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Antiphase structures of an improper ferroelastic phase transition driven
by an M5
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Rare-earth alloysRAg12xInx ~whereR5La, Ce, and Pr! are improper ferroelastic materials with the CsCl
structure. A weakly first-order phase transition occurs with the softening of a zone-edge M5

2 mode that drives
the material from a cubic phase to a tetragonal phase. Based on Ginzburg-Landau theory, we utilize the
complete free-energy density, constructed from a six-dimensional primary order parameter~shuffle! that
couples to strain, to study domain formation. The model allows the study of complex antiphase structures that
appear in this cubic-to-tetragonal phase transition. With the help of numerical techniques, the order-parameter
profiles across antiphase boundaries of different orientations and their temperature dependence are calculated.
We find a single set of two coupled dimensionless governing equations, which are applicable to order-
parameter profiles across all antiphase boundaries for this transition.

DOI: 10.1103/PhysRevB.64.024106 PACS number~s!: 64.70.Kb, 02.20.2a, 61.50.Ah, 61.50.Ks
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I. INTRODUCTION

Landau theory was originally developed for a secon
order phase transition for which the amplitude of the so
mode phonon becomes dominant near the phase-trans
temperature.1 This expansion method of using only the am
plitude of the dominant mode is also applicable to the cas
a weakly first-order phase transition.2,3 To account for the
inhomogeneous structures that occur as a result of the p
transition, an energy term associated with order-param
~OP! gradients was introduced, which is often called the G
zburg term.4 The simple formulation of Ginzburg-Landa
~GL! theory has proven to be successful for the descrip
of many phase transitions and inhomogeneous structu
such as domains, domain walls, and interfaces.5 In most of
the cases reported in the literature, simplified one- or tw
dimensional models are often used that, although eas
solve mathematically, often miss many interesting phys
phenomena associated with the phase transition, such as
sible lower symmetry phases and antiphase structures, w
are of particular interest here.

As a general rule, the formulation of the GL free ener
should be based on the symmetry relations between the
ent and product phases. There are two routes of construc
the GL theory and they differ in the method of selection
the basis for the order parameter. The lattice-dynamical
proach follows the idea of using the modes obtained from
diagonalization of the dynamical matrix. The amplitudes
phase angles of the relevant modes are chosen as the
parameter to describe the phase transition.6–11 Another
equivalent and convenient approach is to generate the
energy and the displacement modes from the basis vecto
irreducible representations of the space group of the pa
phase. The OP then has its foundation in the symmetry r
tionship between the parent and product phases and th
sociated representation that induces the symm
0163-1829/2001/64~2!/024106~12!/$20.00 64 0241
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change.12,13 It has been shown that the two formulations a
equivalent and can be converted from one to the other b
rotation of basis within OP space.14 In this paper, we use the
lattice-dynamical formulation, which was also check
against the group-theoretical approach using the prog
ISOTROPY.15

The soft phonon mode in La(Ag12xInx) (x50.2) has
been measured by several groups.16–18Specifically, the trans-
verse acoustic~TA! phonon mode of the parent phase wi

wave vectork5@1,1,0#(p/a) and polarization in the@11̄0#
direction softens as the transition temperature is approac
from above. This TA mode is degenerate with the longitu
nal acoustic~LA ! mode with wave vectork5@1,1,0#(p/a)
and polarization in@110#. By comparing the softening of the
shear modulusC85(C112C12)/2 and temperature depen
dence of other elastic constants with the TA mode soften
the conclusion is reached that the atomic shuffles are
primary cause for the transformation and the strains pla
secondary role. Any softening of elastic moduli is a result
anharmonic coupling of the primary OP to the strains.

In the next section, we present the details of the free
ergy in terms of a six-component shuffle order parame
We incorporate coupling of the primary OP with the strain
well as the Ginzburg~nonlocal gradient! terms. Section III
describes the homogeneous solutions. In Sec. IV, the gen
procedure is developed for using a phonon mode order
rameter in more than three dimensions~a six-component
‘‘vector’’ ! to describe antiphase microstructures. We pres
the various antiphase boundary solutions. A single set
coupled nonlinear equations that provide OP profiles for
possible antiphase domain relationships for this transition
obtained. Section V contains a brief discussion and conn
tion to experimental data in order to determine the para
eters of the Ginzburg-Landau model. Finally, we summar
the main results in Sec. VI.
©2001 The American Physical Society06-1



a
ed

de

;
e

all

no

o

on

or

oo
r

r h

o
a-

n-

x-

be

e-

WENWU CAO, AVADH SAXENA, AND DORIAN M. HATCH PHYSICAL REVIEW B 64 024106
II. GINZBURG-LANDAU FREE ENERGY

The materials of interest here,RAg12xInx (R5La, Ce,
Pr!, have the CsCl structure~space groupOh

1 , Pm3̄m) with
two atoms per unit cell in the cubic phase and undergo
improper ferroelastic transition to a tetragonally distort
phase~space groupD4h

17 , I4/mmm) with primitive cell qua-
drupling. Using lattice dynamics, one can derive the six
generate eigenvectors which correspond to the M5

2 mode.14

We denote the equilibrium atomic positions byx( lk)5x( l)
1x(k), wherex( l)5 l xa1 l yb1 l zc and x(k)5(1/2)(k21)
(a1b1c). Here,l a5 integer (a5x,y,z), and labels the ori-
gin of the l th unit cell in multiples of the lattice constanta;
k51,2 denotes the two sublattices of the CsCl structurea
5ax̂, b5aŷ, andc5aẑ are the crystallographic axes of th
primitive cubic lattice. For periodic boundary conditions,
atomic displacementsu( lk) from the equilibrium positions
may be expanded in a Fourier series with respect to the
mal coordinatesQ(kl) according to

ua~ lk!5
1

ANMk
(
kl

ea~kukl! eik•x( l)Q~kl!,

whereMk (k51,2) denotes the masses of the two types
atoms and the sum is extended over all wave vectorsk of the
first Brillouin zone and over all branchesl (51,2, . . . ,6 for
the CsCl structure! of the associated phonon-dispersi
curves. The expansion coefficientsea(kukl) are the eigen-
vectors of the dynamical matrix. Thus, from the orthon
mality of ea(kukl),

Q~kl!5
1

AN
(
a lk

AMkea* ~kukl!ua~ lk!e2 ik•x( l).

The primary OP driving the transition here is a softening M5
2

phonon mode and consists of the set of normal mode c
dinatesQ5(Q1 ,Q2 ,Q3 ,Q4 ,Q5 ,Q6) that belong to the sta
of the wave vectork at theM point. ThekM star has three
arms and the mode corresponding to each arm of the sta
twofold degeneracy. TheQi ’s are given by

Q15 (
L51

8

@u0ux~L !1v0vy~L !#~21! l x1 l y,

Q25 (
L51

8

@u0uy~L !1v0vx~L !#~21! l x1 l y,

Q35 (
L51

8

@u0uz~L !1v0vx~L !#~21! l x1 l z,

~1!

Q45 (
L51

8

@u0ux~L !1v0vz~L !#~21! l x1 l z,
02410
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Q55 (
L51

8

@u0uy~L !1v0vz~L !#~21! l y1 l z,

Q65 (
L51

8

@u0uz~L !1v0vy~L !#~21! l y1 l z,

whereu andv are the normalized displacements of the tw
sublattices In12xAgx and La, respectively, and the summ
tion is over eight parent primitive unit cells (23232) la-
beled byL which make up the supercell required by M5

2~see
Fig. 1!. Furthermore,

u05AM1

8
u1 , v05AM2

8
v1 ;

u152A M1

M11z2M2

, v15A z2M2

M11z2M2

,

where the parameterz depends on the interatomic force co
stants of the relevant mode, andM1 and M2 denote the
masses of the two types of atoms (In12xAgx and La! in the
unit cell ~see Fig. 1!. The quantitiesu1 andv1 appear in Eq.
~10! below ~Sec. III! where atomic displacements are e
pressed in terms of the normal mode amplitudesQi .

Using the above six eigenvectors and theOh
1 space group

symmetry operations, the total GL free-energy density can
written in the following form:15

F5FL1Fel1Fc1FG , ~2!

where the Landau free energy,FL , contains the primary OP
contributions from the M5

2 normal mode coordinates,

FIG. 1. Doubly extended CsCl structure with atomic displac
ments in Ix domain state.
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FL5A~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!1B1~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!2

1B2~Q1
2Q3

21Q1
2Q5

21Q3
2Q5

21Q2
2Q4

21Q2
2Q6

21Q4
2Q6

2!1B3~Q1
2Q4

21Q2
2Q5

21Q3
2Q6

2!1B4~Q1
2Q6

21Q2
2Q3

21Q4
2Q5

2!

1B5~Q1
2Q2

21Q3
2Q4

21Q5
2Q6

2!1C1~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!3

1C2~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!~Q1
2Q3

21Q1
2Q5

21Q3
2Q5

21Q2
2Q4

21Q2
2Q6

21Q4
2Q6

2!

1C3~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!~Q1
2Q4

21Q2
2Q5

21Q3
2Q6

2!

1C4~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!~Q1
2Q6

21Q2
2Q3

21Q4
2Q5

2!

1C5~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!~Q1
2Q2

21Q3
2Q4

21Q5
2Q6

2!

1C6@~Q1
21Q2

22Q3
22Q4

2!~Q1
2Q5

21Q2
2Q6

22Q3
2Q5

22Q4
2Q6

2!1~Q5
21Q6

22Q1
22Q2

2!~Q3
2Q5

21Q4
2Q6

22Q1
2Q3

22Q2
2Q4

2!

1~Q3
21Q4

22Q5
22Q6

2!~Q1
2Q3

21Q2
2Q4

22Q1
2Q5

22Q2
2Q6

2!#

1C7@~Q1
42Q4

4!~Q2
21Q5

22Q3
22Q6

2!1~Q2
42Q5

4!~Q1
21Q4

22Q3
22Q6

2!1~Q3
42Q6

4!~Q1
21Q4

22Q2
22Q5

2!#

1C8@~Q1
42Q6

4!~Q2
21Q3

22Q4
22Q5

2!1~Q2
42Q3

4!~Q1
21Q6

22Q4
22Q5

2!1~Q4
42Q5

4!~Q2
21Q3

22Q1
22Q6

2!#

1C9@~Q1
42Q2

4!~Q3
21Q4

22Q5
22Q6

2!1~Q3
42Q4

4!~Q5
21Q6

22Q1
22Q2

2!1~Q5
42Q6

4!~Q1
21Q2

22Q3
22Q4

2!#

1C10~Q1Q2Q3Q4Q5Q6!1C11@~Q31Q4!2$~Q11Q2!2~Q51Q6!21~Q22Q1!2~Q62Q5!2%

1~Q42Q3!2$~Q11Q2!2~Q62Q5!21~Q22Q1!2~Q51Q6!2%#. ~3a!
th

e

ge’’
ith
Fel contains the secondary OP elastic contribution@see the
definitions of the strains in Eqs.~4a!–~4f! below#,

Fel5
ĉ11

2
e1

21
ĉ22

2
~e2

21e3
2!1

ĉ44

2
~e4

21e5
21e6

2!. ~3b!

Fc contains terms that couple the phonon modes with
elastic strains,

Fc5D1e1~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!

1D2@A3e2~Q5
21Q6

22Q3
22Q4

2!

1e3~Q3
21Q4

21Q5
21Q6

222Q1
222Q2

2!#

1D3@e2$~Q4
22Q3

2!1~Q6
22Q5

2!22~Q2
22Q1

2!%

1A3e3$~Q4
22Q3

2!2~Q6
22Q5

2!%#

1D4~e4Q5Q61e5Q3Q41e6Q1Q2!. ~3c!

The gradient~or Ginzburg! energyFG , with a subscript pre-
ceded by a comma denoting partial differentiation, is giv
by19

FG5g1~Q4,x
2 1Q3,z

2 1Q1,x
2 1Q2,y

2 1Q5,y
2 1Q6,z

2 !

1g2~Q3,x
2 1Q4,z

2 1Q2,x
2 1Q1,y

2 1Q6,y
2 1Q5,z

2 !

1g3~Q1,z
2 1Q2,z

2 1Q3,y
2 1Q4,y

2 1Q5,x
2 1Q6,x

2 !

1g4~Q3,xQ4,z1Q1,yQ2,x1Q5,zQ6,y!

1g5~Q3,zQ4,x1Q1,xQ2,y1Q5,yQ6,z!. ~3d!
02410
e

n

The OP gradient terms describe the generalized ‘‘exchan
interaction between neighboring domains in a material w
spatially varying OP.

The symmetry-adapted strain tensor componentsei are
defined in terms of the conventional~geometrically linear!
strain « i j 5

1
2 @(]ui /]xj )1(]uj /]xi)# by the following rela-

tions:

e15
1

A3
~«xx1«yy1«zz!, ~4a!

e25
1

A2
~«xx2«yy!, ~4b!

e35
1

A6
~«xx1«yy22«zz!, ~4c!

e45«xy , ~4d!

e55«yz , ~4e!

e65«xz , ~4f!

and the elastic constantsĉi j are given by

ĉ115c1112c12, ~4g!

ĉ225c112c12, ~4h!

ĉ4454c44. ~4i!
6-3
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TABLE I. Homogeneous solutions corresponding to the tetragonal product phase.

Tetragonal Domain Tetragonal Displacement direction of the atom
axis No. state Order parameter x(k)5@0,0,0#a x(k)51/2@1,1,1#a

x 3 Ix (0,Q0 ,Q0,0,0,0) @011# @100#
6 IIx (0,2Q0 ,Q0,0,0,0) @01̄1# Not moving

9 III x (0,Q0 ,2Q0,0,0,0) @011̄# Not moving

12 IVx (0,2Q0 ,2Q0,0,0,0) @01̄1̄# @ 1̄00#

y 2 Iy (Q0,0,0,0,0,Q0) @101# @010#
5 IIy (Q0,0,0,0,0,2Q0) @101̄# Not moving

8 III y (2Q0,0,0,0,0,Q0) @ 1̄01# Not moving

11 IVy (2Q0,0,0,0,0,2Q0) @ 1̄01̄# @01̄0#

z 1 Iz (0,0,0,2Q0 ,2Q0,0) @110# @001#
4 IIz (0,0,0,2Q0 ,Q0,0) @ 1̄10# Not moving

7 III z (0,0,0,Q0 ,2Q0,0) @11̄0# Not moving

10 IVz (0,0,0,2Q0 ,2Q0,0) @ 1̄1̄0# @001̄#
r
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Note that the shear strainse45e55e650 for the cubic-
to-tetragonal transition. Only the gradient energy of the p
mary OP is considered here and the elastic energy is
only up to the second order in strain. All energy expans
coefficients are assumed to be temperature-independen
ceptA5a0(T2Tc). HereTc is the~fictitious! temperature at
which the mode frequency would become zero. The Lan
portion,FL , of the free energy is essentially the same as t
obtained in Ref. 14.„Note that the 11th invariant of the sixt
degree@see Eq.~3a! in Sec. II# was inadvertently left out in
Tables 4a and 4b of this reference.… The Ginzburg terms,
FG , were not contained in that reference and are impor
contributions to the description of antiphase domains, as
will see in Sec. IV below.

III. HOMOGENEOUS SOLUTIONS

For a homogeneous system, the gradient energy contr
tion vanishes so that the solutions are determined by m
mizing the free energy of the first three terms in Eq.~2!.
Using the variational technique, one can derive the Eu
Lagrange equations, which are six coupled partial differ
tial equations inQi and six more equations for the elast
strain,

(
m

]

]xm
F ]F

]Qi ,m
G2

]F

]Qi
50, ~5a!

(
m,l

]

]xm
S ]F

]el

]el

]« im
D50 ~m51,2,3;i ,l51,2, . . . ,6!.

~5b!

Define sl5]F/]el to be the generalized stress tens
corresponding to the strain definition of Eq.~4!. Then,

s15 ĉ11e11D1~Q1
21Q2

21Q3
21Q4

21Q5
21Q6

2!, ~6a!
02410
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s25 ĉ22e21A3D2~Q5
21Q6

22Q3
22Q4

2!

1A3D3~Q1
21Q4

22Q2
22Q5

2!, ~6b!

s35 ĉ22e31D2~Q3
21Q4

21Q5
21Q6

222Q1
222Q2

2!

1D3~Q1
21Q2

21Q4
21Q5

222Q3
222Q6

2!, ~6c!

s45 ĉ44e41D4Q5Q6 , ~6d!

s55 ĉ44e51D4Q3Q4 , ~6e!

s65 ĉ44e61D4Q1Q2 . ~6f!

In a homogeneous phase, the stress is zero everywhere
sl50, therefore, for equilibrium single domain states, t
six strain componentsei can be expressed in terms of the s
order-parameter componentsQi . These expressions fo
strain are then substituted back intoFel andFc . As a result,
we obtain an effective free energy just of the formFL in Eq.
~3a!, with ‘‘renormalized’’ coefficients. Minima of this ef-
fective free energy yield lower symmetry domain states.

There are twelve single domain states for our tetrago
phase. These are given in Table I in terms of the OP ve
Q5(Q1 ,Q2 ,Q3 ,Q4 ,Q5 ,Q6). As shown in Table I, four de-
generate states exist for each of the three principal tetrag
axes. We label these solutions by a domain number~from
ISOTROPY15! and by a capital Roman numeral letter with
subscript indicating the corresponding tetragonal axis.

For a first-order transition the expansion must be at le
to sixth degree~in the absence of third order invariants!. The
transition temperatureT0 and the spontaneous OP valueQc
~at T0) are given by

T05Tc1
b2

16a0~4C11C42C72C9!
, ~7a!
6-4
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Qc
252

b

4~4C11C42C72C9!
, ~7b!

where

b54B11B42F4D1
2

ĉ11

1
4

ĉ22

~D21A3D3!2G . ~8!

For other temperatures belowT0, the amplitude of the OP
Q0, in a single tetragonal domain state can be related toQc
through the following relation:

Q05QcA2

3
S 11A12

3

4
t D , ~9a!

t5
T2Tc

T02Tc
. ~9b!

The normal mode amplitudeQ0 is linked to the atomic
displacement of the two atoms through Eq.~1!. Since we are
working in theQ space, it is useful to invert Eq.~1!,

ux
(L)5~u1 /A8M1!@~21! l x1 l y Q11~21! l x1 l z Q4#,

~10a!

uy
(L)5~u1 /A8M1!@~21! l x1 l y Q21~21! l y1 l z Q5#,

~10b!

uz
(L)5~u1 /A8M1!@~21! l x1 l z Q31~21! l y1 l z Q6#,

~10c!

vx
(L)5~v1 /A8M2!@~21! l x1 l y Q21~21! l x1 l z Q3#,

~10d!

vy
(L)5~v1 /A8M2!@~21! l x1 l y Q11~21! l y1 l z Q6#,

~10e!

vz
(L)5~v1 /A8M2!@~21! l x1 l z Q41~21! l y1 l z Q5#.

~10f!

Hereui
(L) andv i

(L) are displacement components of the tw
sublattices at@0,0,0# and@a/2,a/2,a/2#, respectively. The su
perscript,L51,2, . . . ,8,represents labeling of the unit cel
which make up our expanded supercell~see Fig. 1!.

The last two columns of Table I give the lattice displac
ment direction for the two atoms in the unit cell that is l
cated at the origin of our coordinate system. One can ea
generate the lattice displacement pattern for the supe
from the pattern of the first cell together with Eq.~10!. For
example, for domain state Ix , the three-dimensional lattic
displacement pattern is shown in Fig. 1 and the pattern foI z
was given in Fig. 1 of Ref. 14.

Since the three-dimensional respresentation is difficul
plot unambiguously, it is useful to use the 2D projection
these states. Shown in Fig. 2~a! is the projection plot on the
z50 plane for the domain state Ix . There are four such do
main states having the tetragonal axis in thex direction. The
dot ~cross! in the center of a lattice circle represents that
lattice point also moves up~down! at the same time as i
02410
-

ily
ell

o
f

e

moves along the arrow direction in the plane in the lo
temperature phase. The shaded lattice in the center of
unit cell is half a unit higher above the base plane, i.e., at
z5a/2 plane. The displacement patterns for IIx , III x , and
IV x can be obtained by a translation of the coordinate sys
by a vector of@0,a,0#, @a,0,0#, and @a,a,0#, respectively.
Figures 2~b! and 2~c! correspond to domain states Iy and Iz ,
respectively, with other patterns (IIy ,III y ,IVy and
II z ,III z ,IVz! obtained via translation by appropriate vecto

IV. ANTIPHASE BOUNDARY SOLUTIONS

The existence of four variants for each tetragonal orien
tion, related by a fractional translation~which is not a body
center point, i.e.,@1/2,1/2,1/2#! of the new structure, will cre-
ate antiphase variant structures. An antiphase bound
~APB! is the ~planar or curved! surface where two such do
main states meet. We choose the first group of solution
Table I as examples for the analysis. Antiphase structu
allow different domain relationships to form, distinct from
ferroelastic domains, since the requirement of strain com
ibility is automatically satisfied. A few special orientations
the APBs are studied here to illustrate the associated rich
of the atomic structure and the corresponding continuum
scription of the antiphase boundaries. For mathematical s
plicity, we will only study planar APBs so that the proble
can be rendered quasi-one-dimensional for each given
tiphase structure.

FIG. 2. 2D projection of lattice displacement patterns~a! on the
z50 plane with tetragonal axis in thex direction for domain state
Ix , ~b! on thex50 plane with tetragonal axis in they direction for
domain state Iy , and~c! on they50 plane with tetragonal axis in
the z direction for domain state Iz .
6-5
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A. Antiphase boundary oriented along†010‡

As examples we take the four domain states given
Table I, with the tegragonal axis along thex direction. APBs
can orient in many directions, for example with norma
@100#, @010#, @110#, @011#, etc. Any two of the four states ca
be paired up with an APB along these orientations. For s
plicity, let us first study the case of the APB oriented alo
@010#. A few combinations of antiphase structures arex

2II x , Ix2III x , and Ix2IV x as shown in Figs. 3~a!–3~c!. At
the Ix2II x antiphase boundary, the Ag12xInx atoms shift
along thez direction; for the case of the Ix2III x antiphase
boundary, the Ag12xInx atoms shift along they direction;
while for the case of the Ix2IV x antiphase boundary, th
Ag12xInx atoms stay put.

Under the quasi-1D~Q1D! approximation, the physica
quantities are a function of space variabley only and only
two componentsQ2 and Q3 are nonzero. Therefore,Q
5„0,Q2(y),Q3(y),0,0,0…. From Eq.~5a!, we have

FIG. 3. Illustration of lattice displacement pattern in three d
ferent antiphase structures with APBs oriented along they direc-
tion: ~a! Ix2II x , ~b! Ix2III x , and Ix2IV x .
02410
n

,

-

g1Q2,yy5AQ212B1Q2~Q2
21Q3

2!1B4Q2Q3
2

13C1Q2~Q2
21Q3

2!2

1~C42C72C9!~2Q2
21Q3

2!Q2Q3
21D1e1Q2

22D2e3Q21D3~e32A3e2!Q2 , ~11a!

g3Q3,yy5AQ312B1Q3~Q2
21Q3

2!1B4Q3Q2
2

13C1Q3~Q2
21Q3

2!2

1~C42C72C9!~2Q3
21Q2

2!Q3Q2
21D1e1Q3

22D3e3Q31D2~e32A3e2!Q3 . ~11b!

The boundary conditions determine which particular AP
pair of the four domain states is described by the solution
Eq. ~11!. For the IIx2Ix antiphase structure,

lim
y→6`

~Q2 ,Q3!5~6Q0 ,Q0!; ~12a!

for the IIIx2Ix antiphase structure,

lim
y→6`

~Q2 ,Q3!5~Q0 ,6Q0!; ~12b!

and for the IVx2Ix antiphase structure,

lim
y→6`

~Q2 ,Q3!5~6Q0 ,6Q0!. ~12c!

In order to solve for a general case, we follow the proc
dure of Refs. 10,11 and 20 to normalize the order param
and define

A85D1e1
`22~D21A3D3!e3

`

1
@A2D122~D22A3D3!#~A2D11D21A3D3!

ĉ1112ĉ22

Q0
2 ,

~13a!

B1852
~A2D122D212A3D3!2

4~ ĉ1112ĉ22!
, ~13b!

B485
@A2D122~D22A3D3!#~A2D114D2!

2~ ĉ1112ĉ22!
, ~13c!

A95D1e1
`22~D21A3D3!e3

`

1F ~A2D114D2!~A2D11D21A3D3!

ĉ1112ĉ22
GQ0

2 ,

~14a!

B195
~A2D114D2!2

4~ ĉ1112ĉ22!
, ~14b!

B495B48 . ~14c!
6-6
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Using these definitions, the equilibrium conditions of E
~11! become

g1Q2,yy5~A1A8!Q212~B11B18!Q2
3

1~2B11B41B48!Q2Q3
213C1Q2~Q2

21Q3
2!2

1~C42C72C9!~2Q2
3Q3

21Q2Q3
4!, ~15a!

g3Q3,yy5~A1A9!Q312~B11B19!Q3
3

1~2B11B41B49!Q3Q2
213C1Q3~Q2

21Q3
2!2

1~C42C72C9!~2Q3
3Q2

21Q3Q2
4!. ~15b!

Now, we define dimensionless functionsq1 ,q2 and space
variablej as the following:

~Q2 ,Q3!5Qc~q2 ,q3!, ~16a!

y5gj, ~16b!

g25
Ag1g3

Ac
, ~16c!

whereAc5a0(T02Tc).
The final dimensionless equations are

dq2,jj5t2q22a2q2
32a28q2q3

21bq2
5

1S 12
b

3 D ~2q2
3q3

21q2q3
4!, ~17a!

1

d
q3,jj5t3q32a3q3

32a38q3q2
21bq3

5

1S 12
b

3 D ~2q3
3q2

21q3q2
4!. ~17b!

Similarly, one can normalize the boundary conditions, E
~12!. The dimensionless parameters in Eq.~17! are given by

t25t1
A8

Ac
, ~18a!

a25
8~B11B18!

b
, ~18b!

a285
4~2B11B41B48!

b
, ~18c!

t35t1
A9

Ac
, ~18d!

a35
8~B11B19!

b
, ~18e!

a385
4~2B11B41B49!

b
, ~18f!
02410
.

.

d5Ag1

g3
, ~18g!

b5
3C1

4C11C42C72C9
, ~18h!

where the parameterb is given in Eq.~8!. The equilibrium
values forq2 ,q3 are

uq2
`u5uq3

`u5A2

3
S 11A12

3

4
t D 5q0 . ~19!

We find that Eq.~17! becomes identical to the case solved
Ref. 11. Solving Eq.~17! under different boundary condi
tions, given by Eq.~12!, gives us three different antiphas
structures for Ix2II x , Ix2III x , and Ix2IV x with the APB
oriented in@010#. The solutions for the choice ofd51, t
524, t15t2524.1, a25a352.1, a285a3851.8, andb
510 are given in Figs. 4–6.

In Fig. 4, we depict the antiphase boundary solutions
terms of (q2 ,q3) for the three different boundary condition
Figure 4~a! shows thatq2 is a kinklike andq3 is a bell-like
soliton for the Ix2II x antiphase structure. For the Ix2III x
antiphase structure@Fig. 4~b!# the roles are reversed, i.e.,q2
is a bell-like andq3 is a kinklike soliton. In Figs. 4~c! and
4~d!, both q2 and q3 profiles are kinklike for the Ix2IV x
antiphase structure. The difference depicted in these fig
is that in Fig. 4~c!, the two solutions overlap because w
assumed no coupling betweenq2 and q3, i.e., a25a350
andb50. In general, the two kinks do not overlap as sho
in Fig. 4~d! due to the cross coupling betweenq2 andq3.

Figure 5 shows the influence of the gradient coefficientd,
on the order-parameter profiles for the Ix2II x antiphase
structure. In general, domain-wall thickness monotonica
increases withd. Figure 6 depicts the effect of the variatio
in the sixth-order coefficientb. An APB becomes narrowe
with increasingb. In addition, the bell-like order-paramete
profile flips to a hump shape at a critical value ofb. Figure 7
shows the effect of temperature,t, on the shape and ampli
tude of Ix2II x APB. It reveals that as temperature decreas
the amplitude of the order parameter increases while
thickness of the APB decreases.

The discontinuous atomic displacement patterns co
sponding to the three different boundary conditions, E
~12a!–~12c!, are given in Fig. 3. Because of the constrain
of the gradient energy, the actual displacement patt
changes continuously as shown by the continuum profile
q2 andq3 in Figs. 4–7.

B. Antiphase boundaries of other orientations

Because the elastic strains are compatible in antiph
structures, there are several possible orientations for the
tiphase boundary corresponding to certain lattice planes.
discontinuous lattice displacement patterns for antiph
structures with APBs on the~011! and ~101! lattice planes
are illustrated in Fig. 8.

For antiphase structures consisting of domain states w
the x direction as the tetragonal axis, the order-parame
6-7
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FIG. 4. Continuous order-parameter profiles for the three dif
ent antiphase structures illustrated in Fig. 3:~a! Ix2II x , ~b! Ix

2III x , ~c! Ix2IV x without coupling betweenq2 and q3, and ~d!
Ix2IV x with the coupling betweenq2 andq3. The domain state on
the right hand side is Ix .
02410
profile is governed by two coupled differential equations
Q2 andQ3 as in Eqs.~15a! and~15b!. The only difference is
in the parametersA8,A9,B18 ,B19 ,B48 , andB49 . These param-
eters are given in Table II for different APB orientations a
are determined by material properties.

After normalization, all equations have the identical d
mensionless form of Eqs.~17a! and ~17b!. Therefore, Eqs.
~17a! and~17b! areuniversal equationsfor antiphase bound-
aries in this transition. One point that must be emphasize
that the Q1D treatment should always choose the indep
dent space variable to be perpendicular to the APB pla
For example, while calculating the antiphase structures w
APB oriented in@011# and@101#, the system must be rotate
45 degrees around@100# and @010#, respectively, so that the
problem can be rendered Q1D.

In general, the existence of several allowed orientatio
for APB in a variety of materials and their relatively sma
energy makes it difficult to maintain the APB on one of t
lattice planes through an entire sample. Instead, APBs
often observed21–23as curved or jointed boundaries resultin
from several differently oriented APBs joining togethe
Moreover, the thickness of the domain wall can be on

-

FIG. 5. Effect of the gradient coefficientd on the order-
parameter profiles of the antiphase structure between Ix and IIx with
APB oriented in@010#.

FIG. 6. Effect of the six degree energy expansion coefficienb
on the order-parameter profiles of the antiphase structure betwex

and IIx with APB oriented in@010#.
6-8
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order of a fraction of a unit cell to several unit cells.
simulations23 for lead phosphate, the trace of the APB w
on the same order as the ‘‘W’’ wall.

V. DETERMINATION OF THE EXPANSION
COEFFICIENTS

The coefficients of the Landau portion of the free ene
can be determined from the available lattice parameter
measured by x-ray and neutron scattering as a function
temperature. The coefficients of the Ginzburg~i.e., gradient!
terms are obtained from the phonon-dispersion data nea
soft mode M5

2 as described below. There is only a limite
amount of data for this transition, primarily contained
Refs. 17 and 18.

A. Coefficients for the Landau energy

For the cubic-to-tetragonal transition, we have expan
the free energy to the sixth degree. The form for the effec
free energy is FL5A(T)Q21BQ41CQ6, where A(T)
5a0(T2Tc)5mvM

2 andm5923.39 kg/m3 is the mass den
sity. The coefficientsa0 andTc can be determined from th
temperature dependence of the soft phonon mode~Fig. 6 in
Ref. 17!. Tc is the temperature at which the frequency of t
softening phonon would go to zero anda0 is the slope of the
linear approach to zero.T0 is the temperature at which th
first-order transition takes place. For LaAg12xInx (x.0.2),
the cubic lattice parameter~at 300 K! is ac57.65 Å, and the
tetragonal lattice parameters~at 100 K! areat57.56 Å and
ct57.75 Å. In the tetragonal phase at 100 K, the shuffle~in
units of the cubic lattice parameter! of La atoms is e
50.0285 and the shuffle of Ag12xInx atoms isd50.0139
~Fig. 4 in Ref. 17!. We find the slope of the soft modeS
58.29431020/K (sec)2. Sincea05mS, we obtain the fol-
lowing values for these three constants:

Tc5120 K, T05125 K, a057.658731023
J

m5 kg K
.

FIG. 7. Temperature dependence of the order-parameter pro
across the antiphase structure between Ix and IIx with APB oriented
in @010#.
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The nonlinear expansion coefficientsB andC can be de-
termined by the temperature dependence of structural da17

At the transition temperature, we can relate the value of
order parameter to the Landau free-energy coefficients:Qc

2

53B/4C anda0(Tc2T0)53B2/16C. Thus, we find

B5
4a0~Tc2T0!

Qc
2

, C5
3a0~Tc2T0!

Qc
4

.

Specifically, by comparing with the atomic displacemen
measured for the tetragonal phase, the two model param
(Qc ,z) may be determined from the two atomic displac
mentse andd for La and Ag12xInx , respectively, according
to

Qc5A2AM1~2atd!21M2~cte!2, z5
cte

2atd
.

We find the following values:

Qc
253.8823310246 kg m2, z51.010 45,

and

B53.945531070
J

m7~kg!2
, C57.622310115

J

m9~kg!3
.

Note that the units ofa0 , B, andC contain mass~kg! in the
denominator since the order parameter,Q in Eq. ~1!, has
units of (kg)1/2 m.

les

FIG. 8. Illustration of lattice displacement pattern in two diffe
ent antiphase structures with the APB oriented along@101# and
@011#, respectively.
6-9
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TABLE II. Coefficients A8, A9, B18 , B48 , B19 , and B49 for antiphase boundary betweenI x and II x . Here e1
`52(2D1 / ĉ11)Q0

2, e2
`

5@A3(D21A3D3)/ ĉ22#Q0
2, ande3

`5@(D21A3D3)/ ĉ22#Q0
2.

Wall orientation A8

@010# D1e1
`22~D21A3D3!e3

`1
@A2D122~D22A3D3!#~A2D11D21A3D3!

ĉ1112ĉ22

Q0
2

@100# D1e1
`22~D21A3D3!e3

`1
@A2D122~D21A3D3!#2

ĉ1112ĉ22

Q0
2

@011# D1e1
`22~D21A3D3!e3

`1
2~A2D11D21A3D3!2

2ĉ111 ĉ2216ĉ44

Q0
2

@101# D1e1
`1

2D1
2

ĉ1113ĉ44

Q0
2

Wall orientation A9

@010# D1e1
`22~D21A3D3!e3

`1
~A2D114D2!~A2D11D21A3D3!

ĉ1112ĉ22

Q0
2

@100# A8
@011# A8
@101# A8

Wall orientation B18 B48

@010# 2
~A2D122D212A3D3!2

4~ ĉ1112ĉ22!

@A2D122~D22A3D3!#~A2D114D2!

2~ ĉ1112ĉ22!

@100# 2
@~A2D122~D112A3D3!#2

4~ ĉ1112ĉ22!

2B18

@011# 2
2~A2D11D21D3!2

2~2ĉ111 ĉ2216ĉ44!
2

~A3D22D3!2

ĉ22

2
2~A2D11D21D3!2

~2ĉ111 ĉ2216ĉ44!
1

~A3D22D3!2

ĉ22

@101# 2
D1

2

2~ ĉ1113ĉ44!
1

~D21A3D3!2

2ĉ22

2B18

Wall orientation B19 B49

@010# 2
~A2D114D2!2

4~ ĉ1112ĉ22!

B48

@100# B18 B48

@011# B18 B48

@101# B18 B48
o

ri

cit ted
n

B. Gradient terms and phonon dispersion

The gradient coefficients are related to the curvature
the dispersion surface near the soft mode24 and the disper-
sion relation can be measured by inelastic neutron-scatte
experiments.

Starting with the Euler-Lagrange equation with expli
time dependence,
02410
f

ng

mQ̈l1
]~FL1FG!

]Ql
2(

j

]

]xj
S ]F

]Ql, j
D50

~l5126,j 5123!, ~20!

where m is the effective-mass density of atoms associa
with the M5

2 mode. For small amplitude oscillations, we ca
6-10
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ignore the nonlinear terms by keeping only the lowest-or
terms in the order parameter. Thus, the above six linear
equations have the following harmonic solutions:Ql

5Ql
0exp@i(kWM•xW2vt)#, wherekM is one of the arms of the

star kM* . The M5
2 mode is sixfold-degenerate and it spli

into several distinct modes if thek value deviates from tha
at the first Brillouin-zone edge. For example, ifk5kM2q,
then Eq.~20! results in the following eigenvalue problem:
e
th
d

th
rs

it-

io
o
nt
he
fo
o

02410
r
d

mv2Q5GQ, ~21!

where

G5S G1 0 0

0 G2 0

0 0 G3

D , ~22a!

and the 232 Gi matrices are given by
G15S 2A12g1q1
212g2q2

212g3q3
2 ~g41g5!q1q2

~g41g5!q1q2 2A12g2q1
212g1q2

212g3q3
2D , ~22b!

G25S 2A12g2q1
212g3q2

212g1q3
2 ~g41g5!q1q3

~g41g5!q1q3 2A12g1q1
212g3q2

212g2q3
2D , ~22c!

G35S 2A12g3q1
212g1q2

212g2q3
2 ~g41g5!q2q3

~g41g5!q2q3 2A12g3q1
212g2q2

212g1q3
2D . ~22d!
ode

e of
sion
ed
ig.
al to
can
ell
de-
pa-
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al
tion
The matrix G is in block-diagonal form and the thre
blocks are equivalent when we choose different arms of
starkM . The gradient energy causes the two coupled mo
of a givenk value to split when moving away from theM
point. We can use one of the blocks inG to derive the dis-
persion relations by introducing a small perturbation to
wave vector along the high-symmetry directions in the fi
Brillouin zone. Let us choose the first blockG1, which in-
volves the order-parameter componentsQ1 and Q2 and the
wave vectork52p/a@110#.

In theM -G direction, the perturbation isq5q@1,1,0# with
the amplitudeq!2p/a. The perturbation causes mode spl
ting:

mv1
252A1~2g112g21g41g5!q2, ~23a!

mv2
252A1~2g112g22g42g5!q2. ~23b!

In the M -X direction of the Brillouin zone,q5q@010#
and we can get two more relations:

mv3
252A12g2q2, ~24a!

mv4
252A12g1q2. ~24b!

Finally, in theM -R direction,q5q@001#, we get

mv5
252A12g3q2. ~24c!

Since below the transition temperatureA,0, phonon stabil-
ity requires that the slopes of the above five dispers
curves be positive. These five equations give us enough c
binations to derive all five independent gradient coefficie
gi in Eq. ~3d!. However, the phonon dispersions along t
M -X and M -R directions have not been measured
LaAg12xInx .16–18 Therefore, we can obtain only the tw
e
es

e
t

n
m-
s

r

combinationsg11g2 andg41g5 by fitting the 300-K data in
theM -G direction@Fig. 4 ~left column, middle panel!# for the
longitudinal acoustic~LA ! mode for LaAg in Ref. 18 to Eq.
~23a! and Fig. 5 for the second transverse acoustic m
(T2A) for LaAg12xInx in Ref. 18 to Eq.~23b!. If we denote
the slopes for these two dispersions, respectively, by

S152~g11g2!1~g41g5!, S252~g11g2!2~g41g5!,

we find S152.25393109 J/m3 and S252.17473109 J/m3.
Thus, the two combinations of gradient coefficients are

g11g25 1
4 ~S11S2!51.107 153109

J

m3
,

g41g55 1
2 ~S12S2!53.963107

J

m3
.

Note that we can determine the temperature dependenc
S2, since the temperature dependence of phonon disper
for the TA branch ofS2 symmetry has also been measur
~Fig. 5 in Ref. 18!. As discussed above and depicted in F
5, the thickness of the antiphase boundaries is proportion
the square root of the gradient coefficients. The thickness
be on the order of a fraction of a unit cell to several unit-c
dimensions. Unfortunately, there are insufficient data to
termine each gradient coefficient and thus the value for
rameterd in Eq. ~18g!, which determines the domain-wa
thickness.

VI. SUMMARY AND CONCLUSIONS

Using a Ginzburg-Landau model with a six-dimension
phonon order parameter, we provide, a general formula
of the antiphase structures ofRAg12xInx ~whereR5La, Ce,
6-11
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and Pr! that can form in a cubic (Oh
1 ,Pm3̄m) to tetragonal

(D4h
17 , I4/mmm) improper ferroelastic phase transitio

driven by the M5
2 zone boundary mode of the CsCl structu

There are four independent domain states for each of
three possible tetragonal axes in the low-temperature ph
constituting 12 domain states in total.

Antiphase boundaries are formed between any two
main states of the same tetragonal axis. Using the quas
approximation, we treated four differently oriented APB
and found that equilibrium conditions for the OP profiles c
be related to a single set of two dimensionless coupled
ferential equations involving two components of the OP. T
relationships between the parameters in the common se
equations@Eq. ~17!# and the free-energy expansion coef
cients in Eq.~3! were derived for the case of the tetragon
axis along thex direction. These results are also applicable
the cases with the tetragonal axis along they and z direc-
tions.

It is interesting to note that all of the final differentia
equations reduce to the same universal set of equations
proper normalization constants. This is also true for ot
systems that can be described by a Ginzburg-Landau mo
although the order parameter may be different. As sho
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previously for a first-order ferroelectric phase transition11

the order parameter is only a three-dimensional vector;
APB solution in that case can also be described by the s
set of equations as given in Eq.~17!. It is speculative but
these equations may be a representative form for all A
domain walls in other transitions

Some of the expansion coefficients in the GL model, E
~3!, can be extracted from experimental measurements
particular, we derived the coefficients of the effective La
dau free energy and the relationships between the grad
coefficients and the phonon-dispersion curves near the5

2

soft mode. Note that the analysis presented here is applic
to the cubic to orthorhombic (D2h

5 , Pmma) transition~see
second entry in Table 7 of Ref. 14! in AuCd and NiTi-M
(M5Fe,Al,Cu) shape memory alloys.25,26
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