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Theory of melting in the group-IV semiconductors*
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We have calculated the melting curves of germanium and silicon. A model of the group-IV
semiconductors was used for which the solid consists of interacting systems of ions, conduction

electrons, and covalent bond charges, The liquid state of these elements is metallic, and the model used

to describe it consists of interacting systems of ions and conduction electrons. Variational calculations

were performed to obtain Gibbs free energies for the solid and liquid states. Three adjustable

parameters were necessary to describe the interactions between the various components of the models

which are yet insufficiently understood for ab initio treatment. Excellent agreement with experiment
was obtained for calculations of the melting curves up to 46 kbar for Ge and 21 kbar for Si. The

physical origin of the negative-slope melting curve lies in the relatively open diamond-crystal structure
and the covalent bonding which stabilizes this structure. The diamond structure is sufficiently openly
packed that the liquid finds it energetically favorable to be more dense than the solid in these
materials.

INTRODUCTION

The group-IV semiconductors crystallize in the
diamond structure and have the little-understood
property that they become more dense on melting.
Since the liquid phase of these materials is more
dense but has higher entropy than the solid phase,
their melting-temperature-versus-pressure
curves have negative slopes as predicted by the
Clausius-Clapeyron equation. Negative- slope
melting curves have not previously been successful-
ly studied within the framework of fundamental
rather than phenomenological theories, We report
here the results of a fundamental calculation which
does produce negative-slope melting curves for Ge
and Si in excellent agreement with experiment and
which elucidates the mechanisms responsible for
this phenomenon.

A fundamental theory of melting must calculate
the Gibbs free energies G, and G, for the solid and
liquid phases as functions of temperature and pres-
sure. Equality of G, and G, along a line in the P-T
plane then determines the melting curve. In the
neighborhood of this line the phase with lower Gibbs
free energy is stable.

We follow the approach of Stroud and Ashcroft'
who calculated the melting curve of the free-elec-
tron metal sodium. As they did, we consider the
calculation of G, and G, as two separate problems,
which is possible because melting is a first-order
phase transition. The work of Stroud and Ashcroft
on Na and the follow-up work of Jones on simple
metals seemed to us to indicate that viable calcula-
tions of melting in more complicated systems, such
as the semiconductors, could now be attempted,
with the caveat, however, that one may yet need to
introduce an additional adjustable parameter or pa-
rameters to account for insufficient understanding

of the interionic forces and interactions with cova-
lent bonds.

The theory of melting is a long-standing problem
of great interest and importance for understanding
the physics of solids and liquids. Serious theoreti-
cal work started on this problem in 1903 with Tam-
man's work, followed by I indemann's important
paper in 1910, and has been proceeding ever since.
Only recently, however, have advances in the theo-
ries of solids and liquids and in high-speed comput-
ing techniques made it possible to confront experi-
ment and fundamental theory, based on a detailed
analysis of the cohesive energy and entropy of a
realistic model of the solid and liquid states. Re-
views of melting theories with rather complete ref-
erences are found in the work of Hoover and Ross, '
Rowlinson, and Stishov.

The recent work of Van Vechten' considers melt-
ing in semiconductors from a semiempirical point
of view. He develops a scaling theory of melting
in semiconductors which fits experiment very well.
He considers basic semiconductor properties, in-
cluding covalent bonding, the semiconductor band

gap, and an optical as well as acoustic phonon
mode, in his calculation. These are the same
properties we include in our more fundamental cal-
culation of the melting curve in this work.

THEORY

We first summarize our approach and then will
follow with a detailed discussion of the theory as
applied to Ge and Si. A few years ago, Phillips
suggested a model of the solid semiconductor which
treats the covalent bonds as quasiparticles, reflect-
ing the sharp localization of electronic charge den-
sity in covalent bonds. ' ' Microscopic theories
of covalent bonding were considered by Benne-
mann '" using scattering theory and pseudopoten-
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tial theory, and by Herbert. ' These calculations,
as well as the work of Heine and Jones, support
this quasiparticle approach to covalent bonds. In
addition, Phillips's model, with a modified dielec-
tric function which included electron exchange in
Hubbard's approximation, 7 was employed by Mar-
tin" to describe the lattice vibrational spectrum of
silicon with fair agreement with experiment. Nelin
used a model similar to Martin' s, but with the addi-
tion of a "valence-force field" which assumes that
the bond charges interact approximately harmoni-
cally with one another and with the ions. His re-
sults for the phonon spectrum of Ge compare very
weil with experiment.

We have chosen to describe the solid state of the
group-IV semiconductors by a model similar to that
employed by Nelin, ' i.e. , a refinement of Phil-
lips's model. We assume the solid to be well de-
scribed by a three-component system with interac-
tions between the three components: ions, an elec-
tron gas, and covalent-bond charges. The free en-
ergy of the solid is assumed to be the sum of (a)
the Madelung energy arising from the Coulomb in-
teraction between the ions (at finite temperature,
so we include a Debye-Wailer-type factor), (b) the
kinetic, exchange, and correlation energies of the
electron gas, (c) the Madelung energy arising from
the Coulomb interaction between the bond charges,
(d) the ion-electron-gas (i.e. , the band-structure
energy), the ion-bond-charge, and the electron-
gas-bond-charge interaction energies, and (e) the
phonon kinetic energy and entropy contribution
(&S»). Cohen and Bergstresser 0 showed that the
valence-electron-ion pseudopotential can be ap-
proximated well by a local pseudopotential for Ge
and Si. In this work, we use local pseudopotentials
to describe the ion-electron-gas and electron-gas-
bond-charge interactions. We introduce two free
parameters, however, into the solid Gibbs free en-
ergy through these pseudopotentials: one to describe
the long-wavelength limit of the ion-electron pseu-
dopotential, and the second to describe the effective
size of the bond charges in the electron-gas-bond-
charge pseudopotential.

We determine the phonon frequencies through a
variational principle which is approximately self-
consistent. As discussed below, the variational
approach we have used maintains thermodynamic
self-consistency to a very close approximation,
avoiding the problem encountered in other work
(e. g. , Stroud and Ashcroft') where the slope of the

melting curve as calculated by the Clausius-Clapey-
ron equation differs from an interpolation between
the calculated melting points. This problem, while
present, is not particularly serious in the work of
Stroud and Ashcroft; however, in the semiconduc-
tors which we study here, their procedure leads to
very serious discrepancies between the calculated

and interpolated slopes. We approximate the pho-
non spectrum by a Debye spectrum for the acoustic
modes plus an Einstein spectrum for the optical
modes. We use a fixed relationship between the
sound velocity of the Debye modes and the frequency
of the Einstein modes, so the contributions to the
free energy due to ionic motions are described by
a single parameter, the Debye temperature 0. All
effects of ionic motions at a given temperature and
volume are included in o-, i.e. , not only the phonon
spectrum, but also anharmonic effects are included
because of the self-consistency of the calculation.
Nelin and Nilsson ' have recently shown that an-
harmonic effects can be taken into account very
weil in Ge up to at least 300 K below the melting
temperature by assuming a temperature-dependent
harmonic vibrational spectrum as proposed by
Barron. Barron suggested that the shift in the
harmonic vibrational spectrum due to a change in
temperature is proportional to the harmonic vibra-
tional energy of the crystal. His results suggest
that a quasiharmonic description of the solid, such
as we have used, will be suitable even closer to the
melting temperature than has been checked by Nelin
and Nilsson's experiments.

The book by Glazov et &E. ' reviews many of the
properties possessed by liquid silicon and germa-
nium. They conclude that the solid-liquid transi-
tion of these elements is a semiconductor-metal
transition in that the solid state acts like a semi-
conductor and the liquid state like a metal. Ac-
cordingly, we describe the liquid state of the group-
IV elements as a liquid metal, calculating the free
energy in a way similar to the calculation of Stroud
and Ashcroft for liquid sodium. We take the liquid
structure factor to be the Percus- Yevick approxi-
mation' ' ' to the hard-sphere structure factor.
Ashcroft and Lekner ' have compared this structure
factor to the experimental structure factor for liq-
uid metals like Li, Na, K, Rb, Cs, and In. Their
results indicate that the hard-sphere reference
system describes the structure of liquid metals
fairly mell. We have compared this structure fac-
tor with the experimental results of Poltavtsev
on the radial distribution functions of Si and Ge and

those of Hendus" on the structure factor of Ge.
While agreement is not as good in this case as for
the simple liquid metals, especially since any
tetrahedral short-range order is neglected, the
agreement obtained is sufficiently good that we have
felt justified in taking advantage of the relative
simplicity of the Percus-Yevick hard-sphere struc-
ture factor in our calculation.

The liquid free energy is then taken as a sum of
(a) the Madelung energy of the ions, using the
structure factor, S(k), described above, (b) the

kinetic, exchange, and correlation energies of the
electron gas, (c) the ion-electron-gas interaction
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energy, (d) the ion kinetic energy, and (e) the
entropy contribution, taken as the entropy of the
hard-sphere gas as discussed below. We introduce
a third free parameter into the theory at this point
to describe the long-wavelength limit of the ion-
electron pseudopotential in the liquid. Because the
liquid is metallic and fundamentally different from
the solid, we do not expect this parameter to be the
same as in the solid. We determine the hard-
sphere packing fraction variationally by minimizing
the free energy, as did Stroud and Ashcroft.

Sobd state

We calculate the Helmholtz free energy of the
solid, F,(T, V, N), and its volume derivative

where T, V, N, and I' are temperature, volume,
number of ions, and pressure. Then, we obtain
the Gibbs free energy of the solid,

G, (T, P, N) =F,(T, V(T, P), N)+PV(T, P) . (2)

We first calculate the solid Helmholtz free energy
as a function of Debye temperature 0, then mini-
mize with respect to 0 to obtain the best approxi-
mation to the free energy of our model. We use
the Qibbs-Bogoliubov variational principle

F ~
Fo+ (H —Ho)0,

where subscript 0 indicates the reference system,
no subscript indicates the true system, H and Ho
are the Hamiltonians, and

( ~ ~ ~ ) -=e~oTr(e '"o ~ ~ ~ )

We will use a reference-system Hamiltonian that
differs from the true H only in the potential-energy
terms, so H —Ho = U —Uo, where U and Uo are the
potential-energy operators. Then, since Fo = (Ho)o
—TSO, and we can write HO=K+Uo, we have

F- Z, „„+(U), —TS„ (5)

where Zo „,-=(K&o.
We use the harmonic approximation to the ions

in a diamond lattice plus a free-electron gas as the
reference system for the solid. Since we will use
only a one-parameter phonon spectrum, the right-
hand side of Eq. (5) will be a function of the Debye
temperature 8, which we vary to minimize our
model free energy. We will define

(8)
k(dq~~ = Age,

where 8 is the Debye temperature, k~ is Boltz-
mann's constant, and qL) is the radius of a sphere
of the same volume as the Brillouin zone. In using
this simple approximation for the phonon spectrum,
we will approximate the Brillouin zone by a sphere
of radius qD throughout this work.

We describe the response of the electron gas to
an external potential by Penn's dielectric function
corrected for electron exchange by the Hubbard ex-
change correction' similar to the work of Martin. "
The bond charges are assumed to contain total
charge Zbe, where

Z, =2/e;, .

Because of the volume dependence of E;, Z, is a
function of volume which makes an important con-
tribution to the volume dependence of the free en-
ergy. Figure 1 shows Zb as a function of volume
for a small range of volumes considered in the
study of Ge. The fact that Zb increases with in-
creasing volume and hence decreases with increas-
ing pressure indicates that increased pressure
moves electrons from the covalent bonds to the
electron gas, as one would expect. The effective
number of electrons in the electron gas is

.124

.l22

Zb

.I2I

conductor to be composed of three components: ions
in a diamond lattice, bond charges located midway
between the instantaneous ionic positions, and the
electron gas, comprised of all the valence elec-
trons in the solid which are not in the bond charges.

For the phonon approximation, we will consider
a Debye acoustic mode and an Einstein optical mode
with frequencies given by

n~-,.= u, 8

y, (T; V, N, 8) =-Z, „,„+(U),—TS, . .l20

Then, our approximate free energy for the solid is

F,(T, V, N) = f,(T, V, N, 8o(T, V, N)),

where 80(T, V, N) is the value of 8 at the minimum
in f,(T, V, N, 8) for given values of T, V, and N

As described above, we consider the solid semi-

l5O
I I I

l5 I l52 l53 l54
VOLUME (0. U.)

FIG. 1. Magnitude of the bond charge Zb versus volume
for volumes appropriate to germanium.
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(Z —2Z»)N, where Z is the valence (Z = 4), and the
factor 2 enters because there are two covalent
bonding positions per ion. %e found in preliminary
studies of this model that neglecting the spatial ex-
tent of the covalent-bond charge distribution proved
inadequate in the free-energy calculations. We

have assumed a spherical charge distribution for
the bond charges, as discussed below. Recent ex-
peximental studies of Ge and Si confirm the impor-
tance of considering the finite spatial extent of the
bond charges, although they find (as expected) that
these charge distributions are not really spherical, '

We calculate the function f, of E(I. (6) as follows.
First, we express the kinetic energy and entropy
terms in f, as

+0 &in Eph kin + Ee kin ~

Z„,=-.'Xg, ~u, „~'S(k) ——i,@04&e' "
~r

4mZe2
Qze f p costc ~

~
(16)

where x, is taken to be 0. 83 a. u. for Ge and 0. V4

a. u. for Si, as reported by Heine and %eaire.
The structure factor $(k) is defined for an arbitrary
system by

where u«y is the k Fourier component of the ion-
electron interaction pseudopotential, S(k) is the ion-
ion structure factor in the reference system, and

cp is the dielectric function described above. We
take the effect of finite temperature into account
through the temperature dependence of 3(k). We

have used the Ashcroft empty-core pseudopoten-
tial" for u„"„:

U = U;; + U;e + U)b + U„+ U b + Ubb, (12)

where the subscripts i, e, and b refer, respective-
ly, to the ions, electrons, and bond charges.

Since there is no ion-electron interaction in the
reference system, (U„)o is the potential energy of
a free-electron gas (at T = 0 K as discussed above).
Then, we can combine this term with the electron
kinetic energy to obtain the electxon-gas energy:

E»g=E»»). +&U».&o

%e use the Nozieres and Pines30 expression for the
electron-gas energy (sum of kinetic, exchange, and

correlation energies):

S0 —S „+S,.

where the subscripts ph and e refer, respectively,
to the phonons and the electrons. %e neglect the
bond-charge kinetic energy and entropy since they
comprise only a small fraction of the electron sys-
tem and have very small mass, while their motion
is essentially that of the ionic system. ' In addi-
tion, k~7 «EJ; for the electron gas, where T is
the melting temperature and E~ the Fermi energy,
so we neglect the effect of finite temperatures on
electron-gas contributions to f, . In particular, we

can take S, =—0, and use the T =0 expression for E„
(below) in all our calculations. In the three-com-
ponent solid of our model, the potential energy will
be

Z = .'NZ -+ [s(k) —ij. (16)

The other terms in E(I. (12) are U;„U,», and U».
We can express these contributions to f, as follows:

&U;»&o= Em =&g-&» Ige(k). (I())
%0

mk'V - 1
(()„)D=-Z„=NL ~u„u;, 8;,(k) ——)), (10)

Fe ft

&U»&;=-E»= &g&»»fS»(k) —2l (21)

where the notation is analogous to that in Eqs.
(15)-(16). We assume a spherical bond charge
distribution, as mentioned above. We also assume
that the bond charge distributions do not overlap
with the ions or with each other, so ubb p and u;by
are simply Coulomb potentials:

4mZbe
bb k yy2

4pZZbe2
+lb k yy2

S(k) =-
a n

0'

where n and n' refer to ionic positions. %e discuss
s(k) more fully below.

(U;;)o is the finite-temperature Madelung energy
Em for the ions in the diamond lattice, averaged
over the reference system:

where ao is the first Bohr radius and 4m oao= V/N.
The term (U«&o represents the electron-ion inter-
action energy, including the change in the free-
electron-gas energy due to the redistribution of
electrons when the electron-ion interaction is
turned on. This term is just the band-structure
energy Egs

The electron-gas-bond-charge interaction is not
well understood at present. We have chosen to
parameterize it as simply as possible by letting

4mZe2
Qeb k ~ 3 Sln+b~ ~Va Xb

where rb is a free parameter in the theory. This
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form corresponds to putting all the bond charge in
a spherical shell of radius r~. While this charge
distribution is not very physical, it nevertheless
provides a simple means of inserting the finite size
of the bond charges into our theory and including
the resulting softer-than-bare Coulomb potential
for r& x~.

In Eqs. (14), (15), and (18)-(21), we have omitted
the k=O components of E„, E„, E, E;„E„,and

E». These k = 0 Fourier components are separate-
ly infinite but have a finite sum which we call Eo:

Eo= ——u«(r) d'r+2(Z —2Zb) jI u„(r) d'r
v

+ 2 u, b(r) d'r + (Z —2Z, ) u„(r) d'r
V

+2(Z —2Z ) ) r, (r)d rrb (rrr)rf r

N8
=

2~ [(Z —2Zb)Zo(, —2Z, (Z —2Zb)n,'], (25)

where

2

Q =
2

2 Z8
Z8

+u„(r) d r = 4nr,

&»= —k&ZIn(1 —e b "«)+—~ h(d;, n-a~-
a0

a S QtS

where

n- =(eb""&b —1) '
%S

(30)

(31)

and the sum on s is over the six branches of the
phonon spectrum. The structure factor S(k) is ob-
tained as follows:

+(1—5~,,)e" ~( (], -(33)

where the Debye-Wailer-type factors containing the
effect of finite temperature are given by

S(k) g e(]r (R(g R (r yr &{ (]( (ll(y u( ~ gr)) (32)

where R» is the equilibrium position of the jth atom
in the 1th unit cell, and u» is its instantaneous dis-
placement from equilibrium. Evaluation of the
average in Eq. (32) for a harmonic crystal with n

atoms per unit cell on n identical sublattices, having
a center of inversion and assuming triply degenerate
acoustic and optical branches, leads to

1 2
S(k) ——g e()' ("ry 'a( I -&[5rr. ,e* )'(-(~

N

I 2 Z$8 ~
3 4 2Q =

2
Zy8

—ubb(r) d r= —, orb, (27)

since we have assumed that u«(r), u„(r), u»(r),
and u(b(r) are all bare Coulomb potentials. Explic-
itly, we have taken

Z 82 2 2

u„(r) =—,u„(r) =—,
(26)

and

kn g 2n;«+1 2n;„+1
4MN

(34)

4MN - u)

2n- + 1
~ '" [(+rorj (R, ra&r)]),

The constants n, and n,' represent the spatial aver-
age of the difference of the potentials u„(r) and

u,b(r) with their corresponding bare Coulomb poten-
tials. Positive or negative n, and n,' correspond
to u;, (r) and u„(r) less repulsive or more repulsive
than the bare Coulomb potential. These constants
relate to the long-wavelength limits (k-0) of u«(r)
and u„(r), while most local pseudopotentials are
chosen to fit short-wavelength data. Because of this
fact, we ignore the second equality in Eq. (26) and
treat n, as a free parameter which we use to fit the
zero-pressure melting points. As mentioned above,
x~ is a free parameter in this theory; we maintain
n,'=4vrbb/3, so ().,' is determined by r,

We obtain E» „„,S», and S(k) using the phonon
approximation. The first two of these can be
written in the usual form:

1~E h ]r( — ~ K()«(n&b + g )
qtS

where R, is the equilibrium position of the lth unit
cell, and 4z&. is the separation vector for atoms j
and j' in the unit cell. The term y, results from
interactions within a sublattice, while A~~ is due
to interactions between sublattices. We use a
'zero-phonon" approximationb4 to calculate S(k),

putting

y, =O u t=o, y, =y2„ if t~O, (36)

where y2„refers to y, evaluated for R, equal to a
second-neighbor separation (i.e. , nearest neighbors
on the same sublattice). We also let

(3V)

where A„„refers to A~~ evaluated for R, +EJ,, equal
to nearest-neighbor separation (between sublat-
tices). This approximation will be satisfactory if
the energies which depend on $(k) are dominated by
contributions from R»'s close to the first- and
second-neighbor separations. The difficulty of this
problem has led us to proceed with this approach
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as a first approximation even though the elementary
state of our understanding of semiconductors does
not allow its detailed justification. These approxi-
mations lead to

S(k) = 2Ã5g -„[e x '&~+cos(K t], )e ~oo]+1 —e " '»
(38)

where K is a. reciprocal-lattice vector and 4 is the
vector between the two atoms in the diamond unit
cell.

Using Eq. (38) for S(k), we can now rewrite those
energies which depend on S(k). From Eqs. (15)
and (18)we have

Eo„„,„=~ krr TI(8/T) + oo ksO +—3 k~8
4eo r 1

(46)

—T'S»=&u, T' 6ln 1-e-'»

-41(B/1'[ —
q

/
), (47)

—' 0 6
y,„=— — 3—J(8/T, A,„)+ coth (48)

[Eq. (8)] which we have chosen to use. This re-
sults in the following expressions:

E„,+E = &N ~ ITK[e» icos(K ~ t],)e nn]
K/0

— ~K~I~'"'" ~ -'&I ~l~i. ;I' —-(), (39[
mo F0 4&e

where
where

S' 1' Q~

reJ(8/r, ~) ~ mott [( r. (~ ])],

(49)

4''e2 k2V 2 1
r a' '4~a']~ ""'] ~- ') ' (4O)

Ero+E,~=2NQ T-„cos(2K Z) e x &n/4,
&0

where

(42)

The energies E&b, E,b, and E» depend on ion-bond
ana bond-bond structure factors. These are calcu-
lated in a way similar to S(k}, again assuming that
S@(k) and S»(k) are dominated by nearest-neighbor
effects. (In this case, we are assuming that the
bonds are primarily correlated with their nearest-
neighbor ions, as suggested by the evidence cited
above which indicates that the bond charges are
located midway between the instantaneous positions
of their neighboring ions. ) We obtain

3

S„(k)= ,'Ne x ~~/'Q-cos(zz a,}5].,-„, (41)
S=O

where a, =b —w;, and the ~, are the primitive lattice
vectors for i=1, 2, 3, while 70=0. This leads to

21.(4) =—~ cosq t], = —2(2/rr)',
q

3 " t'dt
1(x)-=p J

J(x, y) =-— [tcoth(t/2)] i 1 — — dx.1 sin(tyqs/x)
X 0 tyqD x

(52)
Using Eqs (46)-.(52) together with Eqs. (14), (25),
(39), (42), and (45) gives us the expression for f,:

f,(T, V, N, O)=Er(„]rr, +E,(r+(Err, +E(r()+(Err +E(rr()

and hence the solid free energy E,(T, V, N) as de-
scribed in Eq. (7).

Liquid state

We calculate the Helmholtz free energy of the
liquid, Er(T, V, N), and the pressure

02m 1
Tk +fb k+ 2 +eb k+fto'k4' e

(43) (54)

Similarly, we obtain
3

1 1~
S»(k) =N 1+— (cos2K ' 1) + cosoK '(&r~g ~J))

j=l

2 2xe +»&~4O +2 —2ek, K (44)

where 74—= r, Putting thi.s into Eq. (21) gives

As with the solid, we obtain the Gibbs free energy
&r(T, &, N) from these functions. We again use the
Gibbs- Bogoliubov variational principle, 2' this time
in its classical form since a classical approxima-
tion is valid for liquid Qe and Si near the melting
curve. Proceeding as we did for the solid state,
we can again write

2 2
E»=oN t u»-„(1+3cosoK ~,)e

K&0

Fr-fr(T V, » q)-=Eo~r. +&I0o- TSo (55)

2
bb ku -e-'~2.«.

kA0

Now all that remains is for us to put in the Ein-
stein-Debye approximation to the phonon spectrum

where q is the hard-sphere packing fraction, as
discussed below.

We use the hard-sphere liquid with packing frac-
tion p as the reference system for the solid. We
then minimize f, with respect to ri to obtain the
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Eo kin Ehc kin+ Ee kin (56)

SO=Sh. +S. (57)

where the subscripts hc and e refer, respectively,
to the hard-core liquid and the electron gas. As in
the solid, we can neglect S, and finite-temperature
effects in the electron-gas energy, The potential
energy for our model is

best approximation to F,(T, V, N) (and hence to G,).
We define g in terms of the hard-sphere radius R
as q = , 71R—'N/V

As described above, we consider the liquid state
of these group-IV elements to be a simple metallic
liquid composed of ions and an electron gas. So
the calculation of 6, is essentially that of Stroud
and Ashcroft. ' We calculate the function f, of Eq.
(55) as follows. First we express the kinetic ener-
gy and entropy terms in f, as

where

(63}

As stated above, we use the Percus-Yevick ap™
proximation ~ to obtain S„,(k}. This result was ob-
tained by Ashcroft and Lekner. Jones has
shown that E can be evaluated exactly by consider-
ing the Laplace transform of the hard-core two-
body correlation function g(r) obtained from the
Percus- Yevick equation. Jones derives

eq '" —.
' -q/10+q'/20 .

7Tp
2' g~e ~N 1+2'

where an error" has been corrected in the reported
results of Jones by changing the minus sign in front
of (q /20) to a, plus sign.

Using Eqs. (14), (15), and (60)-(64}together with
the expression for S„,(k) gives us an expression for

U= U;;+ V;, +U„.
As for the solid,

eg @8kin + (U88)0 t

(56) f,(T, V, N, q)=E„,„„+E,g+Zb, +E +Eo —TS„,, (65)

and hence the free energy F,(T, V, N) as described
in Eq. (55).

Z e'N
2 t/' (6o)

which is still given by Eq. (14). The term (U;,)0 is
again the band-structure energy E„„which is of
the same form as Eq. (15) with S(k) =S„,(k} and ef,
the modified Hubbard interpolation form, as used
by Ashcroft and Langreth" and by Stroud and Ash-
croft. ' We again use the Ashcroft empty-core
pseudopotential' with the same values of x,.

The term (U;;)0 is the Madelung energy E aver-
aged in the hard-sphere reference system. It is
again of the form of Eq. (18) with S(k}=S„,(k). Eo
is the sum of the k= 0 Fourier components of E„,
E„„and E . It has the form

CALCULATIONS AND RESULTS FOR Ge AND Si

For the calculations we used atomic units (a. u. )
where

A. =me =e=1.

Most results will be quoted in this system. All the
calculations were performed on the IBM 7030 at
Brigham Young University. About three hours of
cpu time were required for the calculation of a
single point on the melting curve of Ge or Si. The
calculation time for a point on the solid Gibbs-free-
energy isotherms increases with a decrease in tem-
perature. This calculation time is not temperature
dependent for the liquid in our calculations near the

3E„, „=—Nk T. (61)

where n, is not taken to be 4m, as would be calcu-
lated from the definition of Eo, but, as in the solid,
n, is a free parameter which is used to fit the zero-
pressure melting curve. We do not take Q. , =n, be-
cause of the great difference between the solid and
the liquid: The solid is a semiconductor, while the
liquid is metallic.

The properties of the hard-core liquid which are
needed for this approach to the liquid free energy
are obtained as follows: E„,„,„ is just the ideal-gas
energy,

1000

~ 800-
0

hJ~ 600-

K~ 400-0

~ 200-

——Experiment~Calculated points
and slopes

To find S„„we follow the work of Lebowitz et al. '
and obtain

S„, 8
( )

6q QrP 1 —7j

Nks Nk~ 1 —q 2(1 —q)' (1 —q}' '

(62)

I I I I

lO 20 30 40 50
PRESSURE (k bar)

FIG. 2. Experimental and theoretical melting curves
for germanium.
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TABLE I. Theoretical melting curve for germanium.

T P V
(K) (kbar) (a. u. /ion) (a. u. /ion)

104S
(a. u. /ion)

10 Si
(a. u. /ion)

(dT/dP)
(K/kbar)

1210 0. 0 154.10
1110 24. 4 150.96
1010 45. 8 148.34

143.80
138.93
134.98

0.275 43
0. 265 58
0. 25521

0. 36546
0. 353 99
0. 341 89

—3. 89
—4. 63
—5. 24

melting curve.
The melting curve was obtained from the inter-

section of Gibbs-free-energy isotherms for the
solid and liquid, giving the melting pressure for
the temperature being considered. The slope of
the melting curve at each calculated point was de-
termined from the Clausius-Clapeyron equation
using the values of S„S„V„andV, produced in
the free-energy calculation.

Three variable parameters needed to be chosen
in applying the theory discussed above. These
were chosen as follows: (i) The parameter n, was
chosen to make the theoretical volume match the
experimental volume of the liquid at the atmospher-
ic-pressure melting point. (ii) The parameters
n, and n,' (= —, vr', ) were chosen to fit the atmo-
spheric-pressure melting point and the experimen-
tal volume of the solid at that point. We used the

'

following values in determining these parameters:
For Ge, T =1210 K, V, =143.8 a. u. /ion, and V,
= 164. 1 a. u. /ion. For Si, T = 1683 K. VF = 11f. 6
a, .u. /ion, and V, = 138.0 a. u. /ion. Since these pa-
rameters completely determine the atmospheric-
pressure melting point and volumes, the theory de-

termines the slope of the melting curve at atmo-
spheric pressure only through the calculated en-
tropies determined by 8 and g, whose values come
from the variational procedure we have followed.

We show the calculated points and slopes for the
melting curve of Ge in Fig. 2, along with the ex-
perimental melting curve. We show the param-
eters of the melting curve in Table I and the contri-
butions to the Gibbs free energies in Tables II and

III. The parameters of the model are

c, =12.513293, n, =14.246481, n, =16.734604.

This value for e,' gives x, = 1.998 772 7, which is
about the same size as the nearest-neighbor dis-
tance. Recent experiments" indicate that the bond
charges do have a finite size; however, it is not
yet possible to say experimentally whether the
above value is reasonable (in fact, it looks a. little
large). The fact that n,' is positive is consistent
with our assumption of a finite-size bond charge
distribution and an electron-bond charge interac-
tion which is less repulsive than the bare Coulomb
interaction for close approach. It is also interest-
ing to note that a, and n, are significantly differ-

TABLE II. Contributions to the theoretical Gibbs free energies for the solid phase of
germanium along isotherms near melting.

1210

1110

1010

V
(a. u. /ion)

154.1

151.5
151.1
150.7

147.8
147.3
146.8

G

(a. u. /ion)

—4.221 187 5

—4. 208 259 9
—4. 206 491 2
—4. 204 710 2

—4. 189898 7
—4. 187 543 2
—4. 185 166 8

104 P
(a. u. )

0. 0

0. 67122
0. 78826
0. 90642

1.7279
1.8877
2. 0495

].04S

(a. u. /ion)

0. 275 425 33

0.265 907 77
0. 265 665 64
0.265 422 71

0, 254 874 59
0. 254 561 12
0.254 246 35

OH

214. 196 44

217.250 09
217. 805 94
218. 365 06

222. 096 45
222. 832 87
223. 574 84

E()

(a. u. /ion)

10 Ee

(a. u. /ion)

0.644 151 02 —0. 691 712 49

E +E
+«b+Ebb
(a. u. /ion) (a. u. /ion)

—0. 793 764 34 —3.974 836 0

10Ebb

(a. u. /ion)

—0. 205 848 19

(a. u. /ion)

0. 575 954 40

0. 656 776 74
0.658 758 02
0. 660 749 80

0. 675 514 99
0. 678 11979
0. 680 742 50

—0. 634 52419
—0. 625 538 62
—0. 616 502 46

—0. 549427 61
—0. 537 579 05
—0. 525 644 52

—0. 78573346
—0, 784 951 16
—0. 78416718
—0. 775 544 47
—0. 774 557 30
—0. 773 567 53

—4. 001 790 0
—4. 005 452 0
—4. 009126 6

—4. 039 5353
—4. 044256 1
—4. 048 9981

—0.200 608 80
—0.199749 01
—0.198 890 59

—0.193 071 17
—0.192 009 36
—0. 190 949 65

0. 528 599 61
0. 528 606 50
0. 528 61345

0.481 298 99
0.481 309 24
0.481 31961



TABLE III. Contributions to the theoretical Gibbs free
energies for the liquid phase of germanium along iso-
therms near melting.

T V 6
(K) (a. u. /ion) (a. u. /ion)

1210 143.8 —4. 221 187 5

1110 140.0 —4, 208 865 5
139.6 —4. 207 744 0
139.2 —4. 206 632 1

1010 134.8 —4, 191 889 3
134.2 —4. 190 1186

133.6 —4. 188 310 6

10"I
(a. u. )

0 ~ 0

0.614 50
0, 694 66
0.774 54

1, 5968
1.7285
1.8635

0, 355 01
0.354 67
0.354 28

0, 341 64
0. 340 81
0.340 02

0. 3660
0. 3666
0. 3673

0. 3835
0. 3850
0. 3864

10'S
(a. u. /ion)

0. 365 46 0, 3526

~ l200-
6

~ 900-
I-
lK~ 600 - —Exp8flNent
Q ~Calculated points

and slopes
~ 300-

(a, u. /ion)

0, 696 149 85

10Ee
(a. u. /ion)

—0. 259 400 85

~is
(a. u. /ion)

—0. 781 234 55

g
(a. u. /ion)

—4, 071 689 7

0
0 5 l0 l5 20 25

PRESSURE (k bar)
0 715 045 33
0, 717 094 21
0.719154 79

0. 742 628 70
0, 745 948 93
0. 749 298 99

—0, 155223 76
—0. 143 934 66
—0. 132 582 46

—0. 003 366 01
+ 0, 014 894 41
+0. 03331463

—0. 743 94942
—0. 741 869 30
—0.739 57941

—0. 697 488 16
—0. 693 322 32
—0. 689 367 67

—4. 138 908 3
—4. 144 177 5
—4. 149678 5

—4, 228 510 0
—4. 237 806 7
—4, 246 9252

FIG. 3. Experimental and theoretical melting curves
fol silicon.

tions to the Gibbs fxee energies in Tables V and

The pa, rameters of the model are

ent, as we expected initially due to the metallic na-
ture of the liquid. The number of points actually
calculated on the melting curve was limited by the
large amount of computation required per point, as
mentioned above.

The good agreement we obtain with experiment
is, of course, to some extent due to the fact that
we have three free parameters. However, pxe-
liminary studies of the model with ~b=0, n, free,
indicated that the form of the interactions is of
great importance in producing the results shown
here. Both the difficulty of this problem and the
relative infancy of the theories of semiconductors
aud of liquids (compared to the theory of simple
metals, for example) required that we make serious
approximations and compensate for some funda-
mental gaps in the present understanding of these
systems by the introduction of adjustable param-
eters. Even with these parametexs, the results
we obtain lead us to conclude that our model calcu-
lation is an appropriate first step toward a truly
fundamental theory of melting in the group-IV serni-
condueto x's .

We show the calculated points and slopes for the
melting curve of Si in Pig. 3, along with the experi-
mental melting curve. We show the parameters
of the melting curve in Table lV and the contxibu-

n ) = 9.858 820 5, e, = 12.546 878, o.,' = 18.298 653.

This value for n,' gives rb=2. 0900913.
Since there is a gxeater proportion of electrons

involved in the covalent bonds in Si than in Ge, the
results become moxe sensitive to our crude ap-
proximations to the covalent-bonded solid, and the
deviation from the experimental curve is somewhat
greater for Si than for Ge.

On both the Ge and the Si melting curves, the
slopes determined from the Clausius-Clapeyron
equation match an interpolation through the calcu-
lated points very well. This fact is due to the vari-
ational procedure which was used to calculate 8.
The procedure used in this work approximately
preserves the thermodynamic self-consistency re-
quirement that

As noted above, this requirement is not as well
satisfied in earlier work.

CONCLUSIONS

We find that a model of Ge and Si in which the
solid phase is composed of ions, an electron gas,

TABLE IV. Theoretical melting curve for silicon.

0. 0
10, 7
21.2

&s
(a. u. /ion)

138.00
136.96
135.97

Vg

(a. u. /1on)

117.60
116.16
114.79

1048
(a. u. /ion)

0.253 96
0.247 74
0.241 16

10'S,
(a, u. /ion)

0. 32766
0. 321 14
0. 31414

(dT/dP)
(K/kbar)

—9.41
—9.63
—9.87
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TABLE V. Contributions to the theoretical Gibbs free energies for the solid phase of silicon
along isotherms near melting.

1483

V
(a. u. /ion)

138.0

137.2
136.8
136.4

136.4
136.0
135.6

6
(a. u. /ion)

—4. 539 962 5

—4. 5337973
—4. 531 5641
-4.5293133

-4.527618 7
-4.5253534
—4, 523 070 0

10'S
(a. u. )

0. 0

0.26662
0, 429 83
0. 59480

0, 540 65
0.70718
0, 87554

104S
(a. u. /1on)

0. 253 95522

0.247 871 02
0, 247 658 71
0.247445 39

0, 241 393 94
0, 241 17961
0„240 964 23

OH

(K)

373.698 15

374. 825 58
375. 667 33
376. 515 04

376. 026 22
376. 879 20
377.738 28

(a. u. /ion)

1{)Ee

(a. u. /ion}

+E
+«~+&os
(a. u. /ion) (a. u. /ion) (a. u. /ion)

10'Eg ~in

(a. u. /ion)

0. 583 186 99 —0.400 710 58 —0. 937 322 99 —4, 111035 3 —0. 406 11073 0, 802 056 59

0. 58736494
0.589 472 57

, 0. 591 592 66

0. 59159266
0. 593 725 51
0. 595871 14

—0. 379 568 50
—0. 368 896 59
—0, 358 157 23

—0. 358 15723
—0. 347 348 91
—0. 336 471 60

—0. 932 577 50
—0, 931 621 43
—0. 930661 92

—0. 927813 05
—0.926 855 35
—0.925 89418

—4. 122 5954
—4. 126 748 8
—4, 1309185

—4. 1 42328
—4. 138414 0
—4, 1426118

—0.402 977 34
—0.4011{)256
—0. 399230 88

—0. 399 862 52
—0. 397 989 84
—0.396 120 21

0. 754 738 70
0.754751 31
0. 754 764 05

0.707446 57
0. 70746025
0.707 474 07

and localized covalent bonds, and in which the liq-
uid phase is a simple metal, gives a negative-slope
melting curve which agrees well with experiment.
The basic source of the negative-slope melting
curve seems to be the presence of the 'covalent

bonds which stabilizes the relatively open diamond

crystal structure in these elements. This rela-
tively open diamond structure has a sufficiently
large volume per ion that the liquid phase, which
is a random but more closely packed system, is
able to be more dense than the solid. In the course
of this investigation we have tried to isolate the ef-
fect of the diamond crystal structure from other

. effects leading to the negative-slope melting curve.
In particular, we have done a brief calculation in
which we impose the diamond crystal structure on
a simple metal very much like the model for metal-
lic sodium used by Stroud and Ashcroft, 1 That cal-
culation indicates that at a very large negative
pressure (- —100 kbar) a diamond-structure phase
could be stable in this simple metal, and the melt-
ing curve, under those circumstances, would have

a negative slope. It is, of course, the presence of
covalent bonding in the diamond-structure semi-
conductors which lowers the Gibbs free enexgy of
this phase so that the diamond structure is stable
at positive pressures. So both the diamond struc-
ture and the covalent bonds play critically impor-
tant roles in producing the negative-slope melting
phenomenon.

The separation of the electronic system in the

TABLE VI. Contributions to the theoretical Gibbs free
energies for the liquid phase of silicon. along isotherms
near melting.

T V G

(K) (a. u. /ion) (a. u. /ion)

1683 117.6 —4. 539 962 4

10 P
{a„u.)

0. 0

104 g

(a. u. /ion)

0. 327 661 42 0.3571

1583 116.5 —4. 533 745 1
116,1 —4. 532 224 2

115,7 —4. 530 678 7

0.253 78
0.384 48
0.51818

0, 321 521 42
0, 321 076 38
0; 320 672 01

0. 3642
0. 3650
0 3657

1483 115.7 —4. 528 722 7
115.3 —4, 527 177 5
114.9 —4. 525 6196

0.412 38
0, 54615
0, 68163

0.31517900
0.314 722 59
0.314264 57

0.3713
0. 3721
0, 3729

~0
(a. u. /ion)

0.670 668 03

0, 677 000 55
0. 679 332 99
0, 681 681 59

0.681 681 59
0. 684 046 53
0, 686 427 87

10 Eeg
(a. u. /ion)

0. 59160125

0.635416 59
0. 651 54713
0, 667 7S5 19

0.667 785 19
0 ~ 684 131 77
0 ~ 700 587 29

~bs
(a. u. /ion)

—0, 857 384 85

—0.837 759 09
—0.834 82S 35
—0. 832 134 03

—0. 819556 70
—0. 816 679 77
—0„813807 60

713

(a, u, /ion)

—4. 3652546

—4. 3961073
—4, 4030403
—4.409 757 1

—4. 422 700 7
—4.4296255
—4. 436 569 4

semiconductors into electrons in a gas and elec-
trons in the covalent bonds is, of course, an arbi-
trary one. The work of Sennemann, "*"Harri-
son, 1 and especially the recent work of Herbert'
point the way to a microscopic theory of covalent
bonding in solids. Much work remains to be done

in this area, however, and we are satisfied that the
results of other investigations mentioned above,
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which have divided the electrons into bonding elec-
trons and free electrons, as well as the results of
the present investigation, support this approach to
the theory of the solid semiconductor.
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