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Functional integral approach: A third formulation of quantum statistical mechanics
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Quantum statistical mechanics has developed primarily through two approaches, pioneered by Gibbs and
Feynman, respectively. In Gibbs’ method one calculates partition functions from phase-space integrations or
sums over stationary states. Alternatively, in Feynman’s approach, the focus is on the path-integral formulation.
The Hubbard-Stratonovich transformation leads to a functional-integral formulation for calculating partition
functions. We outline here the functional integral approach to quantum statistical mechanics, including gener-
alizations and improvements to Hubbard’s formulation. We show how the dimensionality of the integrals is
reduced exactly, how the problem of assuming an unknown canonical transformation is avoided, how the
reality of the partition function in the complex representation is guaranteed, and how the extremum conditions
are simplified. This formulation can be applied to general systems, including superconductors.
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I. INTRODUCTION

In 1959 Hubbard@1# developed a functional-integral ap
proach~FIA! to calculate the grand partition function of st
tistical mechanics. This approach is the third general
proach to many-body statistical mechanics, and it gives
to many interesting approximation schemes for many-b
physics. The first two approaches to many-body quan
statistical mechanics are the configuration integral or s
over stationary states approach that goes back to Gibbs
the path-integral approach of Feynman.

The FIA has not been developed as fully as the first t
approaches to statistical mechanics because of mathem
complexities and difficulties in generalizing the fundamen
formulation. These matters are addressed in this paper
we first review Hubbard’s functional-integral method.

A. Hubbard’s method

Hubbard’s approach was based on the Stratonovich id
tity @2#:

E
2`

`

exp@2px222ApxÂ#dx5eÂ2
. ~1!

Using this identity, the partition function can be transform
exactly from a many-body partition function to a function
integral over single-particle problems in a fictitious ‘‘time’
dependent external field. Begin with the usual definition
the partition function

J5Tr@e~mN̂2Ĥ !/kBT#, ~2!
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where the Hamiltonian,Ĥ, can be written in terms of a
single-particle operator,Ĥ0 , and a many-body term,V̂:

Ĥ5Ĥ01V̂,

V̂5
1

2 (
i , j ;k,l

Vi , j ;k,l âi
1â j âk

1âl . ~3!

Using the following notation

b[
1

kBT
, g[~ i , j !,ĵ i , j[ĵg[âi

1â j ,

K̂[b(
i

e i âi
1âi , N̂[(

i
âi

1âi , ~4!

then

V̂5
1

2 (
g,d

Vg,dĵgĵd , ~5!

where the Hermitian property of the Hamiltonian ensu
that Vg,d* 5Vd,g . Assuming that one can diagonalizeV̂ by a

canonical transformationŜ,

~Ŝ1V̂Ŝ!n,n85lndn,n8 , ~6!

then

V̂5
1

2 (
n

lnr̂n
2, ~7!

where

r̂k,l5(
i , j

Si , j ;k,l âi
1â j[r̂n . ~8!
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Making use of the ordering label technique of Feynman@3#
and the Stratonovich identity of Eq.~1!, Hubbard obtained

J5E e2L@xn,s#)
n,s

dxn,s , ~9!

where

L@xn,s#5p(
n,s

xn,s
2 1b f @xn,s#, ~10!

and f is the thermodynamic potential of an ideal gas mov
in a time-dependent external field:

e2b f @xn,s#5TrFexpS n̂2K̂s22Ap (
n,s

A2lnxn,sr̂n,sD G .
~11!

B. Difficulties

There are some interesting problems with this formulat
as it stands:

~i! It is difficult, and not always possible, to obtain th
canonical transformation operatorŜ.

~ii ! Even knowingŜ, the operatorsr̂n[r̂k,l are still very
complicated.

~iii ! Is there a way to proceed without explicit forms forŜ
and r̂k,l?

~iv! Can we reduce the dimensionality of the integrals
~v! How can we simplify the extremum conditions of th

Lagrangian for the method of steepest descents?
~vi! How can we generalize the functional-integral form

lation of quantum statistical mechanics to include superc
ductivity?

These problems are discussed below. Previous app
tions of the functional-integral approach include the And
son model@4#, the Kondo effect@5#, valence fluctuations, an
the Hubbard model@6–18#. In the previous work, many ap
proximation methods~e.g., static approximation, random
phase approximation, independent harmonic approximat
quartic approximation, systematic diagrammatic analy
single cross approximation, the time-domain approach, e!
have been developed. The results of the FIA@14,16# have
been compared with those of renormalization-group the
@19#. The present paper focuses only on the general prob
of the formulation of a practical functional-integral a
proach.

II. AN OPERATOR IDENTITY

In order to generalize and improve the Hubbard theo
we start from the following operator identity:

Identity : When linear operatorsÂ and B̂ commute, one
has@12#

e6ÂB̂5E
2`

`

dxE
2`

`

dy exp@2puzu22Ap~Âz6B̂z* !#,

~12!
02611
n

-

a-
-

n,
s,
.

y
m

,

where

z5x1 iy . ~13!

~i! When Â and B̂ commute and are Hermitian, thenÂ
andB̂ possess a common complete orthonormal set of eig
functions that can be taken as the representation basis.
identity can then be proven withc numbers.

~ii ! Often ~in fact, for the general case in statistical m
chanics! Â and B̂ are not Hermitian. Nevertheless, sinc
Â and B̂ commute by hypothesis, one can expa
exp@2Ap(Âz6B̂z* )# in a power series inx andy, and carry
out the integration to prove the operator identity.

The Stratonovich identity, Eq.~1!, is a special case of this
operator identity, Eq.~12!, whenÂ5B̂.

III. FUNCTIONAL-INTEGRAL FORMULATION
OF QUANTUM STATISTICAL MECHANICS

To have a practical functional-integral formulation, w
need to reduce the dimensionality of the integrals and av
the unknown transformationŜ and operatorr̂k,l . Therefore,
we prove the following general theorem without explicit u
of Ŝ or r̂k,l .

Theorem. A general statistical equilibrium problem wit
Hamiltonian of the formĤ5Ĥ01Ĥ int , where

Ĥ05 (
k,k8,s

S I k,k81
1

2
U0dk,k8D âk,s

1 âk8,s ,

Ĥ int56
1

2V (
q

(
k,s

(
k8,s8

U~q!âk81q,s8
1 âk2q,s

1 ak,sâk8,s8 ,

~14!

can be transformed exactly into a problem of an ideal
moving in a fictitious complex time-dependent external fie
The price to be paid is the introduction of a functional int
gral. @Note thatU0 is the potential at the origin andU(q)
is taken to be positive, with the sign introduced explicit
by 6.#

Proof. We first write

Ĥ int56(
q

ÂqB̂q , ~15!

where

Âq5B̂q
15(

k,s
AU~q!

2V
âk1q,s

1 âk,s . ~16!

Introducing the Feynman-Dyson expansion and the tim
ordering operatorT̂, we can write the grand partition func
tion as

J5Tr@ T̂eb~mN̂2Ĥ0!e2*0
bĤ int~t!dt#, ~17!

whereĤ int(t) is the interaction representation form.
Now, using the Fourier expansion for an operatorÔ(t),
8-2
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Ô~t!5 (
n52`

`

Ône22p int/b, ~18!

where

Ôn5
1

b E
0

b

Ô~t!e2p int/bdt, ~19!

we have

E
0

b

Ĥ int~t!dt56b(
q

(
n52`

`

Âq
nB̂q

2n . ~20!

Then applying the operator identity of Eq.~12!, one obtains

J5E
2`

`

¯E
2`

` S )
q

)
n52`

`

dxq
2ndyq

2nD
3expF2p(

q,n
uzq

2nu2GTrF T̂ expH b~mN̂2Ĥ0!

2Apb(
q,n

@Âq
nzq

2n7B̂q
2n~zq

2n!* #J G . ~21!

Now return to the time domain where

(
q,n

uzq
2nu25

1

b (
q
E

0

b

uzq~t!u2dt,

and

(
q,n

Âq
nzq

2n5
1

b (
q
E

0

b

Âq~t!zq~t!dt. ~22!

SinceÂq
15B̂q , one hasB̂q

2n5(Âq
n)1. Then

(
q,n

B̂q
2n~zq

2n!* 5
1

b (
q

F E
0

b

Âq~t!zq~t!dtG1

. ~23!

Now write

Ũ~t!5Ap/b (
q

$Âq~t!zq~t!7@Âq~t!zq~t!#1%,

and

Ĥl~t!5Ĥ01lŨ~t!. ~24!

Then we define

Jl~z!5Tr@ T̂ebmN̂2*0
bĤl~t!dt#, ~25!

which allows one to write, using Eq.~21!,

J5E Dz expF2
p

b E
0

b

(
q

uzq~t!u2dtGJ1~z![^Jl&l51 .

~26!
02611
Âq(t) is a quadratic form, andĤl(t) is like the Hamiltonian
of an ideal gas moving in an external field,zq(t), as is
evident on rewritingŨ in the form

Ũ5Ap

b (
q
AU~q!

2V (
k,s

$âk1q,s
1 ~t!âk,s~t!zq~t!

7âk,s
1 ~t!âk1q,s~t!zq* ~t!%. ~27!

So the theorem is proven.
Comparing this approach with Hubbard’s theory, we s

the following advantages of this formulation:
~i! It avoids the difficulties of finding the canonical tran

formationSi , j ;k,l and r̂k,l5S i , jSi , j ;k,l âi
1â j .

~ii ! The dimensionality of the integrals here is much le
than in the Hubbard formulation, because in our formulat
the functional integral is expressed as*Pqdxq(t) dyq(t),
whereas in the Hubbard formulation it is expressed
*P iP jdxi , j (t). This reduction of dimensionality is impor
tant in applying the theory.

~iii ! In the BCS theory of superconductivity,V5
2Sk,k8Vk,k8ck,↑

1 c2k,↓
1 c2k8,↓ck8,↑ , which cannot be diagonal

ized in the form of Eq.~7! to apply the Stratonovich identity
But using the operator identity Eq.~12!, which only needs
Âq5B̂q

1 and their commutativity under theT̂ operator, the
present FIA can also be applied to the theory of superc
ductivity.

IV. PROPERTIES OF THE PARTITION FUNCTION

Only real partition functions are physically meaningfu
Furthermore, within a single-phase region, the partition fu
tion must be analytic and positive. Positivity ofJ is a nec-
essary condition for reality of the thermodynamic variabl
Analyticity ensures that the thermodynamic variables a
their derivatives do not have any singular points, whi
would be associated with a phase transition.

However, physical systems do undergo phase transiti
and physical systems that are experimentally realizable
not single phase systems. The most interesting theore
model systems also include phase-transition points. At s
points the partition function, in the thermodynamic limit, ca
go to zero@20# or contain some more subtle nonanalyticit

In this section we explore these properties of the partit
function in the functional-integral approach.

A. Reality and method of steepest descents

We note thatŨ is Hermitian or anti-Hermitian as the two
body interaction is attractive or repulsive:Ũ157Ũ accord-
ing to 6 in Ĥ int . WhenĤl is Hermitian,Jl(z) and hence
J, are manifestly real.

On the other hand, whenĤl is non-Hermitian,Jl can be
complex valued. We prove here thatJ is nevertheless alway
real.

Take Ũ152Ũ by hypothesis. Then to take the comple
conjugateJ* , we takeŨ→Ũ152Ũ, and the rest of the
operators are Hermitian. By symmetry we have
8-3
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Ũ→2Ũ,

when

zq~t!→2zq~t!. ~28!

Since definite integrals are invariant under transformation
~dummy! integration variables, it is easy to prove that all t
imaginary parts of the expression forJl cancel exactly:

J5J* 5^Jl&l515^Re~Jl!&l51[^J̃1&. ~29!

For convenience, we have definedJ̃1 as follows:

J̃1[Re~Jl!ul515TrH T̂eb~mN̂2Ĥ0! coshF E
0

b

Ũ~t!dtG J
5TrH T̂eb~mN̂2Ĥ0! cosF E

0

b

Ũ0~t!dtG J , ~30!

whereŨ0[2 iŨ is Hermitian. This definition ofJ̃1 differs

from that in the Hubbard theory, and hereJ̃1 is manifestly
real.

As long as the LagrangianL has an extremum, one ca
use the method of steepest descents. So we write

J5E Dz e2L@z~t!#, ~31!

where

L@z~t!#5
p

b (
q

uzq~t!u22 ln~J̃1@z~t!#!. ~32!

L has an extremum at the point$xq,s
0 ,yq,s

0 % where

S ]L

]xq,s
D

0

50, S ]L

]yq,s
D

0

50, ~33!

with s now standing in for the time variable. We expand t
LagrangianL in the vicinity of the extremum, and define
matrix L2 with matrix elements

~L2!q,s;q8,s85
1

2p S ]2L

]zq,s]zq8,s8
D . ~34!

Considering a suitable canonical transformation and the
variance of the determinant under canonical transformatio
the functional-integral calculation can now be carried o
The method of steepest descents gives the following exp
sion for the partition function:

ln J52
p

b (
q

uzq
0u21 ln J̃1@zq

0#1
1

2
ln det@L2#0 . ~35!

B. Positivity and analyticity of the partition function

We expect nonanalytic points, possible zeros, and poss
singularities in the partition function at phase-transiti
02611
of

-
s,

t.
s-

le

points. J̃1 , while real, can be negative whenŨ is anti-
Hermitian. This is so because we can writeŨ(t)[ iŨ 0(t)
whereŨ0(t) is Hermitian. Then Eq.~30! can be rewritten as

J̃15TrH T̂eb~mN̂2Ĥ0! cosF E
0

b

Ũ0~t!dtG J . ~36!

The cosine function, of course, allowsJ̃1 to be negative.

SinceJ̃1 appears as the argument of a logarithm in E
~32!, L@z(t)# can be complex, allowingJ to become zero.
Furthermore, even whenŨ is Hermitian,J could have sin-
gular points or other nonanalytic points. It is, in fact, th
richness of the theory, that certainly includes the possibi
of phase transitions, that allows these possibly troubleso
points.

In most cases, even whenŨ is anti-Hermitian,J will be
positive definite as guaranteed by two factors: First,
Gaussian factor exp@2pSq,nuzq

2nu2#, which is maximum at the
zero point, and decreases quickly at largezq

2n . Second, the
cosine function is positive in the first quadrant. At large
gument, the cosine function oscillates quickly and mos
cancels, while the amplitude of the integrand is decay
very quickly anyway due to the Gaussian factor. These f

tors makeJ̃1 likely to be positive. As a rough estimate, sinc
Ũ0 is linear inzq

2n , we see from the Poisson formula thatJ
is positive:

E
2`

`

e2px2
cos~ax!dx5e2a2/4p.0. ~37!

It is interesting to see, however, thatJ̃1 may take negative
values in the functional-integral approach, especially in
vicinity of a phase transition. In these cases, steepest
scents in the complex domain could be used to study su
phase transition.

When the interaction is attractive, with no hard core,Ũ is
Hermitian andJ1 is positive definite. The same rough es
mate as above, assuming a linear functionŨ(z), gives

E
2`

`

e2px2
cosh~ax!dx5e1~a2/4p!.1. ~38!

As expected,J cannot have any zeros in this case. So h
can models like BCS theory of superconductivity or Bos
Einstein condensation have a phase transition? All tha
required for a phase transition is some nonanalytic poin
singularity, not a zero in the partition function. A zero in th
partition function is the case that was studied by Yang a
Lee @20#, but this is associated with a hard core in the int
action. In Bose-Einstein condensation, on the other hand

ln J52 ln~12zee0 /kBT!2 (
pÞ0

`

ln~12zeep /kBT!, ~39!

which goes to1` at the critical point. A similar argument is
possible for BCS theory.
8-4
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Although there is not yet a complete quantum theory
phase transitions, it appears that many cases are pos
with different nonanalytic behaviors in the partition fun
tions.

V. DISCUSSION

Starting from the operator identity Eq.~12!, the general
partition function can be expressed by a Gaussian averag
an ideal gas partition function.@See Eqs.~24!–~26!,~29!,
~30!.# Compared with Hubbard’s theory, our formulatio
possesses the following advantages:

~i! It avoids the necessity of diagonalizingVi , j ;k,l , finding
the transformationSi , j ;k,l , and computingr̂k,l ;

~ii ! The dimensionality of the integrals is much less th
in Hubbard’s theory. For example, in Hubbard’s theory fo
fixed q one must evaluate all the integrals with respect to
$xq,k,s%. But in our formulation, one only has to carry out th
integrations with respect toxq andyq .

~iii ! In our general formulation, it is necessary to intr
duce a complex representation.Ũ can be anti-Hermitian and
ia

e
ty

y

02611
f
ible

of

ll

Jl could in principle be complex. But we have proven th

J andJ̃1 are always real. Reality is thus guaranteed for

partition functions. The expression forJ̃1 is also interesting,
even including the possibility of phase transitions.

~iv! The extremum condition and the method~approxima-
tion! of steepest descents are much simpler than in H
bard’s theory.
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