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Type of inversion problem in physics: An inverse emissivity problem
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Inversion problems have recently drawn vast amounts of attention from the physics community due to their
potential widespread applications. In this Rapid Communication, a different type of inversion problem in
physics is proposed: an inverse emissivity problem, which aims to determine the emissivityg(n) by mea-
suring only the total radiated powerJ(T). Like other inverse problems, this one has potential for important
practical applications. An exact solution is obtained for the proposed inverse problem. A unique existence
theorem and techniques for eliminating divergences are also presented. A universal function set~UFS! sug-
gested for numerical calculations is shown to be very useful in a numerical example. The UFS makes this
inversion method practical and convenient for realistic calculations.
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I. INTRODUCTION

Inversion problems are often important in physics a
have received much interest and attention@1#. There are
many familiar examples of inverse problems; for instan
inferring the velocity profile in the earth’s crust from seism
signals. In the early 1980’s, Bojarski first proposed a n
inverse problem@2#, namely, the black-body radiation inve
sion ~BRI! problem. For a given or measured total pow
spectrum W(n) radiated by a black-body with area
temperature distributiona(T), the BRI problem is to solve
the integral equation and obtain the area-temperature d
bution function from the givenW(n). A series of important
papers have been published and some imaginative met
have been proposed to solve the problem since then@2–5#.
The cohesive energy-pair potential inversion problem w
also proposed and developed in a way that anticipated
later work of Chen@6,7#.

Specific heat-phonon spectrum inversion~SPI! is another
type of interesting inversion problem. In many studies
high Tc superconductors, it is often of great importance
know the phonon spectrum. The SPI problem aims to ob
phonon spectra from specific-heat data, which in most ca
are easier to obtain than direct measurements of pho
spectra. Much effort has been directed at this problem o
the past decade@7,8#. Most recently, some of us with co
workers have been successful in numerical calculations
phonon spectra from the inversion of experimental spec
heat data@9#. The numerical inversion results obtained fro
the exact solution@8# are in good agreement with the phono
spectrum from neutron inelastic scattering experiments@10#.

In this Rapid Communication, we propose a different
version problem: emissivity and transmissivity inversi
~ETI!. As is well-known, antiremote sensing is a very impo
tant and interesting problem in practice. It is of great imp
tance for some flyers to hide their figures or images in
background from~infrared! detectors to protect themselve
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One effective way to do this is to reduce their emissivi
Hence, the emissivity problem is potentially important a
interesting.

In the case of gray-body radiation, if the emissivityg(n)
is known, then the total radiated powerJ(T) can be written
as

J~T!5
2 p h

c2 E
0

` n3 g~n! d n

expS hn

kB TD21

. ~1!

Here we propose the inverse emissivity problem: If the to
radiated powerJ(T) as a function of temperature can b
measured, the emissivityg(n) can be obtained by solving th
integral equation, Eq.~1!. Althoughg(n) can be obtained by
spectrum analysis, one usually needs sophisticated ins
ments that are suitable for many wave-bands. But in m
cases, only the main or global characters ofg(n) are needed
and only a single frequency-dependent detector is availa
Therefore, an exact solution of the above integral equatio
an important advance for a significant problem.

It should be emphasized here that our proposed inve
emissivity problem ~ETI! is different from the previous
black-body radiation inversion~BRI! and specific heat-
phonon spectrum inversion~SPI! problems, since the integra
kernels as well as the unknown functions are totally diff
ent. In addition, the physics of the three problems is not
same.

II. EXACT SOLUTION FOR THE ETI PROBLEM

In order to solve the equation exactly, one can use
transformationx5 ln(T/T0) and let Q(x)5@J(T0 ex) c2h3/
2p (kB T0)4#. The following exact solution to Eq.~1! can
then be obtained, using the Euler gamma function,G(z), and
the Riemann zeta function,z(z):

g~n!5E
2`

` S h n

kB TD ik24 Q̃~k! dk

G~ ik ! z~ ik !
, ~2!
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whereQ̃(k) is the Fourier transform ofQ(x).
But there are some difficulties in this formula:~i! z( ik) is

not guaranteed to be nonzero in the denominator. Althou
according to the Riemann hypothesis@11,12#, all the zeros of
Riemann zeta functionz(z) in the Riemann strip (0<Re z
<1) are located on the line Re (z)51/2, the Riemann hy-
pothesis has never been proved and has been a famou
solved problem in mathematics for over 100 years@11–15#;
~ii ! Q̃(k) can be divergent in Eq.~2!.

A. Exact solution formula and technique
for eliminating divergence

We eliminate possible divergences by asymptotic beh
ior analysis ofQ(x). The fundamental requirement is th
existence of Q̃(k), so the first task is to control th
asymptotic behavior ofQ(x). In general,g(n)<1, soJ(T)
<s T4. Then assume that the measuredJ(T) has the follow-
ing asymptotic behavior:

J~T!;H Ts1 whenT→`

Ts2 whenT→0.
~3!

By choosing

J~T!/Ts5
2 p h

c2 E
0

`~n3/Ts!g~n! d n

expS h n

kB TD21

, ~4!

with s1,s,s2, we have: limT→0J(T)/Ts→0;
limT→`J(T)/Ts→0. Introducing the logarithmic transforma
tion of the dependent variableT, the basic equation is trans
formed into

Q0~x!5E
2`

`

K~y2x! F~y! dy, ~5!

where

y5 ln~h n/KB T0!, ~6!

Q0~x!5
1

2p

c2 h3

~kB T0!4
J~T0ex!e2sx,

F~y!5e(42s)y gS kB T0

h
eyD ,

K~y2x!5
es(y2x)

exp@ey2x#21
.

One can prove that the Fourier transform ofK(x) is given by

K̃~2k!5
1

2p E
2`

` eikj1sj dj

exp~ej!21
5

1

2 p
G~s1 ik ! z~s1 ik !.

~7!

And using a similar convolution theorem in Fourier tran
form, one has
04560
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F̃0~k!5
Q̃0~k!

G~s1 ik ! z~s1 ik !
, ~8!

and the exact solution formula of the emissivity inversi
problem can be expressed by an inverse Fourier transfo

g~n!5E
2`

`
Q̃0~k!S h n

kBT0
D s1 ik24

d k

G~s1 ik ! z~s1 ik !
. ~9!

B. Physical domain ofs

The next important step is to give the conditions whi
guarantee the existence ofF̃0(k). A clue is found by study-
ing the general asymptotic behavior ofJ(T) from physical
considerations, followed by finding suitable constraints
the parameters which is used for eliminating divergence
One can prove the following proposition.

Proposition: In physics, the largest domain of definitio
of s is 1,s,`.

Proof: The main point of the proof is to find lower an
upper bounds ofs1 ands2 for all possibleg(n) by physical
analysis of the asymptotic behaviors ofJ(T). This problem
is rather difficult due to the absence of unified rules. But
following considerations lead in the right direction:~a! The
integral equation is linear, so there exists a superposi
principle; ~b! g(n) is positive definite and less than or equ
to 1, i.e., 0<g(n)<1.

A general sourceg(n) can be considered as a superpo
tion of point sources~i.e., g(n) is concentrated at a singl
frequency!. For a point sourceg(n) of frequencyn0, the
total power isJ(T);(2 p h/c2)@n0

3/exp(hn0 /kB T)21#. Its
asymptotic behavior is

J~T!;5
2 p h

c2
n0

3expS 2
hn0

kB TD when T→0

2 p

c2
n0

2kB T;T when T →`.

In this limiting case, we haves151, s25`, and 1,s,`.
Another limiting case is that of ideal black-body radiatio
g(n)[1. Then J(T)5s T4. Considering 0<g(n)<1 and
comparing these two limiting cases, we conclude tha
< s1<4, 4<s2,`, and the largest domain of definition ofs
is 1,s,`.

C. Exact solution formula and a unique existence theorem

If Q̃0(k) is continuous or has discontinuity points of th
first kind, is monotonic at largek, and satisfies the following
asymptotic behavior:

Q̃0~k!5o@ks2(1/2) e2k tan21k/s# ~10!

whenk→6` and 1,s. Then the solution of the emissivity
inversion equation exists uniquely, and the solution formu
Eq. ~9!, is exact.
1-2
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Proof: In physics, the emissivityg(n) must satisfy the
condition 0<g(n)<1, and the inversion equations are li
ear. In order to eliminate possible divergences ofQ̃8(k), one
needs to introduce the parameters. For all s in the largest
domain of definition, one can guaranteez(s1 ik)Þ0, i.e.,
the denominator in the exact solution is nonzero. This c
dition eliminates the divergence naturally and avoids the
proven Riemann hypothesis.

Another important condition is the asymptotic behavior
Q̃0(k). Condition~10! is necessary and sufficient to guara
tee that the solution exists and is unique, by well-kno
Fourier transform uniqueness and existence theorems~e.g.,
see Ref.@17#!.

The nature of our exact solution formula is different fro
the exact solution of other types of inversion problems. H
s cannot be chosen ass.0. On the contrary, when 0<s
<1, it just falls into the Riemann strip, and zeros cou
appear in the denominator. The superiority of this theorem
to give constraints on the asymptotic behavior ofJ(T) by
considering physical conditions. In the high temperature
gion of the SPI problem,CV(T)→constant due to the
Dulong-Petit Law, and in the low temperature regi
CV(T)→TD, whereD is the dimensionality of the system
Then we have 0,s,3. In SPI, this condition naturally
avoids the Riemann hypothesis and cancels the diverge
In ETI, however, 1,s,`, and at minimums.1 is re-
quired. This condition naturally guarantees the denomina
to be nonzero, cancels possible divergences ofQ̃0(k), and
simultaneously avoids the Riemann hypothesis via Ha
mard’s proof@16#. Therefore, based on the previous discu
sion, one can conclude that the natural laws are implic
included in our solutions to these various inverse problem

In summary,

1,s, ETI

s50, BRI

0,s,3, SPI.

In a limiting case, whenJ(T);T4, assume one has a radi
tion spectrum, proportional toT4. Then

J~T!5a0sT4, ~11!

and

Q0~x!5
c2 h3

2 p ~kB T0!4
J~T ex! es x5c2 h3 a0 s/~2 p kB

4 !.

~12!

Evidently, the only choice ofs is

s5s15s254. ~13!

In order to include the limiting case, condition~10! can be
relaxed to be Q̃0(k)5o@ks2(1/2) exp(2k tan)21(k/s)#. Al-
thoughQ̃8(k) cannot be expressed by a classical function
04560
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can be expressed by a generalized function~or distribution!
in the Schwartz-Sobolev sense:

Q̃0~k!5
c2 h3

2 p kB
4

a0s d~2k!. ~14!

According to the exact solution formula~9!, with s54, we
have

g~n!5
c2 h3 a0 s

2 p kB
4 E

2`

` S h n

kB T0
D s241 ik

d~2k!d k

G~s1 ik ! z~s1 ik !

5
c2 h3

2 p kB
4

a0 s

G~4! z~4!
5a0 , ~15!

which means that the exact solution formula is still valid f
the limiting cases54.

It is necessary to emphasize that even in the black-b
radiation case, if one does not introduce a parameters, the
Fourier transform cannot be used. The technique for eli
nating divergences is necessary and important. The introd
tion of parameters is also helpful to improve the asymptoti
behavior ofQ0(x) and reduce the amount of detail require
in the temperature data.

III. UNIVERSAL FUNCTION SET „UFS… METHOD

According to the unique existence theorem, the spe
functions G(z) and z(z) must be calculated to high prec
sion. BecauseG(s1 i k) in the denominator goes to zero e
ponentially at largek, it is difficult to control the asymptotic
behavior ofQ̃0(k) at largek, which goes to zero much faste
thanG(s1 i k). The essence of our suggested UFS metho
to choose a complete orthogonal function set to guaran
this asymptotic behavior in advance. We suggest choos
the Hermitian function set as the required basis:

un~x!5AS a

Ap 2n n !
D e2(1/2)a2 x2

Hn~a x!, ~16!

wherea is a parameter. One can expandQ8(x) in terms of
un(x):

Q0~x!5 (
n50

`

Cn un~x!. ~17!

Then the emissivity can be obtained as follows:

g~n!5 (
n50

`

Cn Gn~n!, ~18!

where

Gn~n!5E
2`

`
ũn~k!S h n

KBT0
D s1 ik24

d k

G~s1 ik ! z~s1 ik !
, ~19!
1-3
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and

ũn~k!5~2 i !nA 1

2 p a Ap 2n n !
e2(k2/2 a2) HnS k

a D .

~20!

The universal function set$Gn(n)% has been calculated t
high precision. Some of these functions@Gl(y): l 5027,
andy scaled as a dimensionless variable# are shown in Fig. 1.

In order to check exact solution formula~9!, we choose a
known functiong(n) and obtain the correspondingJ(T) for
input to ETI, as shown in the Fig. 2 by the solid curve. Th
we calculateg(n) by our UFS method, which is shown b
the sample points in Fig. 2. Comparing the results obtai
from the exact solution formula and from UFS with the inp
known functiong(n), we find excellent agreement. The a
dition of real noise introduces a number of new problems
discussed by Bertero and Pike@18# in connection with noisy
Laplace transforms.

FIG. 1. Universal function setGl(y): l 5027.
g
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IV. CONCLUSION

In this paper a new emissivity inversion problem is pr
posed that is expected to be useful in antiremote sensing
related fields. An exact solution formula with unique ex
tence theorem, and a technique for eliminating divergen
and avoiding the Riemann hypothesis are presented
proved. The largest physical definition domain of the para
eter s proposed for eliminating divergences is found. T
generalization of the ETI problem and some applications w
be discussed in a subsequent publication.
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FIG. 2. Comparison ofg(n) calculated by the UFS metho
~open circles! with the known input function~solid curve!.
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