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Landau free energy form at the F point of the Rae structure 
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(Received 3 September 1980; accepted 6 November 1980) 

A free energy form compatible with the F point of the trigonal D~d(R 3c) symmetry is constructed. It is a 
function of the order parameter. elastic strain. and the stress. The resulting free energy exhibits a close 
formalistic analogy to the stressed cubic perovskite structures and their associated multicriticality. 

I. INTRODUCTION 

Over forty years ago Landau phenomenologically 
treated thermodynamic systems possessing continuous 
phase transitions. 1 The theory considered symmetry 
changes as well as thermodynamic functional critical be
havior and allowed for descriptions of both second order 
and first order transitions. The high degree of univer
sality of the formalism was associated with various val
ues of its parameters and gave a description of a type of 
critical point at which the line of second order transi
tions changes continuously to a line of first order transi
tions. 

It was only recently Griffiths2 theoretically showed 
that the critical point described by Landau occurs at the 
intersection of three critical (second order) lines and is 
thus properly termed a tricritical point (TCPl. Neces
sarily, considerations of three thermodynamic field 
variables are implied and the tricritical point is a "high
er order" or multicritical point. There are many sys
tems in which there is a possibility of a TCP and several 
in which they have been experimentally confirmed. 3 

In addition to tricritical points other types of higher 
order critical points are known to exist such as bicriti
cal, tetracritical, etc. Many of these higher order 
critical points can be associated with symmetry breaking 
fields, e. g., stressed systems. 4 Again there are sev
eral structures in which multicritical pOints arise and 
SrTi03 is an example of a structure where a multi
critical point arises as a result of a stressing symmetry 
breaking field. 

Usually the initial theoretical approach to the descrip
tion of such systems is a mean field Landau description 
from which a valid description is obtained for regions 
where fluctuations do not Significantly contribute. The 
free energy form together with symmetry compatibilities 
are then the beginnings for a Landau-Ginsburg-Wilson 
Hamiltonian to which renormalization group methods can 
be applied" 5 

Descriptions of continuous transitions within the Lan
dau formalism require the specification of an irreducible 
representation of the space group. For representations 
arising from the k = 0 point, considerations reduce to 
point group representations. Recently the classification 
of possible continuous transitions of the R3c structures 
arising from the r, Z, L, and F points was developed. 6 

In this paper we wish to construct a free energy form 
which is compatible with the trigonal D~tf(R3c) symmetry. 
The motivation of this work arose from electron spin 
resonance studies on the R3c to P2 1/c calcite transition 

near 16 kbar. 7 The first order nature of this transition, 
as interpreted from the discontinuity in the esr spectra 
of the two phases, was observed to decrease, as the 
temperature was increased along the phase line, in a 
manner typical of critical phenomena and approached 
zero near 200 DC. Thus after showing the compatibility 
of a continuous transition between these space groups6 
which is necessary for the existence of critical points, 
the next step is to examine the nature of the possible 
critical phenomena by a calculation of the form of the 
free energy. From the Aizu classificationS the free 
energy will be a function of the order parameter, the 
elastic strain, and the stress. From the free energy 
we indicate a close formalistic analogy with the stressed 
cubic perovskite structures and their associated multi
criticality. 

II. FREE ENERGY FORM 

The trigonal space group we wish to consider is D~tf 
(R3c). Several materials exist in this crystal struc
ture and there is evidence that one or more may exhibit 
critical phenomena. 7 The first step in the description of 
points or regions in field space of a continuous phase 
change is to construct within the formulation of Landau 
a free energy form compatible with an irreducible repre
sentation of the more symmetric phase. We will denote 
this higher symmetry space group as Go. The transition 
then goes to a subgroup G1 of Go. In order for the tran
sition to take place continuously a set of necessary con
ditions on the representation of Go as well as the sub
group G1 need to be checked.9 Considerations of repre
sentations and the construction of the free energy form 
for zone center points reduce to point group considera
tions. The group theory and the checking of the Landau 
conditions for the Z, L, and F points are to be published 
elsewhere and that work indicates that for the F point 
three representations together with the appropriate sub
groups satisfy the necessary criteria for continuous 
transitions from the space group R3c(Go). In this de
velopment we consider only the F point and the asso
ciated representations of R3c in the construction of the 
free energy. 

R~c is a nonsymmorphic space group whose isogonal 
point group is 3m(D3tf ). We can then express R3c as a 
coset sum with respect to the translations (T) in the 
form 

6 12 

GO(R3c) = L: {R11000}T+L: {RII~H}T, (1l 
1=1 1=7 

with the numbering in the sum corresponding to the or
dering of the symmetry operations of the Intenational 
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Tables for X-Ray Crystallography. lU We take the forms 

t 1 =-a]+ek, 

t2 = (af3/2)f + (a/2)j + ek , 

t3 = - (an/2)i+ (a/2)j +ek 

for our primitive translation vectors and 

gl = 21T[-2/3a)ky +(1/3c)kz l , 
~ = 21T[ (l/f3a )kx + (1/3a) ky + (l/3c) k.l , 
g3 = 21T[ - (l/na) kx + (1/3a )ky + (1/3e) kzl 

(2) 

(3) 

are the resulting forms for the reciprocal lattice vectors. 

To construct representations of Go we must have a 
specific k vector of the Brillouin zone in mind. Moti
vated by the correspondence to the transition in calcite 
we w ill consider the F pOint [F = (gl) /2 + (g2 )/2] as the 
k vector for the description of the representations. The 
point group of F is 2/m (C2h ) with elements 

G- F -{E C' I 1 - , 23, , ad3 f • 

There are three vectors in the star *F={F, F', F"}. 
little group is then written in coset form as 

G F ={E 1000}T +{II OOO}T +{c~31 tH}T +{al Ht}T . 
Consideration of the factor system corresponding to 

(4) 

The 

(5) 

these coset representatives reduces to the regular repre
sentations for OF. Among the four representations ob
tained of the space group consider the representation 
D(*F.3) indicated below which arises from the one-di
mensional representation of OF, i.e., 1(E), -1(1), 
1(C~3)' -1(al. The above representation along with 
D(* F.!) andD(*F.4) are the representations which satisfy the 
necessary conditions for continuous transitions and thus 
the only ones which we consider in the construction of the 
free energy. For concreteness we indicate for D(*F.3) 
those essential elements of R3e from which we can ob
tain the others. 

° 
exp(- iC;F' t) 

° 

(

-1 

D(*F.3)({Ilo})= : (6) 

We will use D(*F.3) in the followi.ng but recognize that 
D(*F.4) andD(*F.!) yield the same form for the free en-

ergy. The only difference between these representa
tions and D (* F. 3) is that for the above essential elements 
of R3e, 

D(*F.4)(C~) = -D(*F.3)(C~); D(*F'!)(I) = -D(*F.3)(I) (7) 

and since these matrices appear always as squares in 
the nonzero sums below the invariants of these three 
representations are the same. 

We first restrict our attention to the construction of 
the free energy terms which arise only from the order 
parameter contribution. As was done in the original 
formulation by Landau we interpret the basis functions 
of D(*F.3) as local order parameters, The free energy 
must then be invariant in functional form under the 
space group transformations of R3e. The first order 
invariant term of the free energy is excluded for sys
tems which have an inversion or reflection center. For 

. our group there is thus no first order invariant form, 

The second order invariant terms arise from terms of 
the form TI(I7J in the order parameters carrying repre
sentation D(*F.3). In terms of group theory an invariant 
second order form is equivalent to seeking an identity 
representation of R3e within the symmetric squared 
Kronecker product of the D(*F.3) representation. We 
thus need to seek sums of F, F' and F" which are equiv
alent to the zero vector, i. e., equal to k = ° up to a re
ciprocal lattice vector. This would assure invariance 
under all lattice translations. Notice that there are 
only three such forms, namely 

F+F=O, F' +F'",O, F" +F"",O. (8) 

The symmetric square representation then splits into 
two portions, say To and Tt. where To corresponds to 
that portion with wave vector equivalent to k = ° and thus 
the only portion we need to consider. We can obtain a 
basisll for To by using 

(9) 

with j labeling arms of the star and m, m' labeling the 
basis vector of the representation of the little group G F 
Since m = m' = 1 for our case the order parameter func
tions carrying D(*F.3) can be labeled TIl with i = 1,2,3 
and they transform under translations as elF' t, el r· t, 
or elF'" t. To obtain the second order invariant we can 
then use the projection operator for the identity repre
sentation 

(1)_ 1 " ( ) _ 1 " 
p -IGo l7'Xgo"-IGol7'°,., 

and let it act on vectors of To. For example, 

(I) _ 1 "( ) 
P TllTl! - IGo 1 £r 0,. TI!TI! 

= I~ 1 L Dg F;3)(g)D}?'·3)(g) TIl TlJ 
o I.J.I' 

where g={jlta } are the coset representatives of Go. 
The sum over the translations in R3e is zero unless 
FI = FJ for which it gives I T I. Thus 

(10) 
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p(l)rhTJl = t {IG1PI ,1tJl' D::F,3)(g)D:~F,3)(g) }TJjTJj. (12) 

The use of the projection operator on vectors in To yield 
one invariant of the form L,j "". This is the usual quad
ratic form invariant and was to be expected. 

To look for cubic invariants we must look for cubic 
combinations TJjTJJTJ~ which are invariant under transla
tions. There is only one such symmetric combination, 
namely TJl'TkTJ3' The use of the projection operator in 
this To subspace yields the sum 

P(l)TJ1TJ2173 = L: {~ L: 
j#J#k IG I fCo F 

Dl;JI',3) (ilD}:F,3) (g)Dk* JI',3) (g)} TJj TJJTJk' 

(13) 
We obtain no third order invariants and thus representa
tion r}*JI',3) satisfies one of the conditions of Landau for a 
continuous transition. Similar considerations of invar
iants to sixth order yield the following form for the free 
energy in terms of the order parameter: 

This is the same form as was obtained for the cubic 
perovskite structure. 12 

If we now turn our attention to the free energy con
tributions solely dependent on elastic strain the lowest 
order contributions is of the form 

(15) 

Here the Voigt notation has been used so the ej is a sec
ond rank symmetric tensor whose components transform 
as (polar) vector components under symmetry transfor
mations. We choose the Cartesian coordinates for the 
strain such that the threefold axis is along the z axis 
and the twofold axis of C~3 is along the x axis. Atsec
ond order in ej we obtain six strain invariants. Indicat
ing here only the terms of second order (fourth rank 

tensor forms) we have elastic strain contributions of the 
form 

q,2(e) = t Cu (e~ +e~ +2e~) + C12(ele2 -e~) 

+C13e3(el +e2) +2C14(e4el-e4e2 +2eses) 

+ tC33 e~ + 2C44(e~ + en • (16) 

Finally, we consider terms of the free energy which 
couple strain and order parameter. We will consider 
only the lowest order contribution consistent with the 
translation symmetry and the central point property of 
R~c. The usual "electrostricti ve" contribution TJj TJJe k 

which can be obtained through the use of the projection 
operator defined earlier is of the form 

(17) 

Notice we have not used the Voigt notation for strain (t:) 
in the above sum so that the explicit transformation of 
components can be shown. Here Duo(j) corresponds to 
the matrix elements of the Cartesian vector transfor
mation matrices of the second rank strain tensor. We 
obtain four possible invariants with the resulting free 
energy form (Voigt notation) 

q,3(TJ,e)=,611(t=1rl) (e 1 +e2)+,613(~ TJ~)e3 +,612{2!ft(e1-e2) 

- ~(el - 213 es -e2) - ~(el +213 es -e2)} 

+,614 {2rji e4 + ~(13 es - e4) + ~(-13 es - e4)} • (18) 

III. DISCUSSION 

Let us restrict considerations to fourth order in the 
order parameter, quadratic in e, and add a stress (y",) 
strain coupling term. Then 

'" 
If we now use the condition (8q,)/(8e",)=0 we can solve 
for e as a function of TJ and y",. The free energy can 
then be expressed as a function of TJ and y", and takes the 
reduced form 

q,(TJ,Y",) = ~o ~ TJ~ + uo(~ 1rl r + vo~ TJ: +Ll(~ 1rl) (Yl +Y2) +L2(~ 1rl )Y3 

+L3 {2rji(Yl - Y2) - ~(Yl - 2f3ys - Y2) - ~(Yl +2f3 Ys -Y2)}+L4 {2rjiY4 +~(13 Ys -Y4) + ~(-f3 Ys -Y4)} • (20) 

Under isotropic stress, i.e., Yj = -p, i = 1,2,3; 
Y4=YS=Y6=0 the free energy reduces to 

q,(TJ,p) = r2
0 L: ~ +Uo(L: ~)2 +vo L: TJt - p(2L1 +L2) L ~ . 

j j j j 

(21) 
The primary affect of isotropic stress is to renormalize 
the Curie temperature which is associated with the coef
ficient of the L,j ~ term. The free energy under these 
conditions is formalistically the same as for cubic struc-

tures, for example, BaTi03 and SrTi03 •
12 Equilibrium 

order parameter values can be obtained for this Landau 
free energy yielding three possibilities: 

(a) paraphase TJl = TJ2 = 113 = 0 , 

(1) for ro >0, Vo >0, Uo +vo/3 <0 , 

(2) for ro >0, Vo <0, Uo + Vo <0 

(b) ferrophase TJl = TJ, TJ2 = 113 = 0 , 

J. Chern. Phys., Vol. 74, No.4, 15 February 1981 
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(1) ro <0. Vo <0 , 

(2) Yo:>O, vo<O, uo+vo<O. 

(c) ferrophase 1)1 '" 1)2 = 1)3 = 1). 

(1)yo<0. ~'0:>1, 

(2) ro :>0, vo:>O, Uo + Vo <0 • 

From results to be published elsewhere6 a continuous 
transition from the R3c paraelastic phase to the P2/c 
ferroelastic phase satisfies Landau's conditions and cor· 
responds to t~ situation (b) (1) while a continuous tran
sition from R3c to R3c satisfies Landau's conditions and 
corresponds to the situation (c) (1). Other space group 
possibilities certainly exist within this formalism. 

Benguiguil3 has indicated first qualitatively and more 
recently in a quantitative wayl4 for the case of Ba Ti03 
that a change in order of the transition cannot take place 
without the presence of either a third order strain con
tribution e3 or an ~e2 term in the initial free energy. 
From the above reduced free energy we indicate the 
same additional terms allow for a change in order of the 
transition for an R3c structure. 

The application of an anisotropic stress leads to a 
free energy which generally has a different symmetry 
than the stress free structure. If we take a uniaxial 
stress Yi = - prl 1 the free energy becomes 

(1) 

cf>(1), p) = ~o ~ 1)~ + uo(~ 11;)2 + Vo ~ 1)i , , , 

(22) 

while for a uniaxial stress Yi = -POI2 

p p 

(II) 

cf>(1),p) = ~o ~ ~ +uo(~ my +vo ~ 1)i 

- p(L I +L3) L ~ +3PL3m • (23) 
I 

For the uniaxial stress Yi = - POl3 we obtain 

(III) 

cf>(1), p) = ~o L 1)~ +Uo(L m)2 +vo L 1)1 - pL2 L ~ • 
I I I I 

(24) 
For the asymmetric free energies (r) and (II) above 

there is a formalistic similarity to that of the stressed 
perovskite structures, e. g., SrTi03 and LaAl03• In the 
perovskite structure the order parameter components 
correspond to three orthogonal directions. A stress in 
the io direction gives a free energy of the form 

cf>(1),p) = ~o ~ ~ +uo(~ 1)~r +vo~ 1)i 

-Ylo(LI-L2)~0+YiOL2L~ • 
I 

(25) 

Notice that the asymmetric contribution Yl o(L l - L 2) 1)~0 
is of the same form for each of the three directions 
with the same coefficient (L 1 -L2 ). In the R3c structure 
the three independent components correspond to the 
three arms of the sta~ F, F', and F". A stress in the 
x or Y direction for R3c yields similar asymmetric 
forms as in (I) and (II) above. However, the coefficient 
of the asymmetric term in (I) (- 3pL3) is different than 
in (II) (+3pL3L Stress in different directions in the x-y 
plane then yield different strength asymmetric contribu
tions, In addition, there is a directional property asso-

orderin9 alon9 

orderin9 alon9 
[011J 

[01 0] or [001 J 

r---------~~------------~r 

orderin9 alon9 

[100] orderin9 alon9 r; (p) 

r; (p) [100) 

(b) 

FIG. 1. Phase diagrams of the system with uniaxial anisotropy (a) vo<O, displaying a bicritical point and (b) vo>O, displaying 
a tetracritical point. 
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ciated with the Curie temperature through (L I -L3 ) for 
x direction and (L I +L3) for the y direction. Stress in 
the z direction is along the trigonal axis and yields a 
symmetric free energy (III) similar in form to the no 
stress free energy. 

The mean-field theory has been done for this asym
metric free energy, 15 The phase diagrams for Vo <0 
and va> 0 are shown in Fig. 1. For va <0 we obtain a 
bicritical point with ordering along [100] if the coeffi
cient of the rft term is negative and along [010] or [001] 
if the coefficient of 7ft is positive. For Vo > 0 a tetra
critical point may appear with an intermediate phase in 
which the order parameter continuously changes from 
the [100] ordering the [011] ordering. 

This mean field description is qualitatively correct for 
stressed perovskites and is changed slightly by renormal
malization group calculations. Because of the formalis
tic analogy of the stressed trigonal structure we expect 
the mean field and renormalization group methods to 
apply and yield the same description for this trigonal 
system as is found in the stressed perovskites. 

I L . D. Landau, Phys. Z. Sowjetunion 11, 26 (1937l. 
2R. B. Griffiths, Phys. Rev. B 7, 545 (1973), 
3M. B. Salamon and H. T. Shang, Phys. Rev. Lett. 44, 879 

(1980); A. B. Western, A. G. Baker, C. R. Bacon, and V. 
H. Schmidt, Phys. Rev. B 17, 4461 (1978); N. Giordano and 
W. P. Wolf, Phys. Rev. Lett. 39, 342 (1977); R. Clarke 
and L. Benguigui, J. Phys. C 10,1963(1977); J. R. FOX, J. 
Chem. Phys. 69, 2231 (1978), 

4K . A. Muller and W. Berlinger, Phys. Rev. Lett. 35, 1547 
(1975); E. Domany, D. Mukamel, and M. E. Fischer, Phys. 
Rev. B 15, 5432 (1977); A. Aharony, Physica (utrecht) 
S6-SSB, 545 (1977). 

5D. Mukamel and S. Krinsky, Phys. Rev. B 13, 5065 (1976). 
6D. M. Hatch and L. Merrill, Phys. Rev. B 23, 368 (1981); 

also D. M. Hatch, Phys. Rev. (in press>. 
7S. D. Tyagi, "An Investigation of the High Pressure Phase 

CaC03(II): Mn" Using Electron Paramagnetic Resonance," 
Ph. D. dissertation, Brigham Young University, 1976 (un
published) . 

8K. Aizu, J. Phys. Soc. Jpn. 27, 387 (1969). 
4F . E. Goldrich and J. L. Birman, Phys. Rev. 167. 528 

(1968); M. V. Jaric, Ph. D. thesis, CUNY, New York, 1977 
(unpublished) . 

ION. F. M. Henry and K. Lonsdayle, Intemational Tables for 
X-Ray Crystallography (Kynoch, Birmingham, 1965), Vol. I. 

IlG. Y. Lyubarskii, The Application of G roup Theory in 
Physics (Pergamon, New York, 1960). 

12A. Aharony and A. D. Bruce, Phys. Rev. Lett. 33, 427 
(1974), 

13L. Benguigui, Phys. Status Solidi B' 60, 835 (1973), 
14R. Clarke and L. Benguigui, J. Phys. C 10, 1963 (1977), 
15A. D. Bruce and A. Aharony, Phys. Rev. B 11, 478 (1975), 

J. Chern. Phys., Vol. 74, No.4, 15 February 1981 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.187.97.22 On: Thu, 20 Mar 2014 18:27:38


