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Selection of stable fixed points by the Toledano-Michel symmetry criterion:
Six-component example
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Applications of symmetry to the renormalization-group method are discussed. The six-dimensional
representations of space groups and their associated Hamiltonians are investigated using the Toledano-
Michel symmetry criterion for stability. It is found that only two potentials have stable fixed points. One
of these arises from a newly identified space-group image.

I. INTRODUCTION

The renormalization-group (RG) method' in reciprocal
space yields a set of first-order differential equations (recur-
sion relations). A stable fixed point of the Hamiitonian
flow determined by these equations characterizes the critical
behavior at the continuous transition for the associated
physical system. There are as many types of initial effective
Hamiltonians and RG recursion relations as there are types
of quartic potentials. The Hamiltonian is a fourth-degree
polynomial expansion in the order parameter and usually
only includes isotropic gradient terms. (Some systems also
allow anisotropic gradient terms. We restrict our considera-
tions here to contributions from isotropic terms only. ) A
natural generalization of the potential obtained in the Lan-
dau theory gives this initial Hamiltonian to which RG
methods are to be applied.

The Landau theory' assumes the existence of an order
parameter $, which is an n-component vector in the carrier
space E of an active physically irreducible representation
(irrep) I D (I ) of the higher symmetry group I . The
matrices D(y), representing y E I", are orthogonal matrices
in n dimensions which satisfy the Landau' and Lifshitz
conditions ("active" irrep). The Landau potential is ob-
tained by constructing invariant polynomials in the com-
ponents of $. To fourth degree the potential can be written

with P4(g) of the general form

P4= g u(jkl@l@j@k@l= X u„Iv($)
iJkl

Each 1„($) is an invariant polynomial and the u„are arbi-
trary coefficients carrying the temperature and pressure
dependence of the potential. Including isotropic gradient
terms generalizes this potential to give the effective Hamil-
tonian density for RG considerations:

The RG method associates to a selected vector in P4 (i.e. ,
specific constants u„= uo) a flow of polynomials depending
on the same invariants I„but with varying coefficients.

Thus it determines a flow in the space P4 spanned by the in-
dependent invariants I„. The characteristics of the flow are
determined by p recursion relations which take the form

Critical properties are obtained from stable fixed points as
A fixed point u„' satisfies the p nonlinear equations

p„(u', ) =0,
and will be stable if in addition (Bp„/Bu, ) is a positive ma-

trix at the fixed point. Michel has shown that to two-loop
order, p„ in Eq. (4) can be expressed as a symmetric prod-
uct and that a stable fixed point must be unique.

Recently, the covariance of the recursion relations and
the unicity of the stable fixed point has been exploited. As
a result Toledano and Michel ' have introduced a sym-
metry criterion as a necessary condition for a stable fixed
point. It allows a significant reduction in the actual number
of Hamiltonians that need to be considered in the complete
classification of stable fixed points associated with four-
component order parameters. 7

Here we make use of this symmetry criterion. We have
recently obtained an active six-dimensional space-group im-

age which has not been previously reported. Using this im-

age as an example, we will show that the symmetry criterion
immediately restricts considerations to selected subspaces of
P4. We will also indicate the presence or absence of stable
fixed points for all densities which arise from six-
dimensional active irreps of the 230 space groups.

II. IMAGES AND HAMILTONIAN DENSITIES

The process of obtaining irreps of the 230 space groups is
well known. The condition that the transition be com-
mensurate imposes the Lifshitz condition, which in turn al-
lows only k points of symmetry to be used in the construc-
tion of the irreps. The set 6 of distinct matrices of an irrep
D(I ) is a subgroup of O(n) and this same image (to
within equivalence) may appear many times within the col-
lection of irreps of the space groups. '

P4 is obtained as the most general homogeneous quartic
polynomial invariant under I . But the transformation prop-
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FIG. 1. Lattice tree of active six-dimensional images for the 230
space groups. A solid line indicates that the subgroup is a direct
subgroup. The order of the image is indicated on the left. The ac-
tive image L 11 has not been previously listed.

TABLE I. Basic invariant polynomials which appear in the six-
dimensional irreducible representations of space groups.

IP = 31+(1+'92+ (2+'93+ (3

Il /1+ ~1+ t2+ ~2+ n3+ ~3

( 2+ (2)2+ ( 2+ (2)2+ ( 2+ (2)2

I3 '91~1%2~2+ lp~p l3~3+ 93~3 ll~l

I 2 2+ (2(2+ 2 2+ (2(2+ 2 2+ (2(2

I5 ll~p+ )2~3+ )3~1

16= g1$1(q2+ (2 —g3 —(3) + qp(2(q3+ (3 —q1 —(1)
+ %3~3(nl + (1

I7 /1~1(nl ~1) + )2~2(+2 ~2) + )3~3(n3 ~3)

I8 t1~1( l2 ~3) + ~2&2( 13 ~1) + ~3&3(~1—&2)

I9 '01~1(~2 &3) + lp~p(~3 81) + &3~3(~1 lp)

erties of P are entirely determined by G and therefore also
the transformation properties of P4. Thus, with respect to a
selected basis in E, the same fourth-degree polynomial can
be obtained for many of the irreps of space groups. More-
over, even though different images yield different potentials
in higher-order expansions, truncations at fourth order may
yield the same P4.

For the six-dimensional irreps (arising from k points of
symmetry) Toledano and Toledano" listed ten active images.
(labeled L~, . . . , Lto) and constructed a lattice (tree) of
these images. We have also considered the lattice of images
of six dimensions, both active and inactive. There is no
standard of reference at this time for labeling the finite sub-
groups of 0(6). We thus use the labeling of Ref. 11 for
active images. We indicate the lattice tree in Fig. 1. A solid
line in Fig. 1 indicates that the group is a direct subgroup
(not just equivalent to a subgroup) of the higher-order

group. Moreover, all group-subgroup relationships in the
tree are simultaneously satisfied. The orders of the sub-
groups are indicated on the left. Notice that we claim the
existence of an active image (which we here label as L~~)
that was not listed in Ref. 11. This image arises from irreps
of 06and O.

The fourth-degree independent invariants can be con-
structed by use of conventional projection-operator tech-
niques. We hav'e selected the basis of the irreps so that the
form of the quartic terms is essentially the same as Ref. 11,
although we express the invariant polynomials in an alter-
nate form. In Table I we list the basic invariant polynomials
which arise in connection with the active images, and in
Table II we indicate the six quartic potentials P4 which occur
for these images. The potential associated with each image
is shown in Fig. 1.

III. SYMMETRY OF P4 AND RG FLO%'

Let us quickly review some terminology ' before we
state and apply the symmetry criterion to the six-
dimensional image Lll. For more details and a comprehen-
sive application to four-dimensional images, see Ref. 7.

Several images G ( 0(n) may yield the same space of
quartic invariants, e.g. , Ll, Lp, L3, and L5. The centralizer
G, of P4 is the largest subgroup of 0 (n) leaving simultane-
ously invariant every polynomial in P4. Thus G, leaves in-
variant every vector of the space spanned by the I„. The
centralizer contains, as a subgroup, each image group which
generates the same space P4. A given vector in P4 has an
invariance group Gp which is called its little group. G, is the
intersection of all little groups. The largest subgroup of
0 (n) which contains G, as an invariant subgroup is called
the normalizer G„of G, .

The RG recursion relations of Eq. (4) are covariant under
transformations of 0(n).6 '3'4 Thus the little group Go for
a vector in P4 is not decreased along the flow trajectory and
may increase at a fixed point. ' Each trajectory then has a
little group Gp associated with it. The group G, leaves each
point of every trajectory invariant. The normalizer
transforms any polynomial in P4 into another polynomial of
the same form, but generally with different coefficients.
Thus it preserves Pg as a whole. Each element g„ in G„
transforms a given trajectory with little group Gp into a
physically equivalent trajectory with little group
Gp" =g„Gpg„'. Also, a fixed point is transformed into a
physically equivalent fixed point with a conjugated sym-
metry group and with the same stability and critical
behavior.
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P(M) = EB ~BAiM

Here the symmetric product n, is defined as

(6)

As mentioned in the Introduction, it has been shown that
if a stable fixed point exists it must be unique. This
result follows not from symmetry conditions alone, but
from the symmetric product form of the recursion relations,
namely, the P„(u ) of Eq. (4) can be written at one loop
order as

—1 0 0
0 —1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
'

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0

, 0 0 0

0 0
0 0
0 0
0 0
0 —1

1 0,

TABLE IV. Generators additional to those of Table III, which
generate the centralizer G, of P4'

Similar results are found at two-loop order for the case
n =4. The uniqueness of the stable fixed point has led to
two symmetry criteria on stable fixed points. We state
one criterion which will be of particular use to us here: A
stable fixed point is necessarily characterized by the coin-
cidence of the centralizer and the normalizer; i.e., G, = G„'.

IV. SYMMETRY CRITERION APPLIED

There are six Hamiltonians that are of interest for the ac-
tive six-dimensional images (see Fig. l). We will use the
new image L~t as an example of the application of the
Toledano-Michel symmetry criterion. Generators for this
image are given in Table III. The quartic potential obtained
from this image is

P4 ' ' = upIp + u~I~ + u2I2+ u7I7 (8)

TABLE III. Generators of the image Lj~.

We use superscripts to indicate the invariant polynomials
spanning P4. Ip is always considered present. Image L~~
yields the set of invariants given in Eq. (8), but it is not the
centralizer of Pq~" ~. The centralizer G,~'2 ~~ of Eq. (8)
has four times as many elements as the image L ~~. The two
additional generators for G, are given in Table IV. The cen-
tralizer G, ' is not equal to its normalizer G„' 7, since
the direct product A S B, where A = (0 t) and B is the
three-dimensional identity matrix, is an element of G„'
but not of G, ' . Thus no stable fixed point can exist for
a generic vector of P4~' . It is possible that a stable fixed
point might exist at a more symmetric vector of P4. Thus
we consider little groups, or equivalently, centralizers of a
subspace of P4'

Any subspace of P4' containing a component along I7
(for example Pq~"~ ) yields the same centralizer, namely,
G, ' . Thus we can restrict our attention to the subspace
consisting of invariants Ip, I~, and I2. But this is the space
of invariants of image L~. The stablt:. fixed points of P4' ~

have been determined by conventional methods in Ref. 15.
However, because we are demonstrating the use of the sym-
metry criterion, we will discuss P4~' from this approach.

The image L ~ is not the centralizer of P4' . G, ' js the
wreath product B2QwS3 and is of order 3072. Here we use
the notation of Coxeter and Moser, ' where B„=Z2QwS„.
G, ' ~ is not equal to its normalizer, since A 8 leaves
G,~'2~ invariant when 2 = i/J2(I I) and B is the three-
dimensional identity matrix. Thus no stable fixed point is
possible in this space of three invariant polynomials.

We thus have reduced our considerations to only two sub-
spaces and their centralizers. The first is the subspace of
the quartic potential

P4' = upIp + u]I]

Its centralizer G, ' is 86. The second is the potential

P4 = upIp + u2I2(2)

(9)

Its centralizer G, is denoted I 23 in Ref. 6. The fixed
points of both of these potentials have been well stud-
ied. ' ' There is a stable fixed point of the potential P4' at
( —, , T) and a stable fixed point of Pq~ ' at (—„,—,„). That
these fixed points are stable for their respective potentials
does not guarantee stability in the space P4' . We must
check each fixed point, ( 3, 9, 0, 0) and (—„,0, T-, , 0), for
stability by conventional methods. The symmetric product
discussed in Refs. 6 and 12 is useful in constructing the re-
cursion relations and the associated Hessian matrix to check
for stability. Of these fixed points only (—„,0,—„,0)
remains stable in P4' '

A similar approach can be used for all of the active six-
dimensional images. The symmetry criterion, together with
the use of conventional methods to check stability, allow
stable fixed points in only two of the six potentials. Only
stable fixed points can correspond to continuous transitions
and thus determine critical exponents. ' These stable fixed
points arise from the same subspace in both cases. For h~

we obtain the stable fixed point (—„,0,—„)and for h6 we

obtain the stable fixed point (+0,—„,0). All fixed points

in the potentials h2, h3, h4, and h5 are not stable. The criti-
cal exponents can be obtained from the knowledge of two
exponents through scaling laws. The general expression for
the two exponents g and v have been given in Ref. 19. The
exponents for h~ and h6 are the same and thus of the same
universality class. The exponents q and v for this class
have been previously given in Ref. 15.
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V. CONCLUSION

The symmetry criterion, combined with conventional
methods, has been used to obtain the stable fixed points of
Hamiltonians generated from . six-dimensional images.
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There is no listing of the finite subgroups of O(6). As a
result, determining centralizers and normalizers of sub-
spaces in P4 is very tedious. This was not the case in Ref.
7, where all finite subgroups of O(4) were known. Under
those more favorable conditions the symmetry criterion is a
very useful tool.
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