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Proper ferroelastic transitions in two dimensions: Anisotropic long-range kernels, domain wall
orientations, and microstructure
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For structural transitions with strain serving as the transition primary order parameter~proper ferroelastics!,
we obtain 23 proper ferroelastic transitions in two dimensions and derive distinct ‘‘elastic compatibility’’
kernels that specify anisotropic, long-range order-parameter interactions. These kernels influence possible
domain-wall orientations, local rotations, and parent-product interfaces in two-dimensional ferroelastics. Using
the approach described here, these results can be extended to two-dimensional improper ferroelastics and
three-dimensional proper/improper ferroelastics.
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I. INTRODUCTION

In many structural transitions one or more components
the strain tensor act as the primary order parameter~POP!
driving the transition.1 To describe various low-symmetr
phases and the associated microstructure, a Ginzburg-La
free energy~GLFE! is expanded in strain components.2–10

However, this GLFE cannot be directly minimized due
restrictions arising from elastic compatibility which connec
all components of the strain tensor through a single differ
tial equation4–7 in two dimensions~2D! and six equations3,10

in three dimensions~3D!. To accommodate the compatibilit
constraints, a widely used procedure is to express the G
in terms of a single-valued displacement field. The comp
ibility conditions are then automatically satisfied and t
variation with respect to displacements becomes unc
strained.

Our goal has been to obtain a unified description of pro
ferroelastic phase transitions based entirely on st
variables.7,10,11 Here we aim to demonstrate how symme
can be systematically used to enumerate all possible
roelastic transitions in 2D and obtain the resulting free en
gies as well as various aspects of microstructure. The str
based formalism uses strain as the primary order param
provides Landau polynomial free-energy invariants, and
Ginzburg gradient terms. The Landau free energy is an
monic (F0) in terms of the POP and harmonic (Fsec) in the
secondary OP strains.11,12 When the GLFE is minimized in
the context of the compatibility constraint, the secondary
strain components can be eliminated and the GLFE can
expressed solely in terms of the POP strain components
substitution, the harmonic termFsec then becomes an aniso
tropic long-range interaction6,7,10,11 between these primar
strain components, induced by the compatibility relations

Given this~static! GLFE, which is a function of the strain
POPonly, we should be able to determine the low-symme
phases and the~static! microstructure. In addition, there ar
important structural characteristics embodied within th
compatibility kernels. In this paper we demonstrate in
that through the use of symmetry we can~i! comprehensively
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enumerate all ferroelastic species,~ii ! obtain values of the
OP ~strains! in different domains,~iii ! identify domain pair
classes,~iv! determine allowed domain-wall orientations,~v!
calculate local rotations for different domain walls,~vi! pre-
dict habit plane~parent-product interface! orientations, and
finally ~vii ! describe features of microstructure for 2D fe
roelastic transitions. It is important to note that a POPstrain
only GL treatment captures the essential physics since
kernels embody both material aspects~through elastic con-
stants! and crystal symmetry attributes, as well as the lon
range elastic interaction. Thus, this formalism contains
necessary information for predicting orientation features
microstructure. In the following, we will use theISOTROPY
software by Stokes and Hatch,13 which is developed for 3D
but through projection it applies equally well to the descr
tion of structures in 2D.

II. FORMALISM

All crystalline structures in 2D have a symmetry defin
by one of 17 two-dimensional space groups. In Table I,
list these structural symmetries and give the correspond
3D space group which yields the 2D symmetry upon proj
tion along the principal axis.@In the lattice column we give
the lattice type~e.g., OP represents oblique primitive, etc!
and in parenthesis the space-group identification numbe
given according to the International Tables f
Crystallography.14# A proper ferroelastic transition take
place when the product phase results from the onset of
strain components and this resultant strain can be reorie
from one domain of the product phase to another. We do
consider improper ferroelastic transitions here in wh
strain acts as a secondary order parameter and some
physical variable~e.g., shuffle, polarization, magnetization!
drives the transition.

In Table II we list the proper ferroelastic transitions th
are allowed in 2D. Note that there may be more than o
product phase and thus more than one ferroelastic trans
from a given parent. In column 2 the resulting subgroup
indicated. In column 3 we indicate the irreducible repres
tation ~IR! form of the POP~i.e., the relevant strain tenso
©2003 The American Physical Society05-1
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HATCH, LOOKMAN, SAXENA, AND SHENOY PHYSICAL REVIEW B68, 104105 ~2003!
componentse2 and e3) which induces the ferroelastic tran
sition. The additional strain components are secondary O
Throughout this development we use the symmetry ada
forms for straine15 1

2 (ux,x1uy,y), e25 1
2 (ux,x2uy,y), and

e35 1
2 (ux,y1uy,x). @The associated local rotation isv3

5 1
2 (ux,y2uy,x).# The corresponding IR’s for strain are d

noted by G i . In two cases (G3G5 and G2G3) a two-
dimensional sum of IR’s drives the transition. The physica
irreducible representation is composed of two IR’s neit
one of which can be chosen real.13 In three cases~of the form
G21G3) two one-dimensional IR’s simultaneously drive th
transition and the associated~coupled POP! strain compo-
nents are separated by a semicolon. We emphasize tha
three low-symmetry rectangular subgroupspm(3), pg(4),
andp2mg(7) cannot be obtained as a product phase in a
proper ferroelastic transition. It is through the 2D to 3D c
respondence thatISOTROPY13 was used and the identificatio
of the appropriate IR OP form was made. Note that there
23 ferroelastic transitions in 2D in contrast to 94 in 3D15

Also note that an oblique→oblique transition (p2→p1) is
allowed in 2D. There is no ferroelastic transition within th
same crystal system in 3D, e.g., a triclinic→triclinic is not
allowed.

The above 23 transitions correspond to 12 ferroela
species: 6mmF2mm(3), 6mmF2(6), 6F2(3), 3mFm(3),
3mF1(6), 3F1(3), 4mmF2mm(2), 4mmF2(4), 4F2(2),
2mmF2(2), mF1(2), and 2F1(2). The notation follows
that of Aizu.15 On the left is the point group of the parent an
on the right the point group of the product phase. They
separated by the letterF representing ‘‘ferroelastic.’’ Each
species will determine a number of symmetry related
mains~i.e., variants!. The number of domains is given abov
in parenthesis. Pairs of domains can be collected

TABLE I. Correspondence between two-dimensional and thr
dimensional space groups~SG!. For the lattice specification, O
oblique; R, rectangular; S, square; H, hexagonal; P, primitive;
C5centered.

2D SG Lattice 3D SG

p6mm(17) HP P6mm(183)
p6(16) HP P6(168)
p31m(15) HP P31m(157)
p3m1(14) HP P3m1(156)
p3(13) HP P3(143)
p4gm(12) SP P4bm(100)
p4mm(11) SP P4mm(99)
p4(10) SP P4(75)
c2mm(9) RC Cmm2(35)
p2gg(8) RP Pba2(32)
p2mg(7) RP Pma2(28)
p2mm(6) RP Pmm2(25)
cm(5) RC Bm(8)
pg(4) RP Pb(7)
pm(3) RP Pm(6)
p2(2) OP P2(3)
p1(1) OP P1(1)
10410
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classes16 where each member of the class is crystallograp
cally equivalent to any other in the class. From the viewpo
of energy and OP profiles, we need only consider one re
sentative member of each class.17,18 This representative do
main pair will then determine allowed domain wall orient
tions and energies from which any other pair~and its
domain-wall orientations! in the class can be obtained by
parent symmetry element.

III. PROTOTYPE EXAMPLE

We will illustrate our procedure of using strain variabl
to describe the transition. To have a specific example
mind, we consider the first entry in Table II. This corr
sponds to the 6mmF2mm(3) ferroelastic species mentione
above. This transition takes a triangular lattice to a cente
rectangular lattice with three orientational states of the lat
The POP~see column 3 of Table II! is a two-component
shearG55(e2 ,2e3) and the secondary OP is the dilatatio
G15(e1). The ~hexagonal! free energy for this transition, to
fourth degree in POP and to second degree in secon
OP’s, is given in Table III and the compatibility equation fo
all transitions in 2D is of the formG[(]2

21]1
2)e11(]2

2

2]1
2)e222]1]2e350. The free energy consists of thre

parts;F5FL1FC1FG , the Landau term without coupling
(FL), the part with coupling between the POP and second
OP’s (FC), and the Ginzburg part containing gradients of t
POP (FG). Since a third-order invariant is allowed inFL ,
this transition is of first order. It is straightforward to includ
sixth degree terms in the POP for those first-order transiti
in which a third-order invariant is not symmetry allowed.13

The Landau term is further written asFL5F01Fsec, where
F0 (Fsec) depends upon the POP~secondary OP!.

-

d

TABLE II. 23 Proper ferroelastic transitions in 2D.

Parent Subgroups Primary IR

p6mm(17) c2mm(9), p2(2) G55(e2 ,2e3)
p6(16) p2(2) G3G55(e2 ,2e3)
p31m(15) cm(5), p1(1) G35(e2 ,2e3)
p3m1(14) cm(5), p1(1) G35(e2 ,2e3)
p3(13) p1(1) G2G35(e2 ,2e3)
p4gm(12) p2gg(8) G25(e2)

c2mm(9) G35(e3)
p2(2) G21G35(e2 ;e3)

p4mm(11) p2mm(6) G25(e2)
c2mm(9) G35(e3)

p2(2) G21G35(e2 ;e3)
p4(10) p2(2) G21G35(e2 ;e3)
c2mm(9) p2(2) G25(e3)
p2gg(8) p2(2) G25(e3)
p2mg(7) p2(2) G25(e3)
p2mm(6) p2(2) G25(e3)
cm(5) p1(1) G25(e3)
pg(4) p1(1) G25(e3)
pm(3) p1(1) G25(e3)
p2(2) p1(1) G25(e3)
5-2
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PROPER FERROELASTIC TRANSITIONS IN TWO . . . PHYSICAL REVIEW B68, 104105 ~2003!
The Euler-Lagrange variation of@F2(LG# with respect
to the secondary OP’s is then7 d(Fsec2(LG)/de150. ~The
notion of such variation for the square to rectangle transit
was presented in Ref. 6.! In a spatially inhomogeneous stru
ture the order parameters become dependent on position
free energy then changes to a spatial sum over these
contributions to the free-energy density, which become
sum over wave vectors in Fourier space. In this hexago
case, for example,Fsec[( r f sec(rW)5( rA1

(1)e1
2/2. HereA1

(1)

is the bulk modulus, one of the relevant elastic constantsAi
( j )

of Table III. The variation gives~in k space assuming per
odic boundary conditions! e1(kW )5(kx

21ky
2)L(kW )/A1

(1) . We

then substitutee1(kW ) back into the compatibility constrain
condition and solve for the Lagrange multiplierL(kW ). Thus,
e1(kW ) is expressed in terms ofe2(kW ), e3(kW ) and in Fourier
space

f sec~kW ![~1/2!A1
(1)(

,,,8
U,,8~kW !e,~kW !e,8

* ~kW !,

where f sec(kW )5A1
(1)u(kx

22ky
2)e2 /k212kx

2ky
2e3 /k2u2/2. The

~static! ‘‘compatibility kernel’’ U(kW ) is independent ofukW u at
long wavelengths:U(kW )→U( k̂). Hence, in coordinate spac
this is an anisotropic long-range (;1/r D, with D52) poten-
tial mediating the elastic interactions of the POP.

There are three possible domains in the product ph
~i.e., three centered rectangular orientations! corresponding
to POP directions (a,0),„2(1/2)a,2(A3/2)a…, and „2~1/
2!a,(A3/2)a…, with a denoting an arbitrary constant.9 Among
these three orientations, there is only one class of dom
pairs and for simplicity we take the pair consisting of t
second and third orientation states~2,3! as representative o
the class.

The boundary conditions for this pair are
2`; a52a0/2, b52A3a0/2, e150, v352V and at
1`; a52a0/2, b5A3a0/2, e150, v351V. Elastic

TABLE III. Free-energy invariants for all 2D ferroelastic tran
sitions. For simplicity, summation in coordinate space on the ri
has been dropped.

Rectangle and oblique:
FL5A1

(1)ux,x
2 /21A1

(2)uy,y
2 /21A1

(3)e2
2/21A2

(3)e2
4/4

FC5C1ux,xe2
21C2uy,ye2

2

FG5g1e2,x
2 1g2e2,y

2

Square:
FL5A1

(1)e1
2/21A1

(2)e2
2/21A2

(2)e2
4/21A1

(3)e3
2/21A2

(3)e3
4/2

FC5C1e1e2
21C2e1e3

21C3e2
2e3

2

FG5g1(e2,x
2 1e2,y

2 )1g2(e3,x
2 1e3,y

2 )1g3(e2,xe3,y1e2,ye3,x)
Hexagonal:

FL5A1
(1)e1

2/21A1
(2)(e2

21e3
2)/21A2

(2)(e3
323e2

2e3)/3
1A3

(2)(e2
21e3

2)2/4
FC5C1e1(e2

21e3
2)

FG5g1(3e2,x
2 12e2,xe3,y1e2,y

2 12e2,ye3,x1e3,x
2 13e3,y

2 )
1g2(e2,x

2 16e2,xe3,y2e2,y
2 22e2,ye3,x2e3,x

2 1e3,y
2 )

1g3(e2,x
2 22e2,xe3,y13e2,y

2 22e2,ye3,x13e3,x
2 1e3,y

2 )
10410
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compatibility implies thatV5A3a0/2. Thus, there are oppo
site rotations in the two domains. The POP strain pro
through the domain-wall interface can be obtained by so
ing the appropriate differential equations under these bou
ary conditions. At some specific temperature~i.e., a specific
value of the coefficient of the harmonic POP term at wh
the domain-wall problem becomes one dimensional! in each
case an analytic form for the domain wall can be obtaine18

Figure 1 shows typical~static! microstructure for this
6mmF2mm(3) transition. The shear strainse3 are displayed
in Fig. 1 ~Top! with the color coding representing positiv
~red!, negative~blue!, and zero~green! strain values associ
ated with the three centered rectangular orientations. The
positive ~red! and negative~blue! values ofe2 are shown in
Fig. 1 ~bottom!. The domain-wall orientations correspond
multiples of p/6 andp/3. The structures were obtained b
relaxing the free energy using a time-dependent Ginzb
Landau~TDGL! equation.7,11 The emphasis here is not o
dynamics, but on examples of typical ‘‘equilibrium’’ struc
tures and the TDGL is one way of obtaining these textu
configurations.11 Such microstructure has been seen us
phase contrast microscopy on lead orthovanadate19 and has
been simulated by other methods.8,20

Note that if we consider the first entry in Table II but
different ferroelastic species 6mmF2, we will get six ob-
lique (p2) orientational states in the product phase. Ho
ever, the free energy will be the same, to this order of
pansion, as given in Table III. All 23 ferroelastic transitio
in 2D can be described by three GLFE forms~if we limit the
degree of expansion in strain and neglect additional seco

FIG. 1. ~Color! Example of microstructure for the
6mmF2mm(3) ferroelastic transition for which the POP~see col-
umn 3 of Table II! is a two-component shearG55(e2 ,2e3). Top:
The three values of the shear straine3 are color coded with red
~positive!, blue ~negative!, and green~zero!. Note the domain-wall
orientations with angles that are multiples ofp/6 andp/3. Bottom:
The two values of the deviatoric sheare2 are shown with red~posi-
tive! and blue~negative!.

t
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HATCH, LOOKMAN, SAXENA, AND SHENOY PHYSICAL REVIEW B68, 104105 ~2003!
ary OP’s such as shuffle for crystals without a monatom
basis! and five elastic kernels. The five forms for the kern
are given in Table IV. Note also that rectangular (p2mm)
→oblique (p2) and oblique (p2)→oblique (p1) transitions
are described by the same kernel but the strains are de
with respect to a rectangular lattice in the former case
with respect to an oblique lattice in the latter case. In ad

TABLE IV. Representative elastic compatibility kernelsU,,8(k
W )

for all 2D ferroelastic transitions for interaction between PO

through the free energyFsec5(1/2)(,,8,kU,,8e,e,8
* [(kf sec(kW ).

Heree25
1
2 (ux,x2uy,y) ande35

1
2 (ux,y1uy,x).

Rectangular and oblique to oblique:

f sec(kW )52A1
(2)@kx

2ky
2ue2u2#/(ky

41A1
(2)kx

4/A1
(1))

Square to oblique:

f sec(kW )5@A1
(1)/2#u(kx

22ky
2)e2 /k212kxkye3 /k2u2

Square to rectangle I~deviatoric!:

f sec(kW )5@A1
(1)/2#@(kx

22ky
2)2ue2u2#/@(kx

21ky
2)2

14A1
(1)kx

2ky
2/A1

(3)]
Square to rectangle II~shear!:

fsec(kW)5@A1
(1)/2#@kx

2ky
2ue3u2#/@k41A1

(1)(kx
22ky

2)2/A1
(2)#

Hexagonal to rectangle or oblique:

f sec(kW )5@A1
(1)/2#u(kx

22ky
2)e2 /k212kxkye3 /k2u2
10410
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tion, the square→rectangle transition can be driven either b
a deviatoric strain or by a shear strain. The latter leads
centered rectangular lattice.

In Fig. 2 we illustrate the local~lattice! rotation associated
with domain matching for the square to rectangular transit
resulting from the deviatoric strain.4,5 This local rotation is
given byv35 1

2 (ux,y2uy,x), as mentioned earlier. The rota
tion does not contribute to the free energy. However, it d
restrict compatibility of neighboring domains. The slant

FIG. 2. Example of local rotation (v3) of domains for the
square to rectangle~I! transition driven by the deviatoric strain. Th
solitonlike profiles in the lower part of the figure are deviato
strain (e2, solid line! interpolating between6e0 and local rotation
~dashed line! interpolating between7V0, respectively.
TABLE V. Characteristics of all proper ferroelastic transitions in 2D.p5$b1(b21a2)1/2%/a, r 5$3b1A3a12@3(a21b2)#1/2%/$3a
2A3b%, s5$3b2A3a12@3(a21b2)#1/2%/$A3b13a%, a5$2b1(b21a2)1/2%/a.

Ferroelastic Domain Pair Wall Habit plane
species values classes orientations orientations

6mmF2mm (a,0), (2a/2,2A3a/2), (2a/2,A3a/2) ~1,2! x52A3y,x5y/A3 x5y,x52y
6mmF2 (a,b), (2a/21A3b/2,2A3a/22b/2) ~1,2!, ~1,3! x5sy,x52y/s;x5ry ,x52y/r ; x5ay,x52y/a

(2a/22A3b/2,A3a/22b/2) ~1,4! x5A3y,x52y/A3;
(2a/21A3b/2,A3a/21b/2), (a,2b) ~1,5! x50,y50;

(2a/22A3b/2,2A3a/21b/2) ~1,6! x5y/A3,x52A3y
6F2 (a,b), (2a/2,A3a/2) ~1,2! x5ry ,x52y/r ; x5ay,x52y/a

(2a/21A3b/2,2A3a/22b/2) ~1,3! x5sy,x52y/s
3mFm(s) (a,0), (2a/2,A3a/2),(2a/2,2A3a/2) ~1,2! x5A3y,x52y/A3 x5y,x52y
3mF1 (a,b), (2a/22A3b/2,A3a/22b/2), ~1,6!, ~1,5! x5y/A3,x52yA3;x5A3y, x5y,x52y

(2a/21A3b/2,2A3a/22b/2), (a,2b) ~1,4!, ~1,3! x52y/A3;x50,y50;x5sy,
(2a/21A3b/2,A3a/21b/2), ~1,2! x52y/s;x5ry ,x52y/r

(2a/22A3b/2,2A3a/21b/2)
3F1 (a,b), (2a/22A3b/2,A3a/22b/2) ~1,2! x5ry ,x52y/r ; x5ay,x52y/a

(2a/21A3b/2,2A3a/22b/2) ~1,3! x5sy,x52y/s
4mmF2mm(p) (a), (2a) ~1,2! x5y,x52y x5y,x52y
4mmF2mm(s) (a), (2a) ~1,2! x20,y50 x50,y50
4mmF2 (a,b), (2a,2b) ~1,2!, ~1,3! x5py,x52y/p;x50,y50; x5ay,x52y/a

(a,2b), (2a,b) ~1,4! x5y,x52y
4F2 (a,b), (2a,2b) ~1,2! x5py,x52y/p x5ay,x52y/a

(a,2b), (2a,b)
2mmF2 (a), (2a) ~1,2! x50,y50 x50,y50
mF1 (a), (2a) ~1,2! x50,y50 x50,y50
2F1 (a), (2a) ~1,2! x50,y50 x50,y50
5-4
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PROPER FERROELASTIC TRANSITIONS IN TWO . . . PHYSICAL REVIEW B68, 104105 ~2003!
dashed line represents a twin boundary between the two
angular variants.

In Table V we list the relevant characteristics of all prop
ferroelastic transitions in 2D. For each species we have lis
the following: ~a! in column 2, the OP values for each d
main, ~b! in column 3, a representative for each of the p
classes~where more than one pair is listed, there is more th
one equivalence class of pairs!, ~c! in column 4, the domain-
wall orientations, and~d! in column 5, the habit plane orien
tations ~consistent with those obtained by Bouleste
et al.21!. Other wall orientations are allowed but they a
equivalent and easily obtained by the rotations or translat
which were lost from the parent structure at the transiti
The notationp,s in column 1 refers to the orientation of th
ferroelastic crystal relative to the principal axis of the par
structure. The letters ‘‘p’’ and ‘‘ s’’ stand for ‘‘principal’’ and
‘‘side,’’ respectively. The symmetry considerations given
Table V were obtained usingISOTROPY.13 These include
space-group changes at the transition, order-parameter fo
domain configurations, equivalent and inequivalent pa
etc.

IV. CONCLUSION

For structural transitions in which strain is the prima
order parameter, we have obtained 23 proper ferroela
transitions in 2D and derived distinct, static elastic comp
ibility kernel forms. The appropriate Ginzburg-Landau fr
e

y

y

A

R.

P
O
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energies containing both primary and secondary OP’s
easily obtained usingISOTROPY.13 The five anisotropic com-
patibility kernels have been obtained by an Euler-Lagran
minimization. These kernels embody the essential physic
the microstructure in ferroelastics. In addition to specifyi
anisotropic, long-range interactions, the kernels influe
possible domain-wall orientations, local rotations, a
parent-product interfaces in 2D ferroelastics. In a later wo
compatibility kernels have been used in an underdam
dynamics.11

Our philosophy can also apply to improper ferroelast
~e.g., ferroelectrics or magnetoelastics! when a physical
quantity other than strain~such as shuffle, polarization o
magnetization! is the POP and strain serves as a second
OP. In these cases, elastic compatibility leads to an an
tropic long-range interaction~generally! in the higher powers
of the nonstrain POP. Our approach can be readily applie
find the orientations of domain walls in the primary OP, e.
ferroelectric and magnetoelastic walls. Similarly, by explo
ing symmetry to the full extent we can obtain similar resu
in 3D, i.e., prediction of domain-wall orientations for the 9
ferroelastic transitions as well as habit planes.
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