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We have implemented group-theoretical methods on the computer for the description of possible

structural phase transitions. All isotropy groups (correspanding to k points of symmetry) for each
of the 230 three-dimensional space groups as well as the Landau and Lifshitz conditions for each
representation have been obtained. Here we compare our results with previous tables and list the er-
rors and necessary corrections to those tables.
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I. INTRODUCTION

Both the theoretical and experimental understanding of
phase transitions in solids have greatly benefited from the
application of group-theoretical methods. If the space-
group symmetry of the phases across the transition have a
group-subgroup relationship, much can be said, from
group-theoretical considerations alone, about the possible
symmetry relationships between the two phases as well as
distortions, energy (line) splittings, etc. , accompanying the
phase transition.

Group-theoretical methods were first applied to phase
transitions by Landau' for the case of continuous phase
transitions. In the Landau theory, the free energy
F is minimized with respect to an order parameter
which describes the phase transition. A transition occurs
when P takes on a nonzero value at a minimum of F. It
has been shown through extensions of the Landau
theory that certain direct group-theoretical conditions
must be satisfied. From these conditions, a heirarchy of
constraints is obtained which successively restrict the gen-
erality of the phase transition. Even if the phase transi-
tion is discontinuous, much of the extended Landau
theory is applicable if the space-group symmetries of the
two phases have a group-subgroup relationship.

A number of authors have systematically applied some
or all of the direct group-theoretical conditions (and some
have also imposed minimization) and have tabulated for
certain space groups the possible subgroups which obey
these conditions. In particular, such tabulations have
been done for space groups Ot,

' (Goldrich and Birman;
Vinberg et al. ), D24

' (Zielinski et al. ), D3d (Hatch' ),
D6h (Perez-Mato et al. "), Oh (Jaric ), Ot, (Sutton and
Armstrong Ghozlen and Mlik' ), C4t, (Deonarine and
Birman' ), and D2h (Stokes and Hatch" ). Undoubtedly,
the most comprehensive classification has been with
respect to the possible species character of the transition
(Toledano and Toledano' ' ).

A significant number of these calculations were done
primarily by hand and were thus very susceptible to error.
We have recently implemented on computer the direct
group-theoretical conditions of the Landau theory and
have applied them to all of the 230 three-dimensional
space groups. Details of the procedure and algorithm, as
well as a listing of the results, will be given elsewhere.

Here, we compare our results with the above-mentioned
papers.

II. DIRECT GROUP- THEORETICAL CONDITIONS

We are considering a solid in equilibrium which
possesses space-group symmetry Go in its high-symmetry
phase. The phase transition brings the solid to its low-
symmetry phase which possesses space-group symmetry
G. We restrict our consideration to cases where 6 is a
subgroup of Gp and where only one irreducible represen-
tation (irrep) D of Go brings about the transition. The
following direct group-theoretical conditions have been
discussed elsewhere ' and are only briefly stated here.

(I) Subduction condition. The irrep D of Gp must sub-
duce into the identity irrep of G, that is,

t'(6)= g X(g)&0,
1

I
6 l, ~g

where i (6) is the subduction frequency, and X(g) is the
character of D for the element g of G. The summation is
taken over all elements g of G.

(2) Chain condition: If 6 is a strict subgroup of another
subgroup 6' of Gp then i (6) must be greater than i (6').

(3) Landau condition: The symmetrized triple
Kronecker product of the irrep D of Gp does not contain
the identity irrep of Go, that is,

I '&(go)+ &(go)&(go)+ ' P(go)l'I =0.
0 goego

The summation is taken over aH elements go of Go.
(4) Lifshitz condition: The antisymmetrized double

Kronecker product of D does not contain the vector rep-
resentation of Gp, that is,

T~ I [X(gp)] —X(go) IX"(go)=0,
IGol „~g,

'

where X"(go) is the character of the vector representation
of Go. Note that in the equations above, 7 is the charac-
ter of a physically irreducible representation D of Go. By
physical, we mean that if a representation is complex, we
consider the direct sum of it and its complex conjugate.

Conditions (I) and (2) above do not demand that the
phase transition be continuous and may therefore be ap-
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plied to discontinuous phase transitions. Subgroups G of
Go which satisfy both conditions (1) and (2) are isotropy
subgroups of G. For a continuous phase transition to a
commensurate phase, conditions (3) and (4) must also be
satisfied.

The four direct group-theoretical conditions listed
above are necessary conditions in the Landau theory but
are not sufficient conditions. One must still minimize the
free energy I" to assure that the conditions of the Landau
theory are'fully met. However, by first applying the
direct group-theoretical conditions, the minimization pro-
cess is greatly simplified.

In our computer-implemented procedure, for each of
the 230 three-dimensional space groups, we calculated all
the subgroups which satisfy conditions (1) and (2). (We

restricted our considerations to irreps at k points of sym-
metry as listed in Bradley and Cracknell. ) As a result,
we found 16280 isotropy subgroups of the 230 space
groups. We also applied by computer the conditions (3)
and (4) and found that about half of the isotropy sub-

groups satisfy these conditions as well. We did not mini-
mize the free-energy function, but applied only the direct
group-theoretical conditions. To completely determine
which of these phase transitions are allowed to be continu-
ous by the Landau theory, the free energy I" must also be
minimized.

III. COMPARISON OF SUBGROUPS WITHOUT
MINIMIZATION

Of the papers listed earlier, several considered isotropy
subgroups of a given space group without additionally im-

posing the minimization condition. These allow most
directly a comparison with our computer-implemented
table.

Goldrich and airman calculated all possible displacive
continuous phase transitions from the perovskite structure

(Oi, ) without change of unit cell (k=0). They imposed
the Landau and Lifshitz conditions. Because of the par-
ticular restrictions imposed by the perovskite structure,

2 2
5 6
2 2
7 10

2 2
8 9
3 3
9 10
4
9

add D2I„delete D2p

add D2q,' delete D2q

add C2q,' delete C2q

add D21, , delete D2q

add C2g

add D2I„delete D2p

add D2I„delete D2p

TABLE I. Isotropy subgroups G of O~. Corrections to
Tables 2—5 of Vinberg et al. (Ref. 8).

Irrep

TABLE II. Isotropy subgroups G of D3d. Corrections to
Table II in Hatch (Ref. 10).

Irrep

D(F, 1)

D(4F,2)

D(4F,4)

i(G)

add C2g, delete C2
delete C
add C; delete C1
add C2~, delete C2
add C, delete C;
add C2p,

M2+

M4+

M2
M3
M4
Es
K6
H1, H2
L1

L2

T2. add Cmca, P21/b; delete B2/b
T2.. add Cmca, P21/b; delete C2/m
T2.. add Cmca, P21/b; delete Cmc21
T2. add Cmcm, P21/m; delete Amm2
T2. add Cmca, P21/b; delete C2221
T2. add Cmcm, P21/m; delete Ama2
add P62m, P6
add P321, P31m, P3, P1
add P62m, P62c, P6; delete Ama2, Amm2, Pm
T2: add P1
T3. add Abm 2, Pb, P 1

T2.. add P1
T3.. add Aba 2, Pb, P1

TABLE IV. Isotropy subgroups G of Oq. Corrections to
Tables III—VI in Sutton and Armstrong (Ref. 12).

Irrep

EL
EL

add CzI„C,'; delete C,
add C2q, C,'; delete C,

TABLE V. Isotropy subgroups G of Oq. Corrections to
Tables 3—6 in Ghozlen and Mlik (Ref. 13). Also the tables of
Ghozlen and Mlik had 139 omissions. We will indicate those
omissions in a separate publication.

Irrep

L
A1g
EL

g

EL

Cell size

2
8
2
8
16

delete
delete
delete
delete
delete
delete

OI
Cza'

s
D3g, D3d
C2I

s

D2, D2

'These subgroups appear twice in their table as inequivalent sub-

groups. They only appear once in our table.

TABLE VI. Isotropy subgroups G of C4~. Corrections to
Tables II—IV of Deon@rine and Birman (Ref. 14}.

Irrep i(G)

TABLE III. Isotropy subgroups G of D6I, . Corrections to
Table 2 in Perez-Mato et al. (Ref. 11).

Irrep

4
10

add D2g,' delete D2p
add C„' delete C2
add C„' delete C,'

add C2p,
1 1 1

( ———)2 2 2

Ag, A„

'732

1

2
3
1

add S4
add C2
add C
add C4
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TABLE VII. Correction to the tables of continuous phase transitions published by Toledano and

Toledano (Refs. 16—19). We list here the low-symmetry space groups which do not appear on our table.

They did not use the same labehng of irreps as we did. Therefore, we did not compare which irreps for

a given k gave rise to each low-symmetry space group G.

60

P4/mnc
P4/nmm
P4/ncc
P4q/nnm
P4p/mbc
P4&/nmc
P 432
Fm 3c

Ferrobielastic transitions
P4/mcc I P4&/m

A a'
Z a

P 4/nnc I P4q/n

Ferroelastoelectric and
ferrobielastic transitions
P4qmc A I4&/a

Higher-order ferroic transitions
Ia 3d H P432

Ferroelastic
Pmmn
I4i
P4m 2
P4c 2
P4b 2
P4n 2
I4)22
P 4qcm

P4cc
P4nc
P4&mc
P4&bc
I4mm
P4/mmm

transitions
R B2/m
Z P2)

I222
I222

A I2&2&2&

A I2i2i2i
2V I222
M Cmm2

Iba 2
M Cmm2, Pma2
M Pma2
M Pma2
M Pma2
A Ima2, Fdd2
I Cmcm

Improper ferroelectric
nonferroelastic transitions
P4p/n M P4
P4~/ncm ~ P4~cm, P4~nm
P6m 2 I P31m
P6c 2 M P3lc
P62m M P3m 1

K P3lm
P62c M P 3cl

E P3lc
P 63/mcm K P 63cm
P63/mmc K P63mc

Ferroelastoelectric transitions
Pmma I P 2&2&2

P4/mcc Z a
a
P4g2(2

I P422
I P42c
I P4p2(2
Z P4)22, P4322
Z P4)22, P4322
M I2)3
X P43m

Ferroelastic transitions

P 4/mcc
P4/nbm
P4/mbm
P4/nmm
P4~/mmc
P 4q/mcm

P4q/nnm
P4q/nmc
P4~/ncm

I4/mmm
I4j /amd
P 6mm
P432
P4g32
F432
I432
P43n
Fm 3c
Fd 3m
Fd 3c

Ia 3d

M
R
I
M
I
M

M
A

I
Z
r
M

N
L

M

M

I

H

Pbam
Cmcm
B2/m
Pmma
B2gb
Pbam
Cmcm
Pbam
Immm
B2/b
Pmma
B2/b
Pbam
Cmca
Cmmm
Pma2
P422
P4p22
P4, 22
P4p22
P4n 2
I4m 2
I42m
I42m
P4(22, P4322
P4(22, P4322

Nonferroic
C222
Pmm 2

Amm 2
Ama 2
Fmm 2
P42c
I4m 2
P4~/mmc
P3
P3(
P3p
P3
P312
P 3i12
8 3g12
R32
P3lm
R3m
R3c
R3m
R3c
P 4p32

transitions
Y
T
U
Z
Y
T
X
X
X
H
H
H
H
H
H

X
H
X
X
X
X
X

P2i2i21
Ama 2
Ama 2
Abm 2
Pca2~, Pcc2, Pmc21
b
P42m, P42~m
P4m2, P4n2
P4&/mcm

a

a
a
R32

R3m
R3c
R3m
R3c
P 4p32

'A'll irreps for this k fail the Lifshitz condition.
The 1 point should be the same as the X and Y points.
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their list contains only 11 of the 29 possible isotropy sub-

groups of Ot,
' for k =0. However, all of their subgroups

are contained in our table.
Vinberg et aI. calculated all the isotropy subgroups of

Ol', (for all k points of symmetry) without imposing the
Landau and Lifshitz conditions. We compared their list
with our table and found 9 errors and 5 omissions (see
Table I).

Hatch' calculated the isotropy subgroups of D3d for
irreps which satisfy the Landau and Lifshitz conditions.
We compared his list with our table and found 5 errors
and 1 omission (see Table II).

Perez-Mato et al. " calculated the isotropy subgroups

of D6h for all k points of symmetry. We compared their
list with our table and found 9 errors and 30 omissions
(see Table III). They also applied the Landau and Lifshitz
conditions to the irreps of D61, . A comparison with our
table shows 2 errors there. The Landau condition is not
satisfied by K5, and the Lifshitz condition is satisfied by
H)+H2.

Jaric and Birman calculated the isotropy subgroups of
Ot, for the X and R points. Their work was subsequently
subjected to international debate. ' ' ' Jaric recently
published an extended list of these isotropy subgroups.
We find complete agreement with our table.

Sutton and Armstrong' calculated the isotropy sub™
5groups of Ot, for one arm of the star for each k point of

symmetry. We compared their list to our table and found
2 errors and 4 omissions (see Table IV). All isotropy sub-

groups corresponding to the W point arise from
multiple-arm contributions and were thus purposely omit-
ted.

Recently Ghozlen and Mlik' also calculated all the iso-

tropy subgroups of Ot, (for all k points of symmetry).
We compared their list to our table and found 9 errors
(see Table V). We also found 139 omissions. We will give
our results for Ot, in a separate publication.

Deonarine and Birman' calculated the isotropy sub-

groups of C4t, for irreps which satisfy the Landau and
Lifshitz conditions. We compared their list with our table
and found 4 omissions (see Table VI). They stated that
C~ was purposely omitted.

Neubuser and Wondratschek have widely circulated a
list of "translation-equivalent" ("Zellengleich") and
"class-equivalent" ("Klassengleich") maximal subgroups
of the 230 space groups. All of the translation-equivalent
maximal subgroups in their table are isotropy subgroups
(k=0) and are contained in our list. All of the class-
equivalent maximal subgroups are also isotropy subgroups

(k&0), but some of them arise from k vectors not at
points of symmetry. All of the class-equivalent maximal

subgroups in their table which do arise from k points of
symmetry are contained in our list.

IV. COMPARISON WHEN MINIMIZATION
IS IMPOSED

In this section, we examine published tables which were
obtained by minimization of the free energy. All sub-
groups obtained in this manner, if correct, must be isotro-

TABLE VIII. Landau condition. Corrections to Table I in
Kunert (Ref. 24). He did not use the same labeling of irreps as
we did. Therefore, we did not compare which irreps (for a given

k ) failed the Landau condition. However, we did compare the
number of irreps which failed the condition. We list here the
number of irreps which fail the Landau condition for the cases
where our result disagrees. Note that Kunert did not consider
irreps of the 8'point for Ol', or the I' point for Oq

Gp

O
Oq

Fail Landau

3 irreps
3 irreps
3 irreps
2 irreps

TABLE IX. Landau and Lifshitz conditions. Corrections to
Table I in Toledano and Pascoli (Ref. 25). They did not use the
same labeling of irreps as we did. Therefore, we did not com-

pare which irreps (for a given k ) were listed. However, we did
compare the number of irreps listed. We list here the number of
irreps which simultaneously fail the Landau condition and satis-
fy the Lifshitz condition for the cases where our result
disagrees.

Gp

C'
C2

Cl
D'
D3
D5

1
C3u

2C3„
3

4C3„
D 3

4

C31

D 1

2

Fail Landau and

satisfy Lifshitz

none
none
none
Gone
none
none
none
3 irreps
none
3 irreps
none
1 irrep
1 irrep
3 irreps
3 irreps
3 irreps

py subgroups listed in our tables. On the other hand, not
all of the isotropy subgroups in our table give minima in
the free energy for continuous transitions, even after im-

posing the Landau and Lifshitz conditions. Therefore, we
cannot check the tables for subgroups they may have om-
itted. We can only check for wrong subgroups.

Zielinski et al. calculated the lower-symmetry phases
for the space groups D2'd ' . They imposed the Landau
and Lifshitz conditions as well as the minimization condi-
tion. Upon comparison with our table, we found 1 error
in their listing. The space group Dqd goes to C, (not C,
as listed) by irreps 1/1, 1/2.

Toledano and Toledano' ' published a series of pa-
pers giving a list of possible continuous phase transitions
of several types. They imposed the Landau and Lifshitz
conditions as well as the minimization condition. For the
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Go Satisfy Lifshitz

TABLE X. Lifshitz condition. Corrections to tables of
Toledano and Toledano (Tables IV—VI in Ref. 16 and Tables
IV—X in Ref. 17). They did not use the same labeling of irreps
as we did. Therefore, we did not compare which irreps (for a

given k ) satisfied the Lifshitz condition. However, we did com-
pare the number of irreps which satisfied the condition. We list
here the number of irreps which satisfy the Lifshitz condition
for the cases where our result disagrees.

and higher-order ferroic transitions, ' they required that
(1) the irrep not be a one-dimensional real irrep if k&0
and (2) the crystal classes be restricted to those of Table I
in Ref. 17. For the purely ferroelastic transitions, ' they
required that the crystal classes be restricted to those of
Table I in Ref. 18. For the nonferroic transitions, ' they
required that the crystal class not change in the transition.
We applied these restrictions to our table and compared
our result with their lists. We found 89 errors (see Table
VII).

Cmca
I4/m
I422
P4/mcc

I4/mmm
P 312
P 3i12
P3212
R32

P3ml

P3cl
P6

P63/m
P6m 2

P6c 2
P62c
P63/mme
Pn 3m
Im 3m

R

A

M
z

A

K
K
E
H
E
H
K
K
H
E;
H
H
E
K
H
H
R
H

all
2 irreps
2 irreps
all
none
none
4 irreps'
none
none
none
none
none"
2 irreps
2 srreps
2 irreps
all
all
2 irreps
all
all
all
2 irreps
2 irreps
all
all

V. COMPARISON OF LANDAU AND LIFSHITZ
CONDITIONS

Kunert calculated the Landau and Lifshitz conditions
for the irreps of Oi,

' ' . We compared our results to his
and found additional irreps which do not satisfy the Lan-
dau condition (see Table VIII).

Toledano and Pascoli investigated the irreps of the
rhombohedral and hexagonal systems which did not satis-
fy the Landau condition but did satisfy the Lifshitz con-
dition. We compared their results with our table and
found that the errors in their table could be associated
with the calculation of the Lifshitz condition, and all were
associated with the K point. There were 9 irreps which do
not satisfy the Lifshitz condition as claimed by Toledano
and Pascoli, and 12 irreps that do satisfy the Lifshitz con-
dition and are omitted by Toledano and Pascoli (see Table
IX).

Toledano and Toledano' ' applied the Lifshitz condi-
tion to irreps of most of the 230 space groups. We com-
pared their results with our table and found the errors list-
ed in Table X. -

'These errors were in Ref. 1 but were corrected in Ref. 2.
These points are on the surface of the first Brillouin zone of the

hexagonal lattice but are in the interior of the first Brillouin
zone of the trigonal lattice. Therefore, none of the irreps of
these points can satisfy the Lifshitz condition.

improper ferroelectric-nonferroelastic transitions, ' they
required that (1) k&0, (2) the irrep not be a one-
dimensional real irrep, and (3) the crystal classes be re-
stricted to those in Table I of Ref. 16. For the secondary

VI. CONCLUSION

The calculations required for finding isotropy sub-
groups are long and tedious. This fact accounts for the
many errors which we found in published tables.
Computer-implemented calculations are particularly ad-
vantageous under these circumstances. Up to the present
time, we have found our computer-generated table to be
free of any errors. A complete listing of our table will be
given in a separate publication.
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