>
<td>1.536027E-02</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0076722</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>7.852824E-03</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.014239</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.013419</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-1.870304E-02</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>-0.005371</td>
</tr>
</tbody>
</table>

TARGET MG- 25

<table>
<thead>
<tr>
<th>TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>9.523065E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0051936</td>
</tr>
<tr>
<td>Q1.2</td>
<td>4.525265E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.0154208</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0148522</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.404833E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.015048</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0051936</td>
</tr>
<tr>
<td>Q2.0</td>
<td>5.479665E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0110308</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.773342E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0043584</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0035384</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-1.218105E-02</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>-0.000151</td>
</tr>
</tbody>
</table>

TARGET MG- 26

<table>
<thead>
<tr>
<th>TERMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>4.525265E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0001958</td>
</tr>
<tr>
<td>Q1.2</td>
<td>6.746466E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.010423</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>9.854399E-03</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.127173E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0122714</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0051936</td>
</tr>
<tr>
<td>Q2.0</td>
<td>9.523065E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0011502</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.369002E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0084018</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0075818</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-6.343845E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>0.0058221</td>
</tr>
</tbody>
</table>

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.187.97.22 On: Tue, 01 Apr 2014 20:28:19
ELEMENT AL

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>24.990412 0</td>
</tr>
<tr>
<td>26</td>
<td>25.9868908 0</td>
</tr>
<tr>
<td>27</td>
<td>26.9815388 100</td>
</tr>
<tr>
<td>28</td>
<td>27.9819045 0</td>
</tr>
<tr>
<td>29</td>
<td>28.9804418 0</td>
</tr>
</tbody>
</table>

TARGET AL- 27

Q1	5.911265E-03
Q1.0	-.0015818
Q1.2	7.739665E-03
Q1.1.1	.011809
Q1.1.2	.0112404
Q1.2.1	1.365093E-02
Q1.2.2	.0146506
Q2	-.0072995
Q2.0	1.162897E-02
Q2.2	-.0054687
Q2.1.1	1.158412E-02
Q2.1.2	-.0105077
Q2.1.3	-.0096877
Q2.2.1	-.1.276824E-02
Q2.2.2	-.0006023

ELEMENT SI

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>25.9923432 0</td>
</tr>
<tr>
<td>27</td>
<td>26.9867027 0</td>
</tr>
<tr>
<td>28</td>
<td>27.9769292 92.21</td>
</tr>
<tr>
<td>29</td>
<td>28.9764957 4.7</td>
</tr>
<tr>
<td>30</td>
<td>29.9737628 3.09</td>
</tr>
<tr>
<td>31</td>
<td>30.9753487 0</td>
</tr>
<tr>
<td>32</td>
<td>31.9740198 0</td>
</tr>
</tbody>
</table>

TARGET SI- 28

Q1	6.710465E-03
Q1.0	-.002381
Q1.2	9.009865E-03
Q1.1.1	.0126082
Q1.1.2	.0120396
Q1.2.1	1.572033E-02
Q1.2.2	.01672
Q2	-.011721
Q2.0	1.605047E-02
Q2.2	-.007588
Q2.1.1	7.162624E-03
Q2.1.2	-.0149292
Q2.1.3	-.0141092
Q2.2.1	-.1.930904E-02
Q2.2.2	-.0071431

TARGET SI- 29

Q1	9.009865E-03
Q1.0	-.0046804
Q1.2	4.691066E-03
Q1.1.1	.0149076
Q1.1.2	.014339
Q1.2.1	1.370093E-02
Q1.2.2	.0147006
Q2	-.002381
Q2.0	6.710465E-03
Q2.2	-.011721
Q2.1.1	1.650262E-02
Q2.1.2	-.0055892
Q2.1.3	-.0047692
Q2.2.1	-.4.10205E-02
Q2.2.2	-.0019361

TARGET SI- 30

<p>| Q1 | 9.009865E-03 |
| Q1.0 | -.002381 |
| Q1.2 | 4.691066E-03 |
| Q1.1.1 | .0126082 |
| Q1.1.2 | .0120396 |
| Q1.2.1 | 1.572033E-02 |
| Q1.2.2 | .01672 |
| Q2 | -.0078886 |
| Q2.0 | 9.009865E-03 |
| Q2.2 | -.002381 |
| Q2.1.1 | 1.420322E-02 |
| Q2.1.2 | -.0055892 |
| Q2.1.3 | -.0047692 |
| Q2.2.1 | -.7.06144E-03 |
| Q2.2.2 | -.0019361 |</p>
<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>15</td>
<td>1</td>
<td>S</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>29</td>
<td>28.9818084</td>
<td>0</td>
<td>30</td>
<td>29.9848733</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>29.978317</td>
<td>0</td>
<td>31</td>
<td>30.9796107</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>30.9737647</td>
<td>100</td>
<td>32</td>
<td>31.9714618</td>
<td>.76</td>
</tr>
<tr>
<td>32</td>
<td>31.9739094</td>
<td>0</td>
<td>33</td>
<td>32.967864</td>
<td>4.22</td>
</tr>
<tr>
<td>33</td>
<td>32.9717278</td>
<td>0</td>
<td>34</td>
<td>33.9690304</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>34.9670897</td>
<td>.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>35.9710135</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>36.9712281</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>37.9712281</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET P- 31</td>
<td></td>
<td></td>
<td>TARGET S- 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>6.132265E-03</td>
<td></td>
<td>Q1</td>
<td>6.888765E-03</td>
<td></td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.0018028</td>
<td></td>
<td>Q1.0</td>
<td>-.0025593</td>
<td></td>
</tr>
<tr>
<td>Q1.2</td>
<td>8.458565E-03</td>
<td></td>
<td>Q1.2</td>
<td>9.874765E-03</td>
<td></td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.01203</td>
<td></td>
<td>Q1.1.1</td>
<td>.0127865</td>
<td></td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.0114614</td>
<td></td>
<td>Q1.1.2</td>
<td>.0122179</td>
<td></td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.459083E-02</td>
<td></td>
<td>Q1.2.1</td>
<td>1.676353E-02</td>
<td></td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.0155905</td>
<td></td>
<td>Q1.2.2</td>
<td>.0177632</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td>Q2</td>
<td>-.0049486</td>
<td></td>
</tr>
<tr>
<td>Q2.0</td>
<td></td>
<td></td>
<td>Q2.0</td>
<td>1.38407E-02</td>
<td></td>
</tr>
<tr>
<td>Q2.2</td>
<td></td>
<td></td>
<td>Q2.2</td>
<td>-.0072101</td>
<td></td>
</tr>
<tr>
<td>Q2.1.1</td>
<td></td>
<td></td>
<td>Q2.1.1</td>
<td>9.399023E-03</td>
<td></td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.9.708001E-03</td>
<td></td>
<td>Q2.1.2</td>
<td>-.0126928</td>
<td></td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.008888</td>
<td></td>
<td>Q2.1.3</td>
<td>-.0118728</td>
<td></td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-.1.193874E-02</td>
<td></td>
<td>Q2.2.1</td>
<td>-.1.66947E-02</td>
<td></td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>.0002272</td>
<td></td>
<td>Q2.2.2</td>
<td>-.0045288</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET S- 33</td>
<td></td>
<td></td>
<td>TARGET S- 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>9.874765E-03</td>
<td></td>
<td>Q1</td>
<td>5.110565E-03</td>
<td></td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.0055453</td>
<td></td>
<td>Q1.0</td>
<td>-.0007811</td>
<td></td>
</tr>
<tr>
<td>Q1.2</td>
<td>5.110565E-03</td>
<td></td>
<td>Q1.2</td>
<td>8.217666E-03</td>
<td></td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.0157725</td>
<td></td>
<td>Q1.1.1</td>
<td>.0110083</td>
<td></td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.0152039</td>
<td></td>
<td>Q1.1.2</td>
<td>.0104397</td>
<td></td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.498533E-02</td>
<td></td>
<td>Q1.2.1</td>
<td>1.332823E-02</td>
<td></td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.015985</td>
<td></td>
<td>Q1.2.2</td>
<td>.0143279</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>-.0025593</td>
<td></td>
<td>Q2</td>
<td>-.0055453</td>
<td></td>
</tr>
<tr>
<td>Q2.0</td>
<td>6.888765E-03</td>
<td></td>
<td>Q2.0</td>
<td>9.874765E-03</td>
<td></td>
</tr>
<tr>
<td>Q2.2</td>
<td>-.0094846</td>
<td></td>
<td>Q2.2</td>
<td>-.0025593</td>
<td></td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.632432E-02</td>
<td></td>
<td>Q2.1.1</td>
<td>1.333833E-02</td>
<td></td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0057675</td>
<td></td>
<td>Q2.1.2</td>
<td>-.0087535</td>
<td></td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0049475</td>
<td></td>
<td>Q2.1.3</td>
<td>-.0079335</td>
<td></td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-.1.204395E-02</td>
<td></td>
<td>Q2.2.1</td>
<td>-.8.104645E-03</td>
<td></td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>.000122</td>
<td></td>
<td>Q2.2.2</td>
<td>.0040613</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET S- 36</td>
<td></td>
<td></td>
<td>TARGET S- 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>5.110565E-03</td>
<td></td>
<td>Q1</td>
<td>2.351165E-03</td>
<td></td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.0007811</td>
<td></td>
<td>Q1.0</td>
<td>.0019763</td>
<td></td>
</tr>
<tr>
<td>Q1.2</td>
<td>8.217666E-03</td>
<td></td>
<td>Q1.2</td>
<td>6.062365E-03</td>
<td></td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.0110083</td>
<td></td>
<td>Q1.1.1</td>
<td>.0082509</td>
<td></td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.0104397</td>
<td></td>
<td>Q1.1.2</td>
<td>.0076823</td>
<td></td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.332823E-02</td>
<td></td>
<td>Q1.2.1</td>
<td>8.415531E-03</td>
<td></td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.0143279</td>
<td></td>
<td>Q1.2.2</td>
<td>.0094152</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>-.0055453</td>
<td></td>
<td>Q2</td>
<td>-.0038882</td>
<td></td>
</tr>
<tr>
<td>Q2.0</td>
<td>9.874765E-03</td>
<td></td>
<td>Q2.0</td>
<td>8.217666E-03</td>
<td></td>
</tr>
<tr>
<td>Q2.2</td>
<td>-.0025593</td>
<td></td>
<td>Q2.2</td>
<td>-.0007811</td>
<td></td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.333833E-02</td>
<td></td>
<td>Q2.1.1</td>
<td>1.499542E-02</td>
<td></td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0087535</td>
<td></td>
<td>Q2.1.2</td>
<td>-.0070964</td>
<td></td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0079335</td>
<td></td>
<td>Q2.1.3</td>
<td>-.0062764</td>
<td></td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-.8.104645E-03</td>
<td></td>
<td>Q2.2.1</td>
<td>-.4.669345E-03</td>
<td></td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>.0040613</td>
<td></td>
<td>Q2.2.2</td>
<td>.0074966</td>
<td></td>
</tr>
<tr>
<td>ELEMENT</td>
<td>ATOMIC NMBR.</td>
<td>TERMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>17</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>32.9774399</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>33.9735701</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>34.9688511</td>
<td>75.53</td>
</tr>
<tr>
<td>36</td>
<td>35.9683084</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>36.965898</td>
<td>24.47</td>
</tr>
<tr>
<td>38</td>
<td>37.9680042</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>38.9680076</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q1</th>
<th>6.819665E-03</th>
<th>4.170765E-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1.0</td>
<td>-0.0024902</td>
<td>0.0001587</td>
</tr>
<tr>
<td>Q1.2</td>
<td>8.687365E-03</td>
<td>6.273566E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.0127174</td>
<td>0.0100685</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0121488</td>
<td>0.0094999</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.550703E-02</td>
<td>1.044433E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0165067</td>
<td>0.011444</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0068465</td>
<td>-0.0043579</td>
</tr>
<tr>
<td>Q2.0</td>
<td>1.117997E-02</td>
<td>8.687365E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0056373</td>
<td>-0.0024902</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.203712E-02</td>
<td>1.452572E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0100547</td>
<td>-0.0075661</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-9.234701E-03</td>
<td>-0.0067461</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-1.248385E-02</td>
<td>-6.848145E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>-0.0003179</td>
<td>0.0053178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>19</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>36.9733648</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>37.9690962</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>38.9637098</td>
<td>93.1</td>
</tr>
<tr>
<td>40</td>
<td>39.9639997</td>
<td>0.118</td>
</tr>
<tr>
<td>41</td>
<td>40.961832</td>
<td>6.88</td>
</tr>
<tr>
<td>42</td>
<td>41.9624057</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>42.9607301</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET CL- 35</th>
<th>TARGET CL- 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0068465</td>
<td>-0.0043579</td>
</tr>
<tr>
<td>1.117997E-02</td>
<td>8.687365E-03</td>
</tr>
<tr>
<td>-0.0056373</td>
<td>-0.0024902</td>
</tr>
<tr>
<td>1.203712E-02</td>
<td>1.452572E-02</td>
</tr>
<tr>
<td>-0.0100547</td>
<td>-0.0075661</td>
</tr>
<tr>
<td>-9.234701E-03</td>
<td>-0.0067461</td>
</tr>
<tr>
<td>-1.248385E-02</td>
<td>-6.848145E-03</td>
</tr>
<tr>
<td>-0.0003179</td>
<td>0.0053178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>19</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>36.9733648</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>37.9690962</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>38.9637098</td>
<td>93.1</td>
</tr>
<tr>
<td>40</td>
<td>39.9639997</td>
<td>0.118</td>
</tr>
<tr>
<td>41</td>
<td>40.961832</td>
<td>6.88</td>
</tr>
<tr>
<td>42</td>
<td>41.9624057</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>42.9607301</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET K- 39</th>
<th>TARGET K- 40</th>
<th>TARGET K- 41</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0068465</td>
<td>-0.0043579</td>
<td>5.703266E-03</td>
</tr>
<tr>
<td>1.117997E-02</td>
<td>8.687365E-03</td>
<td>7.952566E-03</td>
</tr>
<tr>
<td>-0.0056373</td>
<td>-0.0024902</td>
<td>-0.0013738</td>
</tr>
<tr>
<td>1.203712E-02</td>
<td>1.452572E-02</td>
<td>5.703266E-03</td>
</tr>
<tr>
<td>-0.0100547</td>
<td>-0.0075661</td>
<td>-0.0067461</td>
</tr>
<tr>
<td>-9.234701E-03</td>
<td>-0.0067461</td>
<td>-0.0067461</td>
</tr>
<tr>
<td>-1.248385E-02</td>
<td>-6.848145E-03</td>
<td>-0.0043579</td>
</tr>
<tr>
<td>-0.0003179</td>
<td>0.0053178</td>
<td>0.0053178</td>
</tr>
</tbody>
</table>

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.
<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>37.9767141</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>38.9706917</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>39.9625888</td>
<td>96.947</td>
</tr>
<tr>
<td>41</td>
<td>40.9622746</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>41.9586248</td>
<td>.646</td>
</tr>
<tr>
<td>43</td>
<td>42.9587793</td>
<td>.135</td>
</tr>
<tr>
<td>44</td>
<td>43.9554901</td>
<td>2.083</td>
</tr>
<tr>
<td>45</td>
<td>44.9561892</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>45.9536886</td>
<td>.186</td>
</tr>
<tr>
<td>47</td>
<td>46.9545374</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>47.9525313</td>
<td>.18</td>
</tr>
<tr>
<td>49</td>
<td>48.9556746</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>49.957519</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET CA- 40</th>
<th>TARGET CA- 42</th>
<th>TARGET CA- 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>6.59116E-03</td>
<td>6.12246E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.0022617</td>
<td>-.001793</td>
</tr>
<tr>
<td>Q1.2</td>
<td>9.92676E-03</td>
<td>9.56616E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.0124889</td>
<td>.0120202</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.0119203</td>
<td>.0114516</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.65179E-02</td>
<td>1.56866E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.0175176</td>
<td>.0166883</td>
</tr>
<tr>
<td>Q2</td>
<td>-.0100504</td>
<td>-.0055973</td>
</tr>
<tr>
<td>Q2.0</td>
<td>1.43798E-02</td>
<td>9.92676E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-.0079699</td>
<td>-.0022617</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>8.63322E-03</td>
<td>1.32863E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0132586</td>
<td>-8.80550E-03</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0124386</td>
<td>-.0079855</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-1.80203E-02</td>
<td>-7.85904E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>-.0058544</td>
<td>.0043069</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET CA- 44</th>
<th>TARGET CA- 46</th>
<th>TARGET CA- 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>5.57786E-03</td>
<td>5.42816E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.0012484</td>
<td>-.0010987</td>
</tr>
<tr>
<td>Q1.2</td>
<td>8.77756E-03</td>
<td>8.28306E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.0114756</td>
<td>.0113259</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.010907</td>
<td>.0107573</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.43554E-02</td>
<td>1.37112E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.0153551</td>
<td>.0147109</td>
</tr>
<tr>
<td>Q2</td>
<td>-.0052367</td>
<td>-.0044441</td>
</tr>
<tr>
<td>Q2.0</td>
<td>9.56616E-03</td>
<td>8.77756E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-.001793</td>
<td>-.0012484</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.36469E-02</td>
<td>1.44355E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0084449</td>
<td>-.0076563</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0076249</td>
<td>-.0068363</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-7.02974E-03</td>
<td>-5.69654E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>.0051362</td>
<td>.0064694</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>ATOMIC NMBR.</td>
<td>TERMS</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>TI</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>ATOMIC WT.</td>
<td>ATM. MASS</td>
<td>PERCENT</td>
</tr>
<tr>
<td>44</td>
<td>43.9595714</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>44.9581285</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>45.9526315</td>
<td>7.93</td>
</tr>
<tr>
<td>47</td>
<td>46.9517684</td>
<td>7.28</td>
</tr>
<tr>
<td>48</td>
<td>47.947949</td>
<td>73.94</td>
</tr>
<tr>
<td>49</td>
<td>48.9478703</td>
<td>5.51</td>
</tr>
<tr>
<td>50</td>
<td>49.9447856</td>
<td>5.34</td>
</tr>
<tr>
<td>51</td>
<td>50.9466028</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>51.9468155</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET TI- 46</th>
<th>TARGET TI- 47</th>
<th>TARGET TI- 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>7.140065E-03</td>
<td>1.009547E-02</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0028106</td>
<td>-0.005766</td>
</tr>
<tr>
<td>Q1.2</td>
<td>1.009547E-02</td>
<td>6.356566E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.130378</td>
<td>0.159932</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0124692</td>
<td>0.0154246</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.723553E-02</td>
<td>1.645203E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0182352</td>
<td>0.0174517</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0074445</td>
<td>-0.0028106</td>
</tr>
<tr>
<td>Q2.0</td>
<td>1.177397E-02</td>
<td>7.140065E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0031904</td>
<td>-0.0074445</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.143912E-02</td>
<td>1.607302E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0106527</td>
<td>-0.0060188</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0098327</td>
<td>-0.0051988</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-1.083495E-02</td>
<td>-1.025514E-02</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>0.001331</td>
<td>0.0019108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET TI- 49</th>
<th>TARGET TI- 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>9.361665E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0050322</td>
</tr>
<tr>
<td>Q1.2</td>
<td>4.459766E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.152594</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0146908</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.382143E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0148211</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0020271</td>
</tr>
<tr>
<td>Q2.0</td>
<td>6.356566E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.005766</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.685652E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0052353</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0044153</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-7.793145E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>0.0043728</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>ATOMIC NMBR.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>FE</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>51.9481168</td>
<td>0</td>
</tr>
<tr>
<td>53</td>
<td>52.9455724</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>53.9396167</td>
<td>5.82</td>
</tr>
<tr>
<td>55</td>
<td>54.9382982</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>55.934936</td>
<td>91.66001</td>
</tr>
<tr>
<td>57</td>
<td>56.9353976</td>
<td>2.19</td>
</tr>
<tr>
<td>58</td>
<td>57.9332814</td>
<td>.33</td>
</tr>
<tr>
<td>59</td>
<td>58.9348774</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>59.9339638</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET FE- 54</th>
<th>TARGET FE- 56</th>
<th>TARGET FE- 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>7.595465E-03</td>
<td>5.815366E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.003266</td>
<td>-.0014859</td>
</tr>
<tr>
<td>Q1.2</td>
<td>9.639166E-03</td>
<td>8.393165E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.0134932</td>
<td>.0117131</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.0129246</td>
<td>.0111445</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.723463E-02</td>
<td>1.420853E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.0182343</td>
<td>.0152082</td>
</tr>
<tr>
<td>Q2</td>
<td>-.0079032</td>
<td>-.0053097</td>
</tr>
<tr>
<td>Q2.0</td>
<td>1.223267E-02</td>
<td>9.639166E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-.0044919</td>
<td>-.003266</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.098042E-02</td>
<td>1.357392E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0111114</td>
<td>-.0517899E-03</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0102914</td>
<td>-.0076979</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>1.239515E-02</td>
<td>8.575744E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>-.0002292</td>
<td>.0035902</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET FE- 58</th>
<th>TARGET FE- 59</th>
<th>TARGET FE- 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>4.680965E-03</td>
<td>7.190565E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.0003515</td>
<td>.0128712</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.0105787</td>
<td>.0100101</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>1.187153E-02</td>
<td>1.847153E-02</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>.0128712</td>
<td>.0128712</td>
</tr>
<tr>
<td>Q2</td>
<td>-.0040637</td>
<td>-.0040637</td>
</tr>
<tr>
<td>Q2.0</td>
<td>8.393165E-03</td>
<td>8.393165E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-.0014859</td>
<td>-.0014859</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.481992E-02</td>
<td>1.481992E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0072719</td>
<td>-.0072719</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0064519</td>
<td>-.0064519</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>5.549644E-03</td>
<td>5.549644E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>.0066163</td>
<td>.0066163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>27</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>56.9362955</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>57.93576</td>
<td>0</td>
</tr>
<tr>
<td>59</td>
<td>58.9331889</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>59.9338131</td>
<td>0</td>
</tr>
<tr>
<td>61</td>
<td>60.9324403</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET CO- 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
</tr>
<tr>
<td>Q1.0</td>
</tr>
<tr>
<td>Q1.2</td>
</tr>
<tr>
<td>Q1.1.1</td>
</tr>
<tr>
<td>Q1.1.2</td>
</tr>
<tr>
<td>Q1.2.1</td>
</tr>
<tr>
<td>Q1.2.2</td>
</tr>
<tr>
<td>Q2</td>
</tr>
<tr>
<td>Q2.0</td>
</tr>
<tr>
<td>Q2.2</td>
</tr>
<tr>
<td>Q2.1.1</td>
</tr>
<tr>
<td>Q2.1.2</td>
</tr>
<tr>
<td>Q2.1.3</td>
</tr>
<tr>
<td>Q2.2.1</td>
</tr>
<tr>
<td>Q2.2.2</td>
</tr>
<tr>
<td>ELEMENT</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>NI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATM. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>55.9421153</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>56.9397688</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>57.9353414</td>
<td>68.274</td>
</tr>
<tr>
<td>59</td>
<td>58.9343419</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>59.9307866</td>
<td>26.095</td>
</tr>
<tr>
<td>61</td>
<td>60.9310555</td>
<td>1.134</td>
</tr>
<tr>
<td>62</td>
<td>61.9283414</td>
<td>3.593</td>
</tr>
<tr>
<td>63</td>
<td>62.9296641</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>63.9279571</td>
<td>.904</td>
</tr>
<tr>
<td>65</td>
<td>64.9300709</td>
<td>0</td>
</tr>
<tr>
<td>66</td>
<td>65.9290857</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET NI- 58</th>
<th>TARGET NI- 60</th>
<th>TARGET NI- 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>7.276465E-03</td>
<td>6.008066E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.002947</td>
<td>-.0016786</td>
</tr>
<tr>
<td>Q1.2</td>
<td>9.832265E-03</td>
<td>8.991066E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.0131742</td>
<td>.0119058</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.0126056</td>
<td>.0113372</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.710873E-02</td>
<td>1.499913E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.0181084</td>
<td>.0159988</td>
</tr>
<tr>
<td>Q2</td>
<td>-.0063749</td>
<td>-.0055028</td>
</tr>
<tr>
<td>Q2.0</td>
<td>1.070437E-02</td>
<td>9.832265E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-.004294</td>
<td>-.002947</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.250872E-02</td>
<td>1.338082E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0095831</td>
<td>-.008711</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0087631</td>
<td>-.007891</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-1.066895E-02</td>
<td>-8.449844E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>.001497</td>
<td>.0037161</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET NI- 62</th>
<th>TARGET NI- 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>4.954265E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-.0006248</td>
</tr>
<tr>
<td>Q1.2</td>
<td>7.983965E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>.010852</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.0102834</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.293823E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.0139379</td>
</tr>
<tr>
<td>Q2</td>
<td>-.0046616</td>
</tr>
<tr>
<td>Q2.0</td>
<td>8.991066E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-.0016786</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.422202E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0078698</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0070498</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-6.340245E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>.0058257</td>
</tr>
</tbody>
</table>
Cold Nuclear Fusion in the Earth

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOMIC NMBR.</th>
<th>TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>46</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>AT. MASS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>99.908527</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>100.908287</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>101.905634</td>
<td>1.02</td>
</tr>
<tr>
<td>103</td>
<td>102.906114</td>
<td>0</td>
</tr>
<tr>
<td>104</td>
<td>103.904029</td>
<td>11.14</td>
</tr>
<tr>
<td>105</td>
<td>104.905079</td>
<td>22.33</td>
</tr>
<tr>
<td>106</td>
<td>105.903478</td>
<td>27.33</td>
</tr>
<tr>
<td>107</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>108</td>
<td>107.903895</td>
<td>26.46</td>
</tr>
<tr>
<td>109</td>
<td>108.905954</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>109.905167</td>
<td>11.72</td>
</tr>
<tr>
<td>111</td>
<td>110.90766</td>
<td>0</td>
</tr>
<tr>
<td>112</td>
<td>111.907323</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET PD- 102</th>
<th>TARGET PD- 104</th>
<th>TARGET PD- 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>5.796965E-03</td>
<td>5.226965E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>-0.0014675</td>
<td>-0.0008975</td>
</tr>
<tr>
<td>Q1.2</td>
<td>8.361966E-03</td>
<td>7.877966E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0.0116947</td>
<td>0.0111247</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0.0111261</td>
<td>0.0105561</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.415893E-02</td>
<td>1.310493E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0151586</td>
<td>0.0141046</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0046005</td>
<td>-0.0040325</td>
</tr>
<tr>
<td>Q2.0</td>
<td>8.929965E-03</td>
<td>8.361966E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0021875</td>
<td>-0.0014675</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.428312E-02</td>
<td>1.485112E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0078087</td>
<td>-0.0072407</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0069887</td>
<td>-0.0064207</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-6.788044E-03</td>
<td>-5.500044E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>0.0053779</td>
<td>0.0066659</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET PD- 106</th>
<th>TARGET PD- 108</th>
<th>TARGET PD- 110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0</td>
<td>4.217965E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>0</td>
<td>0.0001115</td>
</tr>
<tr>
<td>Q1.2</td>
<td>0</td>
<td>7.063966E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>0</td>
<td>0.0101157</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>0</td>
<td>9.547101E-03</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>1.213693E-02</td>
<td>1.128193E-02</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>0.0131366</td>
<td>0.0122816</td>
</tr>
<tr>
<td>Q2</td>
<td>-0.0035485</td>
<td>0</td>
</tr>
<tr>
<td>Q2.0</td>
<td>7.877966E-03</td>
<td>0</td>
</tr>
<tr>
<td>Q2.2</td>
<td>-0.0008975</td>
<td>0</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.533512E-02</td>
<td>0</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-0.0067567</td>
<td>0</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-0.0059367</td>
<td>0</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-4.446044E-03</td>
<td>-3.478045E-03</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>0.0077199</td>
<td>8.687901E-03</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>ATOMIC NMBR.</td>
<td>TERMS</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>U</td>
<td>92</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATOMIC WT.</th>
<th>ATOMIC NMBR.</th>
<th>ATOMIC NMBR.</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>232</td>
<td>232.03713</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>233.039628</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>234.040946</td>
<td>.0057</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>235.043924</td>
<td>.72</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>236.045562</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>237.048724</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>238.050784</td>
<td>99.26999</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>239.054289</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>240.056587</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET U- 234</th>
<th>TARGET U- 235</th>
<th>TARGET U- 238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>3.298965E-03</td>
<td>.638965E-03</td>
</tr>
<tr>
<td>Q1.0</td>
<td>.0010305</td>
<td>-.0003095</td>
</tr>
<tr>
<td>Q1.2</td>
<td>4.638965E-03</td>
<td>3.114965E-03</td>
</tr>
<tr>
<td>Q1.1.1</td>
<td>9.196699E-03</td>
<td>.0105367</td>
</tr>
<tr>
<td>Q1.1.2</td>
<td>.0086281</td>
<td>.0099681</td>
</tr>
<tr>
<td>Q1.2.1</td>
<td>7.937931E-03</td>
<td>7.75393E-03</td>
</tr>
<tr>
<td>Q1.2.2</td>
<td>.0089376</td>
<td>8.753599E-03</td>
</tr>
<tr>
<td>Q2</td>
<td>-.0006295</td>
<td>.010305</td>
</tr>
<tr>
<td>Q2.0</td>
<td>4.958966E-03</td>
<td>3.298965E-03</td>
</tr>
<tr>
<td>Q2.2</td>
<td>.0005505</td>
<td>-.0006295</td>
</tr>
<tr>
<td>Q2.1.1</td>
<td>1.825412E-02</td>
<td>1.991412E-02</td>
</tr>
<tr>
<td>Q2.1.2</td>
<td>-.0038377</td>
<td>-.0021777</td>
</tr>
<tr>
<td>Q2.1.3</td>
<td>-.0030177</td>
<td>-.0013577</td>
</tr>
<tr>
<td>Q2.2.1</td>
<td>-.790443E-05</td>
<td>4.009557E-04</td>
</tr>
<tr>
<td>Q2.2.2</td>
<td>.0120869</td>
<td>.0125669</td>
</tr>
</tbody>
</table>

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.