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We present, for KCN and NaCN in their electrically disordered and ordered low-temperature
phases, a microscopic model using interatomic forces of the Born-Mayer type. We calculate with
our model the atomic positions, the normal modes, and the elastic constants of KCN and NaCN in
their ordered phase. %'e also calculate the atomic positions in the disordered phase. We adjust the
parameters of our model to fit available experimental data. We then use this model to investigate
other possible ordered structures of KCN and NaCN. Under the restriction that the order-disorder
phase transition be continuous, we find that there are theoretically only six such structures. Using
our model, we calculate the atomic positions as well as the energy per molecule for each of these
structures. Our model predicts correctly which of these structures is most energetically favorable
and should be experimentally observed.

I. INTRODUCTION

Both KCN and NaCN exhibit a continuous order-
disorder phase transition in which the CN ions align
themselves in an antiferroelectric manner. Considerable
interest has been shown for this phase transition, as well
as the structure and dynamics of the phases themselves.
There have been experimental studies by dielectric
response, ' neutron scattering, = magnetic reso-
nance, ' elasticity measurements, " Raman spectros-
copy, ' ' and other optical techniques. ' ' There have
also been a number of theoretical studies. ' We
develop for KCN and NaCN a microscopic model using
interatomic forces of the Born-Mayer type. We calculate
with our model the atomic positions, the normal modes,
and the elastic constants of KCN and NaCN in their anti-
ferroelectric phase. We also calculate the atomic positions
in the electrically disordered phase. We adjust the param-
eters of our model to fit available experimental data wher-
ever possible.

We then use this model to investigate other possible or-
dered structures of KCN and NaCN. We consider fer-
roelectric as well as antiferroelectric ordering. Under the
restriction that the order-disorder phase transition be con-
tinuous, we find there are theoretically only six such or-
dered structures. One of them is, of course, the antifer-
roelectric structure actually observed experimentally in
KCN and NaCN. Using our model, we calculate the
atomic positions as well as the energy per molecule for
each of these six structures. Our model correctly predicts
which of these structures is inost energetically favorable
and should be experimentally observed.
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tais undergo a discontinuous transition to an "elasti-
cally ordered" body-centered-orthorhombic structure
[phase II: space group D2i, (Itrtmm)]. In this phase, the
CN ions are aligned parallel to the orthorhombic b axis
(one of the cubic (110) directions in phase I), but are
disordered with respect to their C and N ends. Since the
CN ion carries a permanent electric dipole moment, this
phase is sometimes called "electrically disordered. " Rapid
C-to-N reorientations of the CN ions maintain this dis-
order.

II. STRUCTURE

At room temperature both KCN and NaCN have a
pseudocubic structure [phase I: space group Ot, (Frn3m),
the NaCl structure] due to rapid reorientations of the
CN ions which give them an effective average spherical
shape. At 168 K in KCN and 288 K in NaCN, the crys-

FICx. 1. Phase III of KCN and NaCN. The ions marked +
are the K or Na ions. The direction of the displacements b, ,„
of the positive ions from their positions of symmetry are defined
as shown by the arrows on the positive ions. The direction of '

the displacements bcN of the CN centers of mass from their
positions of symmetry are defined as shown by the arrows on
the CN ions.
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TABLE I. Atomic positions in a primitive unit cell of KCN
and NaCN in phase III. There are two molecules per unit cell.
The symbols a, b, and c are the orthorhombic lattice parame-
ters, rc and rN are the distances of the C and N atoms, respec-
tively, from the CN center of mass, and bcN and b,ni,„are the
displacements of the CN center of mass and the anion, respec-
tively, from their sites of symmetry.

Atom Positions [ix,y, z) coordinates]

N

K, Na

rc+ bcN~

(0 rN+bcN 0)
1 1 b anion ~ 0)

( ~ a, 2 b+rc —bcN 2 c)
(~a, 2b —rN —bCN, 2c)1 1 I

1
(O, b, ,n, 2c)

III. POSSIBLE STRUCTURES OF PHASE III

Let us now consider all the theoretically possible or-
dered structures of phase III which can theoretically arise
from phase II via a continuous phase transition. The
Landau theory of continuous phase transitions places
symmetry restrictions on the structure of the ordered

At 83 K for KCN and 172 K for NaCN, the crystals
undergo a continuous phase transition ' ' ' to an antifer-
roelectric structure in which the CN ions are ordered
with respect to C and N [phase III: space group D2~
(Pmmn)]. This phase is "electrically ordered. " All CN
ions in any given a-b plane are aligned parallel to each
other, and CN ions in adjacent a-b planes are aligned
antiparallel to each other (see Fig. 1). The Bravais lattice
is primitive orthorhombic with two molecules per unit
cell.

Using physical arguments, we can show that symmetry
requires that the CN ordering be accompanied by ionic
displacements in the +b direction. We thus introduce the
parameters, b, ,„and bcN, where b,„;,„ is the displace-
ment of the anions from their sites of symmetry, and bcN
is the displacement of the CN centers of mass from their
sites of symmetry. We define the direction of these dis-
placements as shown in Fig. 1. The atomic positions in
the primitive unit cell for phase III are given in Tables I
and II. We see that all like ions in a given a-b plane are
displaced in the same direction, and like ions in adjacent
a-b planes are displaced in opposite directions.

phase. The direct group-theoretical conditions for this
theory have recently been reformulated by Birman, Jaric,
and others. ' We restate them here briefly.

Consider a crystal with space-group symmetry G. A
space group G' (a subgroup of G} is an allowed lower-
symmetry space group for a continuous phase transition if
the following criteria are met. 6' must be associated with
an irreducible representation (irrep) D of 6 such that the
following is true.

(1) D subduces into the identity irrep of 6' (subduction
criterion).

(2} When 6' is a subgroup of another subgroup, G", of
6, then the subduction frequency of G' must be greater
than that of G" (chain criterion}. The subduction fre-
quency of G' is the number of times that D subduces into
the identity irrep of 6'.

(3} The symmetrized triple Kronecker product of D
does not contain the identity irrep of 6 (Landau cri-
terion).

(4) The antisymmetrized double Kronecker product of
D does not contain the vector representation of G
(Lifshitz criterion).

Subgroups of G which satisfy the subduction and chain
criteria are called isotropy groups of G.

An additional necessary physical condition requires
that the free energy be a minimum (for the subgroup G')
as the order parameter varies continuously from zero. We
assume in the following that a range of coefficients in the
free energy will allow all space groups satisfying condi-
tions (1)—(4). Of course, this minimization should be
specifically checked. The specific structure for KCN and
NaCN and the model assumed in the following actually
picks out the particular subgroup which minimizes the en-

ergy.
Irreps D of G are associated with points k in reciprocal

space. The Lifshitz criterion can only be satisfied for an
irrep D associated with a "point of symmetry" in recipro-
cal space. In our case, 6 is D2t„ the symmetry group of
the disordered phase II. The lattice is body-centered
orthorhombic. The points of symmetry in reciprocal
space for this lattice are listed in Table III. We use Ref.
37 for the labeling and description of irreps. In addition,
we use Ref. 38 for the basis vectors and origin of the
space groups. For DzI„all irreps associated with these
points satisfy both the Landau and Lifshitz criteria except

KCN
(A)

NaCN
(A)

TABLE II. Experimentally determined values of the parame-
ters defined in Table I. Data is from neutron-scattering experi-
ments of Fontaine (see Ref. 4). TABLE III. Points of symmetry in reciprocal-lattice space

for the body-centered-orthorhombic lattice. For the symbols we
use the convention of Bradley and Cracknell (Ref. 37).

b anion

bCN

4.20
5.26
6.09
0.65
0.55
0.05
0.04

3.63
4.85
5.45
0.65
0.55
0.1

0.00

r
X
R
S
T
8'

(x,y, z) coordinates

(0,0,0)
(0,0,2m/c)

(m/a, o,m/c)
(O,m/b, m /c)
(-/. , -'/b, o)

(m/a, m/b, ~/c)
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TABLE IV. Isotropy groups 6' of D2h. The labels of the irreps follow the convention of Bradley
and Cracknell (Ref. 37). The quantity i(G') is the subduction frequency of G', that is, the number of
times that the irrep of G subduces into the density irrep of G'. The basis vectors listed are conuentional

basis vectors (not necessarily primitive) as given in Ref. 38. Note that for the base-centered monoclinic

lattice, we use the first setting with the twofold axis along the c axis. The vectors listed under the "ori-
gin" column give the translation of the origin going from D2h to G', using as origins the convention of
Ref. 38 (the first settings). All vectors listed under the "basis vectors" and' "origin" columns are given

in terms of a, b, and c of the original orthorhombic lattice. The last column gives the CN -site sym-

metry. The x, y, or z in parentheses gives the axis of the twofold rotation for the case of C2h, C2„, and

C2, and gives the direction normal to the plane of reflection for the case of C1h. The structures possible

for KCN and NaCN are marked with an asterisk (+).

irrep i (G') G' Basis vectors Origin CN site

D2h
25

C2h
3

C2h
3

C2h
3

Ds
C20

2lP

C20
2U

C20
2v

1,0,0
T,0,1

1,1,0
0, 1,1

1,0,0
0,0, 1

1,0,0
0,1,0

0,1,0
1,0,0
0,1,0
0,0, 1

0, 1,0
1,0,0
0, 1,0
0,0, 1

0,0,1

0, 1,0
0,0, 1

1,0,0
0,0, 1

0,1,0
0,0,1

1,0,0

0,0,0
0,0,0
0,0,0
0,0,0
0,0,0
0,0,0
0,0,0
0,0,0

D2h

C2h(y)

c»(z)
C2h(x)

D2

C2„(y)*

C2 (z)

C2„(x)

r+
r+
I +

r+
r;

D21

12
D2h

D2h
12

D2h
12

D2h
2

D2h
13

13

D2h
13

1,0,0
0,0,1

1,0,0
0,1,0
1,0,0

0,1,0
1,0,0
0,1,0
0,0, 1

0,1,0

0,0, 1

0,1,0
0,0, 1

1,0,0
0,0,1

0,0,1 1,0,0 0,1,0

0,1,0 0,0,1 1,0,0

1,0,0 0, 1,0 0,0, 1

0,0,0
0,0,0
0,0,0
0,0,0
0,0,0

0, 4,0
1

0,0, 4
1

1

4,0,0

D2h

C2h(y)

C2h(z)

C2h(x)

D2

c,„(y)*

C2„(z)

C2„(x)

C2
3

D2h
19

1

C2h
6

1,0,1

0,0,2
1,0,1

1,0,1

1,0, 1

2,0,0
1,0, 1

0,1,0
0,1,0
0,1,0

1,0, 1 0,1,0

0,0,0
0,0,0
0,0,0

1 1 1

4s 4&4

C,h(y)

D2h~ C2h(y)

C2h(y)

D2h
21

C4

C2
6

D2h
21

C2
4

C2h
3

19

1,0,1

1,0,1

0,0,2

1,0, 1

1,0, 1

2,0,0 0,1,0

1,0, 1 0,1,0

2,0,0 0,1,0

2,0,0 0,1,0

1,0, 1 0,1,0

0,0,2 2,0,0 0,1,0

0,0,2 2,0,0 0,1,0

0,0,0
1 1 1
4& 4&4

2,0,01

0,0, 2
1

C2h(x), C2h(z)

C;

C2(y)*

D2, C2,(y)

C2(y)

C2„(x), C2„(z)

1,0, 1 1,0,1 0,1,0 0,0, 2
1

C3

19

C2h
6

D2h
21

0,1,1

0,2,0

0,1,1

0,1,T

0,1,1

0,0,2

0,1,1

0,1,1

0,2,0 0,0,2

1,0,0
1,0,0

1,0,0

1,0,0

1,0,0

0,0,0
0,0,0

0,0,0
1 1 1

4~ 4& 4

0,0,0

C2h(x)

D2h ~ C2h(x )

C2h(x)

C;

C2h(y), C2h(z)
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TABLE IV. ( Continued).

irrep i (G') G'

C24

C2h
6

0,1,1

0,1,1

Basis vectors

0,0,2

0,1,1

1,0,0

1,0,0

Origin

0,0,0
1 1 1

4~ 4~4

CN site

C2(x)

D2h
21 0,2,0 0,0,2 1,0,0 0, 2,0

1
D2, C2„(x)

C2h
4

C2
3

19

C2h
1

0,1,1

0,1,1 0,1,1 1,0,0

0,2,0 0,0,2 1,0,0

0,1,1 0,1,1 1,0,0

0,0,2, 1,0,0 0,0, 2
1

0, 2,0
1

0,0, 2
1

C2(x)

C1h(x)

C2„(y), C2„(z)

C1h(x)

C2h
3

D2h
19

1

6

D 21

C2h
4

C2
6

1,1,0
2,0,0
1,1,0

1,1,0

2,0,0
1,1,0

1,1,0

1,1,0
0,2,0
1,1,0

0,0,1

0,0,1

0,0,1

0,2,0
0,2,0

0,0, 1

0,0,1

1,1,0 0,0, 1

1,1,0 0,0, 1

0,0,0
0,0,0
0,0,0

1 1 1

4& 4t4
0,0,0
0,0,0

1 1 1
4~ 4&4

C»(z)
D2h~ C2h(z)

C»(z)

C;

C2h{x) C2h{y)

C;

C2(z)

D2h
21 2,0,0 0,2,0 0,0,1 2,0,01

D2, C2„{z)

4

C2h
3

D2h
19

1,T,O

1,1,0

2,0,0

1,1,0

0,2,0

1,1,0

0,0,1

0,0, 1

0,2,0 0,0,1

1,1,0 0,0,1

10, 2,0

2,0,01

2,0,01

0, 2,0
1

C2(z)

C1h{z)

C2„(x), C2„(y)

C1h(z)

I3

D2h
23

D24
2h

D7

D2h
23

D24
2h

D7

D2h
23

D24
2h

D

D223

D24
2h

D7

0,2,0
2,0,0
0,2,0

0,0,2

0,2,0
0,0,2

2,0,0
0,0,2

2,0,0

0,2,0 0,0,2 2,0,0

2,0,0 0,2,0 0,0,2

0,2,0 0,0,2 2,0,0

0,2,0 0,0,2 2,0,0

2,0,0 0,2,0 0,0,2

0,2,0 0,0,2 2,0,0

0,2,0 0,0,2 2,0,0

2,0,0 0,2,0 0,0,2

0,2,0 0,0,2 2,0,0

0,0,0
0,0,0
0,0,0

0, 2,0
1

0, 2,0
1

0, 2,0
1

0,0, 2
1

0,0, 2
1

0,0, 2
1

2,0,01

2 0,01

2,0,01

D2h, D

D2

D2

C»{y) C, (y)

( )Q

C2(y)

C2h{z), C2,(z)

C,(z)

C2(z)

C2h(x), C2,(x)

C2(x)

C2(x)

for the identity irrep (irrep I i+ of the I' point).
Applying the subduction and chain criteria to all sub-

groups of Dz~, we obtain all the isotropy groups and list
them in Table IV. (More details about the generation of
this list will be given in a separate publication. ) Crystals
with a structure of symmetry Dg may theoretically ex-
hibit a continuous phase transition to any of these isotro-

py groups (for the isotropy group Dg of the identity ir-

rep, of course, there is no transition). However, if we con-
sider a specific crystal of symmetry Dg, we will find that
only a small number of these isotropy groups actually
describe a physically possible lower-symmetry structure of
that crystal.

In particular, for KCN and NaCN we place two re-
quirements on the structure of phase III. First, the C and
N ends of the CN ions should be distinguishable. We
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TABLE VI. Possible structures of KCN and NaCN in phase
III. The point symmetry of the CN site in each structure i4

also given. The x, y, or z in parentheses has the same meaning

as in Table IV. These structures are marked with an asterisk

(+) in Table IV.

more, the CN ions are constrained to point either paral-
lel or antiparallel to the b axis. The dipole-dipole energy
of such a system may be written as

U ——,g J;is;S~,

G'

C20
2U

,&2a
13

C2
6

C2h
3

C2a
3

D24
2h

Bravais lattice

body-centered
orthorhombic

primitive
orthorhombic

base-centered
monoclinic

base-centered
mono clinic

base-centered
monoclinic

face-centered
orth orhombic

CN site

C2„(y)

C2„(y)

C, (y)

C1a«)

C1g(z)

C2(y)

p; =S;pb, (2)

where p is the permanent electric dipole moment of the

CN ion and b is a unit vector along the b axis. The cou-
pling parameter J~ in Eq. (1) is given by

J;i =p2r;1 (3 cos 0;J —1), (3)

where r;J is a vector from site i to site j, and 0;J is the an-

gle between r,J and the b axis.
For a structure with dipole ordering, we obtain from

Eq. (1) the energy per molecule,

—= ——, QJ,,S,S, .U
lJ l J

l+J

l,Ji'
where the summation is over all CN ions in the crystal.
The "Ising spin" S; is a number equal to +1 and indicates
the direction of the CN ion at site i T.he dipole p; at
site i is thus given by

one for each k. These are listed in Table VI. Their struc-
tures are shown in Fig. 2. For the remainder of this paper
we will refer to these groups as simply the I structure, X
structure, etc.

The Bravais lattices for each of these structures are
given by all points t in the original body-centered-
orthorhombic lattice of phase II which satisfy

exp( —i k t) =1.. I.et us place a lattice point at one of the
CN ions. All the CN ious which fall on the other lat-
tice points are at equivalent positions and are thus aligned
in the same direction. If there is more than one CN ion
in the primitive unit cell, their relative orientations can be
found from the symmetry operations of the space group.
In the I structure (k =0), all the CN ions fall on lattice
points, and the structure is ferroelectric. In the X, R, S,
and T structures, only half of the CN ions fall on lattice
points. The other half are aligned in the opposite direc-
tion, and these structures are antiferroelectric. In the W
structure, only a fourth of the CN ions fall on lattice
points. The size of the primitive unit cell is quadrupled.
From the symmetry operations of Dg, we find that there
are two equivalent ways to order the CN ions within the
unit cell. We choose the following. Those CN ions at
sites t for which exp ( —i k t)= 1. or exp (—i k t ) =i are
aligned in one direction and the rest are aligned in the op-
posite direction. The 8' structure is thus antiferroelectric.

TABLE VII. Relative energy per molecule for the possible
ordered structures of KCN and NaCN using the Ising model.

KCN
U/Np

(10 A )

NaCN
U/Np

(10 A )

We have evaluated this expression for all six possible or-
dered structures in KCN and NaCN (see Table VII). In
each case, we summed over sites j in an orthorhombic
volume of dimensions 10a )&10b && 10c centered on site i
Our results are similar to those of dos Santos et al. ,' who
performed the same calculation for five of these structures
in KCN. [Note that their values are approximately twice
as large as ours since they evaluated the energy per dipole
pair and did not include the factor —, as we did in Eq. (4).
A residual discrepancy in values arises from a slightly dif-
ferent choice of lattice parameters a, b, and c. We used
the values shown in Table II.]

For the ferroelectric I structure, a correction to U/N
must be made because of the charge density at the boun-
dary of the volume where the summation is per-
formed. " In this case the crystal has a net macroscopic
polarization P which produces a surface charge density
o=+P on the two ends of the orthorhombic volume
which are normal to the b axis. This produces at site i an
electric field E given by

IV. PREVIOUS MODELS

A. Ising model

One of the simplest models for KCN and NaCN in
phases II and III is the Ising model. Each CN ion
possesses a permanent electric dipole moment. Further-

r
R
S
T

—269
29

—207
220

—28
—53

—361
102

—286
315

—81
—111
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E =8P tan
ac

b ( 2+b2+ 2)1/2

which is independent of the volume size (but, of course,
not independent of the volume shape). The correction to
U/N is given by b, U/N =—,'pE—[thefactor —,

' is again
included, as in Eq. (4), to give us energy per molecule],
and, using P =2p/abc (two CN ions per volume abc),
we obtain

b. U/N = — tan
8 2

abc
ac

b( 2+b2 2)1j2

With this correction, the ferroelectric I' structure has
the lowest energy of any of the other structures listed in
Table VII. Since the antiferroelectric X structure is the
one experimentally observed for both KCN and NaCN at
low temperatures, we would expect a good model to yield
the lowest energy for that structure. Instead, the Ising
model yields lower energies for the ferroelectric I struc-
ture as well as three other antiferroelectric structures, R,
T, and W; There are obviously some serious flaws in the
Ising model as applied to KCN and NaCN.

FIG. 3. Permanent and induced electric dipoles in phase III
of KCN and NaCN. The arrows indicate the direction of the
dipoles. The identity of the atoms are the same as that shown in

Fig. 1.

B. Induced dipoles
in an indirect interaction between the two CN ions
which favors antiparallel alignment. We obtain a similar
result using the induced dipole at the positive-ion site
(0,0,—,

' c).
As a second example, consider the two next-nearest-

neighbor CN ions at (0,0,0) and (0,0,c). In the X struc-
ture, they are aligned parallel. Unaided by induced di-
poles, their energy of interaction favors antiparallel align-
ment. However, the induced dipole at the positive-ion site
(0,0,—,'c) directly between the two CN ions is aligned
antiparallel to each CN ion. Both of these alignments
are strongly favored, leading to an effective interaction be-
tween the two CN ions which favors parallel instead of
antiparallel alignment.

From these examples, we can see how the presence of
induced dipoles lowers the energy of the X structure. The
other structures are not as greatly aided by induced di-
poles in the ways we have seen above for the X structure.
In the R structure, for example, the positive ions are con-
strained by symmetry to have zero displacement, thus pro-
ducing no induced dipoles. Allowing the lattice to be de-
formable greatly favors the X structure relative to the oth-
ers and constitutes the principle reason this structure is
the one observed in nature.

V. 'OUR MODEL

A. Interatomic forces

The model we have chosen to represent KCN and
NaCN is an atomic model which explicitly gives the in-
terionic forces. Since this model allows lattice deforma-
tions, it contains the feature which made the model of
Pire and Vilfan so successful (discussed in Sec. IVB).
Furthermore, as we shall see, our model allows us to in-
vestigate other interesting properties of KCN and NaCN

Pire and Vilfan improved on the Ising model for
KCN and NaCN by allowing the lattice to be deformable.
Displacements of the ions from their sites of symmetry
produce induced dipoles which must then be included in
the dipole-dipole energy given by Eq. (1). Pire and Vilfan
effectively calculated the relative size of these displace-
ments, using estimates of the frequencies of the phonon
modes involved, and were thus able to obtain the relative
dipole energies of four ordered structures (1,X,R, T). Of
these four, they found that the X structure has the lowest
energy, which, of course, agrees with the experimental re-
sult. Recently, Koiller et al. also introduced a simple
model where induced dipoles are placed at the positive-ion
sites. They likewise showed that the resulting dipolar en-
ergy greatly favors the X structure.

It is simple to understand how induced dipoles, particu-
larly at the positive-ion sites, can have such a large effect
on the total dipole energy. Consider, for example, the X
structure. In this structure, the positive ions (K or Na)
are displaced such that their induced dipole moments
point in the same direction as the permanent dipole mo-
ments of their neighboring CN ions in the same a b-
plane. Thus, all dipoles, permanent and induced, in the
same a-b plane, are parallel to each other, whereas dipoles
in adjacent a bplanes are an-tiparallel (see Fig. 3).

Now consider two nearest-neighbor CN ions such as
those at (0,0,0) and ( —,'a, —,'b, —,'c). In the X structure they
are aligned antiparallel; Unaided by induced dipoles, their
energy of interaction, given by Eq. (3), is very weak (the
factor 3cos 8—I is nearly zero). Neither parallel nor
antiparallel alignment is appreciably favored. However,
the induced dipole at the positive-ion site ( —,a, —,b, 0) is
aligned parallel to the CN at (0,0,0) and antiparallel to
the CN at (—,'a, , b, ,'c). Both of the—se a—lignments are
strongly favored by the dipole-dipole interaction, resulting
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UgJ XgJ exP
P/J

where r,J- is the distance between atomic nuclei. The ener-

gy UJ is a rather steep function of r,j, and the atoins al-

TABLE VIII. Born-Mayer parameters for the interatomic
repulsive force. The values of these parameters from the litera-
ture were obtained by best fits to experimental data for the crys-
tals listed.

Atom
~El

(10 erg) (A) Crystal Ref.

0.2201
From literature

0.3394 alkali
halides

Na 0.0410 0.3394 alkali
halides

0.292

0.272

0.265

naphthalene

NO2

44

45

Na

0.2201

0.0410

Present work
0.3394

0.3394

0.381 0.268

N 0.381 0.268

in addition to just the energies of different dipolar config-
urations.

Our model initially contained two different kinds of in-
terionic interactions: long-ranged electrostatic and short-
ranged repulsive. The electrostatic energy is given by the
sum over the Coulomb energy UJ between pairs of point
charges q; and qJ:

+jj =qlql ~~lJ.

where r,J is the vector from q; to qJ.
In our model we place a positive point charge at the nu-

cleus of each positive ion, and we place three point
charges on each CN ion (which we treat as a rigid
dumbbell): a point charge qc at the C nucleus, a point
charge qN at the N nucleus, and a point charge q, at
the CN center of mass. With three charges on the CN
ion, we can independently adjust its total charge
qo ——qc+qN+q, (we must simultaneously adjust the
charge on the positive ion to maintain the electric neutral-
ity of the crystal), its electric dipole moment

p =rcqc —rNq~, and its electric quadrupole moment

Q =2(rgc+rNqN), where rc and rN are the distances
from the CN center of mass to the C and N nuclei,
respectively. The moments p and Q are taken about the
CN center of mass.

The short-ranged repulsive interaction between ions is
of the Born-Mayer type, "

1 1 1 1

p(A, B) 2 p(A, A) p(8,8)+

where A,(A, B) and p(A, B) refer to the interaction between
an atom of type A and an atom of type 8.

The total energy of the crystal is given by
r

/', J' /J /, J
g+J /QJ

In the first term the summation over j for a fixed i is per-
formed over an orthorhombic volume of dimensions
4a &(4b X4c centered on site i The m.ethod of Evjen47 is
used where charges of ions at the boundary of the volume
are reduced by some factor in order to ensure zero net
charge within the volume and zero net charge on each
face of the boundary. (Specifically, charges on faces are
divided by 2, those on edges by 4, and those on corners by
8.) In the second term of Eq. (11), the summation over j
for a fixed i is performed over the six nearest unlike
neighboring ions and the eight nearest like neighboring '

ions.
To find the structure and energy of the crystal using

our model, we allow the ions to "relax." We adjust their
positions such that the net force (and the net torque for
the case of CN ) on each ion is zero and that the pressure
is zero (i.e., the lattice is stable against volume expansion
or contraction). This condition is achieved by ininimizing
U with respect to the lattice constants (a,b, c) and the po-
sitions of the ions within the unit cell. In the case of
phase III in KCN and NaCN (the X structure), only two
parameters, b, ,„danbcN, are needed to specify the posi-
tions of the ions within the unit cell (see Sec. II). Thus,
we require

aU aU aU
Ba db Bc

aU
~banian

aU
&bcN

(12)

For a given configuration of ions (i.e., their positions
and orientations), the forces between them depend only on
our choice of charge distribution (qo,p, Q) and the Born-
Mayer parameters (A,,z,p,z). We call these the "force pa-
rameters. " Once we specify a choice of values for the
force parameters, we can use the five simultaneous equa-
tions in Eq. (12) to determine the "structure parameters, "
which, in this case, are a, b, c, b, ,„,and bcN. (We do
this numerically, using the Newton-Raphson method. )
Actually, what we need to do is solve the inverse problem.
We know the structure parameters. We want to determine

most behave like hard spheres. This model is sometimes
called the "soft-sphere" model. 43

For the case of interactions between like atoms, we find
approximate values for A, ,J and p,j in the literature, z'

as shown in Table VIII. These values were obtained by
fitting the Born-Mayer model to various crystal structures
containing K, Na, C, and N atoms. Values for A,,J and p;J
between unlike atoms can be obtained by simple empirical
relationships,

A( A, B)= [A(A, A)A, (8,8)]'i
and
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the force parameters which give us the known structure.
We do this by starting with a "reasonable" set of values
for the force parameters, and then adjust some of their
values such that the solution to Eq. (12) gives us the
desired structure parameters.

Using this approach, we were able to obtain the experi-
mentally obtained values of a, b, and c by adjusting three
force parameters: (1) the total charge qo of the CN ion,
(2) the electric quadrupole moment Q of the CN ion,
and (3) the value of A,,z between nearest-neighbor ions
along the c direction. Furthermore, we found that we
could obtain nearly the desired values of a, b, and c, for
both KCN and NaCN by using the same adjustments in
these parameters for both crystals. The result is shown in
Table IX.

Let us summarize here the values of the force parame-
ters which we used. For the charge distribution on the
CN ion, we used qo= —0.89e, p/e =0.11 A, and
Q/e = —1.7 A, where e is the magnitude of the electron-
ic charge. As mentioned above, qo and Q were adjusted
to give the best values for a, b, and c. Our value for qp
could be physically interpreted to indicate an incomplete
charge transfer from the positive ions to the CN ions
(i.e., these crystals are not 100% ionic). Our choice for p
is discussed in Sec. VD. The value for Q in a free CN
ion has been theoretically calculated by Gready et al.
using the finite-field method. They obtained Q/e = —1.0
A, which is much smaller than our value. This is a bit
disturbing since others ' have stated that the value of Q
for CN in a crystal should be less than its free-ion value.
However, our large value of Q was absolutely essential in
order to obtain the correct ratio a/b No adju.stment of
any other force parameter could achieve this. However,
since this is only a model, perhaps we should not attach
any physical significance to our large value of Q.

For the Born-Mayer parameters we used the values
from the literature (see Table VIII) with two modifica-
tions. First, we used "average" values for A,(C,C) and
A,(N, N) and for p(C,C) and p(N, N) such that

A,(C,C) =A, (N,N) and p(C,C) =p(N, N), as shown in Table
VIII. The reasons for this choice are discussed below.
The values for A, ,J and p,J between unlike atoms were ob-
tained from Eqs. (9) and (10).

Second, we reduced, by a factor 1.72, the values of
A,(K,C), A,(K,N), A,(Na, C), and A,(Na, N) between nearest-
neighbor ions along the c direction (see Fig. 4). As men-
tioned above, the value 1.72 was chosen to give us the best
fit to a, b, and c. Physically, the repulsive force comes
from the CN ion as a whole and not from the individual
C and N atoms. In our model we approximate this repul-
sive force between ions with a sum of repulsive forces be-
tween atoms. This approximation works fine for most
pairs of ions, but for the pairs shown in Fig. 4 where the
positive ion is nearly equidistant from both the C and N
atoms, the sum of repulsive forces between atoms is likely
to give a resultant repulsive force between ions which is
too large. Thus, in order to fit our model to the known
structure parameters, we reduced A, ;~ for these pair in-
teractions by a factor 1.72.

As can be seen in Table IX, our fit to a, b, and c is fair-
ly good. In fact, considering that the same set of force
parameters [with the exception of A,(K,K),p(K,K) and
A,(Na, Na), p(Na, Na), of course] are used for both KCN
and NaCN, the agreement is remarkable.

Now let us examine the asymmetry between the C and
N ends of the CN ion. This asymmetry is what gives
rise to nonzero values of b, ,„and bcN. In our model
the asymmetry can arise from two different sources: (1)
the electric dipole moment p of the CN ion, and (2) a
difference in the Born-Mayer paratneters for the C and N
atoms, i.e., the C atom is slightly "larger" than the N
atom.

We found early in our investigation that both sources

TABLE IX. Best fit of our model to experimental data for
the structure of KCN and NaCN in phase III. We used the
same set of interatomic force parameters for both KCN and
NaCN.

C

b anion

bcN

Our model
(A)

KCN
4.23
5.27
5.96
0.18

—0.04

Experimental
(A)

4.20
5.26
6.09
0.05
0.04

C

&anion

&CN

NBCN
3.70
4.80
5.56
0.18

—0.02

3.63
4.85
5.45
0.1

0.00

FIG. 4. Interactions between nearest-neighbor ions along the
c axis as indicated by the solid lines. In our model the contribu-
tion of the Born-Mayer repulsive force to these interactions is
reduced by a factor 1.72. Also, we add a phenomenological
term to these interactions which results in a restoring torque on
the CN ion to keep the angle P near 90 .



3854 HAROLD T. STOKES AND DORIAN M. HATCH 30

give rise to nearly the same effects. A difference in size of
the C and N atoms gives rise to an ordering of the CN
ions at low temperature just as well as a permanent dipole
moment on the CN ion does. No permanent dipole mo-
ment of the CN ion is needed to explain the ordering
phenomena! In reality, both effects (atomic size and di-

pole moment). are present and contribute to the ordering.
We realized that we would not be able to separate these
two effects in our model and thus decided to combine the
C—N asymmetry into one parameter only: the dipole mo-
ment p. Accordingly, we removed the "size" asymmetry
by choosing some average values A,(C,C)=k(N, N) and

p(C,C)=p(N, N), as shown in Table VIII. We do not in-
tend to imply here that there is no "size" asymmetry
present in KCN and NaCN. It is just more "convenient"
to combine all the asymmetry into the dipole moment.
We find that the principal results of our model do not de-

pend on how we distribute the asymmetry effects between
the dipole moment and the Born-Mayer parameters.

We did not try to fit our model to the experimental
values of b, ,„and bcN The e.xperimental uncertainty in
these values is nearly as large as the values themselves.
Our choice of p is based on a fit to other experimental
data, as will be discussed later.

B. Normal modes of vibration

Using our model we calculated the normal modes of vi-
bration for the X structure in KCN and NaCN. In our
calculations we used the harmonic approximation, essen-
tially following the method briefly discussed in Ref. 22.
From the calculation we found an unstable mode: an

U;, =—", a(p —po)', (13)

where p is the angle between the C—N axis and a vector
from the CN center of mass to the positive ion. We
chose po n/2 ——Th.e p.arameter a was adjusted to fit our
model to experimental Raman light-scattering data. ' '

We obtained a =0.5 X 10 ' erg for KCN and
a=O. SX10 ' erg for NaCN.

The Raman-active modes calculated from our model
are shown in Table X and are compared with experimen-
tal data. Note that the modes polarized in the a-b plane
do not depend on the value of u and thus contain no ad-
justable parameters. (The force parameters were already

infrared-active mode involving rotations of the CN ions
in the b c-plane. (Up to this point, we had constrained
the displacements of the CN ion by symmetry and al-
lowed only atomic displacements along the b direction. )
The source of this instability is the lack of restoring force
against the rotation of the CN ion in the b cp-lane, espe-
cially-when the neighboring CN ions also rotate in such
a way that all the CN ions avoid each other. The fact
that we had reduced the Born-Mayer repulsive force be-
tween the CN ion and its two neighboring positive ions
in the +c directions made this instability even worse.

We tried to eliminate the unstable mode by adjusting
some of the already existing force parameters, but were
unsuccessful. Thus we added to the energy U a
phenomenological term which would provide the needed
restoring force against this mode. This term involves an
interaction between a CN ion and a neighboring positive
ion in the c direction (see Fig. 4):

TABLE X. Raman-active vibrational modes in KCN and NaCN. Results of our model are compared with experimental data
from Refs. . 12 and 22. The atomic displacements have arbitrary units. The intensity is given in relative units, using 1.0 for the most
intense line,

KCN

Polarization
Frequency

(cm-')

Our model
Atomic displacements

Cn(c.m. ) CN(rot) Intensity Intensity

Experimental data
Frequency

(cm ')

68
123
142

13
4

11
—3

—16

5
—31

9

0.08
1.0
0.06

121
165

1.0
0.04

b-c 108
162
171

14
2
7

3
15

—12

13
—20
—22

0.23
0.25
0.26

113
132
190

0.02
0.59
0.24

Polarization
Frequency

(cm-')

NaCN
Our model

Atomic displacements
CN(c.m. ) CN(rot) Intens&ty Intensity

Experimental data
Frequency

(cm ')

88
145
172

15
5

14

13
—1

—15

5
—32

5

0.05
1.0
0.02

88
124
196

0.02
1.0
0.03

b-c 119
203
236

17
6

10

10
—15
—8

9
19

—25

0.11
0.18
0.22

150
186
252

0.09
0.31
0.71
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adjusted to fit other experimental data. ) With this con-
sideration we see that the agreement between our model
and experimental data is really quite good. On the other
hand, the modes polarized in the a-c plane do depend
strongly on the value of a. We adjusted a to give the best
possible agreement with experimental data. This required
a different value of a for KCN and NaCN. The inclusion
of terms like Eq. (13) into the energy U did not have
much effect on our fit of the force parameters to the crys-
tal structure.

C. Elastic constants

The elastic constants are easily calculated from our
model. For example, if.we apply a stress X, along the a
axis, the equilibrium value of BU/Ba is no longer zero,
but is given by

,' NbcX„—.
a

(14)

The factor —,
' is included because there are two molecules

per unit cell. To find the new equilibrium crystal struc-
ture, we solve Eq. (14) along with

av aU
ab

=
ac

aU aU
Bb, ,„BbcN

and obtain new values a', b', c', b,',„, and bcN We can.

then calculate three strain components,

e„=a'/a, e~ =b'/b, e, =c'/c,
from which we can calculate the elastic compliance con-
stants,

S» —e„/X„, S2, ——e~/X„, S3$ —e, /X„.
Similarly, we can calculate six other elastic constants cor-
responding to stresses in the b and e directions. The re-

suit is shown in Table XI. The inverse of S gives us C,
the elastic stiffness tensor, which is also shown in Table
XI. The compressibility ~ is given by

IC= Q SIj

and is also given in Table XI.
The elastic constants have not yet been measured exper-

imentally in the low-temperature phase of KCN and
NaCN. However, a nominal "C~~" was measured by
Rehwald et al." for KCN. They measured the "time of
flight" for a longitudinal ultrasonic pulse along the [100]
direction of the cubic phase I. At the phase transition
from the cubic phase I to the orthorhombic phase II, a
single crystal of KCN breaks up into 12 different kinds of
domains. ' ' The size of these domains' is approxi-
mately 80 pm. Thus, an ultrasonic pulse traveling
through a macroscopic KCN crystal must, in general,
pass through each of the 12 different kinds of domains
many times. If we assume that the total distance traveled
through any particular kind of domain is +, of the total
distance traveled through the crystal (i.e., we assume that
each kind of domain is equally distributed throughout the
crystal), we can calculate the "average" time of flight
from which we obtain an expression for the value of C»
measured by Rehwald et al. ,

12
(m C m) ]/P (19)

where r; is a unit vector along the direction of propaga-
tion of the pulse with respect to the crystal axes in domain

type i. Using our values for ™Cin Table XI, we obtain
C~~

——21 GPa, which agrees reasonably well with the ex-
perirnental value C~j ——26 GPa at about 60 K. Note that
we have not included any kinetic considerations in our
model. Inclusions of such motion would increase our
value of C~~ and bring it closer to the experimental value.

C22
C
C
C
C]

KCN
(10' Pa)

2.1

3.1
2.2
1.4
0.8
0.6

NaCN
(10" Pa)

3.1
5.0
2.0
1.8
1.1
0.9

SI]
Sg2

S]2
S23
S]3

(10 " Pa ')

6.7
4.6
5.1

—2.7
—0.9
—0.8

(10 ' PK ')

4.3
2.6
5.9

—1.3
—0.9
—1.1

7.5 6.2

TABLE XI. Elastic stiffness tensor C, elastic compliance
tensor S, and compressibility sc, calculated from our model for
phase III of KCN and NaCN.

D. Phase II

In phase II the CN ions are disordered with respect to
parallel and antiparallel alignment along the b axis. We
applied our model to this phase by distributing the CN
alignments randomly among the 108 molecules contained
within a distorted cubic volume of dimensions

6(a +b } ~ )(6(a +b ) ~ )(6c .

Periodic boundary conditions were used to eliminate any
crystal surfaces. Relaxation of the ions to positions which
give a rninirnum in U presented some challenges in the
numerical calculations since we could not take advantage
of symmetry in this phase.

The exact positions of individual ions at equilibrium are
randomly distributed about an "average" position of sym-
metry. The lattice is locally disordered. .Only on a rnac-
roscopic scale do we find the orthorhombic symmetry of
space group Dg. Evidence of such local disorder was
seen in NMR data by Stokes, Case, and Ailion. ' From
the data, the rms angle 8, between the C—N axis and
the macroscropic b axis was found to be 3.3' (this result
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was revised slightly from the value given in Ref. 10 due to
an improved value of the C—N distance in phase II).

In our model the local disorder arises from the asym-
metry between the C and N ends of the CN ions. As ex-
plained in Sec. IV, we have combined all the asymmetry
into the CN dipole moment p. Thus, the value of 8~,
obtained from our model is very sensitive to our choice
for the value of p. We chose p so that our model would
yield 8,=3.3', in agreement with the experimental data.
This resulted in p/e =0.11 A (p =0.53 D). This value is
slightly larger than the various experimentally determined
values of p (they range from 0.3 to 0.5 D) for CN
defects in alkali halide crystals. The theoretical value
from finite-field calculations by Gready et al. for a free
CN ion is p =0.37 D. The value from a density-
functional theory of LeSar and Gordon is p =0.22 D in
KCN and p =0.24 D in NaCN. We might expect our fit-
ted value of p to be too large since it includes all sources
of asymmetry in the CN ion, as discussed in Sec. IV.

VI. OTHER ORDERED STRUCTURES

We can now use the force constants determined for our
model to investigate all six possible structures of phase III
which are listed in Table VI. For each structure we ar-
range the orientation of the CN ions as described in Sec. P=(2p+2qobcN)/abc . (20)

III, and then let them relax to positions which give a
minimum energy U for the crystal. The lattice angles a,
P, and y between the pairs of basis vectors b- c, c- a, and
a-b, respectively, as well as the lengths a, b, and c of the
basis vectors, are also allowed to vary. The resulting
structures for KCN are shown in Table XII. The results
for NaCN are similar. We can see from the table that the
CN ions are displaced from their sites in such a way as
to give the point symmetries listed in Table VI. From
Table VI we also see that three of the structures (R, S,
and T) are monoclinic. In agreement with this, we find in
our model for KCN that P=89.7' for the R structure,
+=93.1' for the S structure, and y=89.8' for the T
structure. In NaCN we find similar results. The values
of a, b, and c also vary slightly (by a few hundredths of
an angstrom) between the structures.

The energy per molecule, relative to that of the disor-
dered phase II, is shown in Table XIII for each structure.
For the ferroelectric I structure, an additional term is
added to U for the interaction of ions with the electric
field produced by the charge density at the boundary of
the volume where the lattice summation is performed [see
Eq. (5)]. The macroscopic polarization P in this case
arises from both permanent dipole moments as well as in
duced dipole moments:

TABLE XII. Atomic positions calculated from our model for the ordered structures of KCN. Similar results were obtained for
NaCN. The CN and K sites are 'given for the D2q structure of phase II in terms of a, b, and c. The displacements of the atoms

from these sites are given in angstroms along the a, b, and c directions. As shown, there is one molecule per primitive unit cell in
the I structure, two molecules per cell in the R, S, and T structures, and four molecules per cell in the 8'structure.

KCN

CN site

Displacement

N K site

Displacement

K

0,0,0 0,—0.51,0 0,0.69,0 1 1——02& 2& 0,0,0

0,0,0
1 1 1

27272

0,—0.69,0

0,0.69,0

0,0.51,0

0,—0.51,0

1 1——02P 2P

1,1, 2
1

0,—0.18,0

0,0.18,0

0,0,0
1 1 1

2~ 2~ 2

0,—0.51,0

0,0.51,0

0,0.69,0

0,—0.69,0

1 1——0

1, 1, 2
1

0,0,0

0,0,0

0,0,0
1 1 1

2~ 2~ 2

0,—0.58,—0.05

0,0.58,0.05

0,0.61,—0.17

0,—0.61,0.17

0,0,0

0,0,0

0,0,0
1 1 1

272~ 2

—0.02,—0.62,0

0.02,0.62,0

0.00,0.58,0

0.00,—0.58,0

—0.12,—0.01,0

0.12,0.01,0

0,0,0
1 1 1

2&2&2

0,0, 1

1 1 1

27272

0,—0.63,0

0,—0.63,0

0,0.63,0

0,0.63,0

0,0.57,0

0,0.57,0

0,—0.57,0

0,—0.57,0

1 1——0t

1 1——12& 2&

1, 1, 2
1

—0.13,0,0

—0.13,0,0

0.13,0,0

0.13,0,0
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TABLE XIII. Relative energy per molecule calculated from our model for the possible structures of
phase III. These values are relative to that of the disordered phase II, which we calculated to be
8.947)&10 ' erg in KCN and 9.827&(10 ' erg in NaCN. For comparison, the relative energies ob-
tained by Pire and Vilfan (Ref. 23) are also shown (these are not relative to phase II and depend on the
magnitude of p).

KCN
6U/N

(10 ' erg)

NaCN
6U/X

(10 ' erg)

Our model Model of Pire and Vjlfan
KCN NaCN

2AU'/p X 25U'/p lV

(nm ) (nm )

r
X
R
S
T
8'

—2
—16

2
16

—11
—10

4
—18
—1

24
—14
—13

—74.1
—96.7
—47.7

38.6

—128.0
—321.0
—115.0

43.0

The relative energies calculated from our model are in
rough agreement with those calculated by Pire and Vil-
fan (see Table XIII. Note that the values of Pire and
Vilfan are not relative to that of phase II and also depend
on the magnitude of p). Both our values and those of
Pire and Vilfan show the energy increasing as we go from
the X to I to R to S structures. We see that our model
shows a difference in energy between phase III (I struc-
ture) and phase II of about 3X10 ' erg/molecule for
both KCN and NaCN. Calculations from other models
have yielded results which are slightly larger (ranging
from 3 X 10 ' to 8 X 10 ' erg).

From our model we can see how induced dipoles at the
positive-ion sites greatly affect the relative energy of the

structure. In Table XII we find that the displacements of
the K and Na ions are greatest in the X, T, and 8'struc-
tures. Thus the induced dipoles are greatest in those
structures. In Table XIII we see that those structures
have the lowest energies. The X structure, which exhibits
the largest displacements of the K or Na ion, has the
lowest energy, and thus is the structure most energetically
favorable, in agreement with experiment.
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