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We discuss the physical interpretation of equivalence among isotropy subgroups of space groups in the
context of phase transitions in solids. We give some examples from the literature and point out the dif-
ferent ways in which the question of equivalence has been applied.

The Landau theory' of continuous phase transitions pro-
vides a powerful tool for understanding transitions between
solid phases whose symmetries have a group-subgroup rela-
tionship. In the Landau theory, the thermodynamic free
energy F of the crystal is written as a function of an order
parameter Q. In the high-symmetry phase, the minimum of
F is at Q = 0. In the low-symmetry phase, the minimum of I'

occurs for some nonzero value of P. Let Go be the space-
group symmetry of the high-symmetry phase. The space-
group symmetry of the low-symmetry phase must be an iso-
tropy subgroup of Go. Such subgroups can be obtained by
group-theoretical methods. 2 Thus, from a complete list of
isotropy subgroups one can obtain all possible values of Q
for which the free energy may be at a minimum.

Isotropy subgroups of a space group may be obtained by
group-theoretical methods. We have implemented these
methods on computer and obtained for all k points of sym-
metry a list of all isotropy subgroups of each of the 230
three-dimensional space groups, ' as well as each of the 17
two-dimensional space groups and each of the 80 diperiodic
space groups. 5

In generating these lists, we have encountered a problem
concerning "equivalent" isotropy subgroups. This question
of equivalence has been treated ambiguously in the litera-
ture, as we will show below. In this paper, we briefly dis-
cuss the physical basis for defining equivalence and then
through some specific examples demonstrate an appropriate
application of this physical basis.

Consider an isotropy subgroup G of Go. We can decom-
pose Go into left cosets of G,

Gp=hiG+h2G+h3G+ +h G

The elements h; are the coset representatives with respect to
G, and n is the index of G in Go. If we apply one of the
symmetry operations h; to the crystal structure of the
lower-symmetry phase, we obtain a structure of space-group
symmetry h;Gh; '. Using each of the n coset representa-
tives, we can form n structures. Their space-group sym-
metries, h~Ghl ', h2Gh2 ', . . . , h„Gh„', are distinct but

equivalent subgroups of Go. (By distinct, we mean that their
elements differ in orientation and/or location. ) The ther-
modynamic free energy of each of these n structures is
identical. Thus, the phase transition Go G is equally like-
ly to bring the crystal to any one of these n structures.
Often, the low-symmetry phase exhibits domains, so that
all n structures are simultaneously present. For the
remainder of this paper, we will refer to these n-equivalent
structures of the lower-symmetry phase as the ri domains of
that phase.

If G is an isotropy subgroup of Go, then the n subgroups
h;Gh; ' are also isotropy subgroups of Go. However, a list
of isotropy subgroups of Go needs to contain only one of
these n subgroups. The other n —1 isotropy subgroups can
be generated using the coset representatives as discussed
above. All the domains arise from the same phase transi-
tion. If we intend that a list of isotropy subgroups provides
a list of distinct possible phase transitions, then there should
be only one entry for each group of domains.

In the isotropy subgroup lists we have generated to date,
we have taken a different view of equivalence. We used the
philosophy that two lower-symmetry structures were physi-
cally equivalent only if there existed a physical operation (ro-
tation, translation, or combination), which left the high-
symmetry structure invariant but brought one lower-
symmetry structure into the other. Thus we only con-
sidered coset representatives h; which contained proper point
operations (e.g. , rotation). Any pairs of isotropy subgroups
which were equivalent only through an element h; which
contained an improper point operation (e.g. , inversion), were
listed as two separate entries. However, we now feel that
the "domain" approach described above makes more sense.

Using this approach, we find that in our published list4 of
isotropy subgroups of the two-dimensional space groups
there are ten pairs of entries which are physically equivalent
in the "domain" approach (Table I). If we want our list to
represent only distinct phase transitions, then one of each of
these pairs should be omitted from the list.

The concept of equivalence has been applied in different
ways in the literature. Zielinski, Cieslewicz, and Marzec
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TABLE I. Pairs of isotropy subgroups listed in Ref. 4 which are equivalent. %e give the space-group sym-
metry Go of the high-symmetry phase, the irreducible representation (irrep), the isotropy subgroups G, the
primitive basis vectors of G, and the change in space-group origin (from Go to 6) in terms of the primitive
basis vectors of Go.

Go Irrep G Basis vectors Origin

cm

pmg

pmg

pgg

pgg

cmm

cmm

p4g

p4g

p4g

p4g

p 31m

S1

X1

S1

X1

Y1

S1

S2

X1

X1

X1

M5

K3+K3

p1
p1

p2
p2

p2
p2

p2
p2

p2
p2

p2
p2

p2

p2

p2
p2

p4
p4

p2
p2

p4
p4

p3

p3

1,0
2,0

2,0

2,0

2,0
2,0

1,0
1,0

1,0
2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2, 1

2, 1

0,2
0, 1

0,1

0,1

0, 1

0,1

0,2
0,2

0,2
0,1

0,2

0,1

0,1

0, 1

0,2
0,2

0,2
0,2

0,0
0,0

01
2'
0,0

—01
2'
0,0

—01
2'
0,0

0—1
'2
0,0

0,0
0,0

0—1
' 2

—01
2'
—01
2'
0,0

1 1
2' 2

0,0
1 1
2' 2

0,0
1 1
2' 2

0,0
2 1
3' 3
1 2
3' 3

list the isotropy subgroups of D~&, D~&, D~~, D~~, and D~&.
In their tables, we find a large number of equivalent sub-
groups listed as separate entries. Some are even equivalent
through elements h; containing a proper point operation.
For example C2 and C3 are each listed twice as isotropy
subgroups of D$q for the 4/5' representation. ' The two C2
subgroups are equivalent through the element h;= (a'tl0),
and the two C,3 subgroups are equivalent through the ele-
ment h, = ( C2 l0 j (see Table I of Ref. 7 for the representa-
tion matrices). The reflection at is improper, and the rota-
tion C2 is proper.

Jaric and Birman list both D4 and D4 as isotropy sub-
groups of O„~ for the representations 'X(3) and 'X(4).
The two space groups, D4 and D47 are actually an enan-
tiomorphic pair. They are equivalent to each other via an
inversion. But physically they are simply different domains
of the same lower-symmetry structure of a phase transition.

Similarly, Ghozlen and Mlik' list two enantiomorphic
pairs, D4, D4 and O, O', as isotropy subgroups of OI,

' for
the representations A1, A2, B1, and 82. Each of those
pairs are also equivalent subgroups via an inversion.
Deonarine and Birman" list C4 as an isotropy subgroup of
C4q for it=(~,~,~). Actually C4 and Cq are another
enantiomorphic pair, so C4 is also an isotropy, subgroup of
C4q. But Deonarine and Birman did not list C4 since it was
equivalent to C4 and did not represent a different phase
transition. ' We unjustly indicated this omission in their
list. 3

We feel that the domain approach to equivalence among
isotropy subgroups is the best criterion to use and ties
directly to the orbit-space description defined by Michel. '

We are grateful for stimulating discussions with S. Deona-
rine and also with R. L. Armstrong.
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