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Abstract: Pulse reshaping effects that give rise to fast and slow light
phenomena are inextricably linked to the dynamics of energy exchange
between the pulse and the propagation medium. Energy that is dissipated
from the pulse can no longer participate in this exchange process, but
previous methods of calculating real-time dissipation are not valid for
extended propagation media. We present a method for calculating real-time
dissipation that is valid for electromagnetic pulse propagation in extended
media. This method allows one to divide the energy stored in an extended
medium into the portion that can be later transmitted out of the medium,
and that portion which must be lost to either dissipation or reflection.
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1. Introduction

Slow light can be achieved in a variety of physical systems [1–6] where the group velocity for
the medium can be made much smaller than c over a certain spectral range. Such phenomena
have shown promise for interferometry [7,8] and other applications such as telecommunications
where an all-optical method for pulse delay would be helpful [9]. The slow light phenomenon
is most frequently analyzed using frequency techniques [10], but time-domain analysis can also
yield insights into the physical processes that give rise to slow propagations [11, 12].

In time-domain analysis of slow light pulses, slow light phenomena are thought of in terms
of pulse reshaping. The early portions of the pulse transfer energy into the propagation medium
while later portions recover a portion of this energy back from the propagation medium to the
pulse [12]. The combined effect of this energy transfer shifts the pulse arrival times to later
times, and the peak of the pulse is observed to propagate at “slow” speeds.

This energy transfer process is not perfectly efficient, and energy dissipates from electro-
magnetic fields to thermal energy as a pulse interacts with the propagation medium. Dissipated
energy cannot be returned to the latter portions of the pulse, so understanding the timing of
when energy shifts from the “undissipated” to the “dissipated” status can help one understand
the slow-light propagation process. In this article we introduce a framework for describing the
real-time dynamics of energy dissipation as a pulse interacts with an extended propagation
medium.

We previously detailed an approach for calculating real-time loss that was appropriate for
point-wise analysis [13, 14]. This previous analysis was analogous to other methods developed
to describe dissipation in general viscoelastic and dielectric media [15–20]. However, each of
these methods of analysis calculates the energy density at single point within the medium (or,
in the case of viscoelasticity, treats physically extended elements “en masse,” hence as point-
like). This point-wise analysis can lead to incorrect results when analyzing the propagation of
an energy pulse through a distributed medium.

To understand why the transition from a point-wise energy density approach to analyzing
a distributed medium causes troubles, we briefly review the two previous methods we use to
analyze dissipation. The first method [13] divides the energy stored in a dielectric in two forms:
recoverable and irrecoverable energy. The recoverable energy density at any given time is the
fraction of energy that could possibly be transferred from the medium back to the field by an
appropriately chosen future field. The remaining irrecoverable energy density uirrec(t) cannot
be retrieved from the medium regardless of what happens in the future, and thus gives an upper
bound for the dissipation up to time t.

The second method for analyzing real-time dissipation [14] identifies the past field that could
have created the pulse-medium state with the least amount of energy being deposited in the
medium. The difference between the actual amount of energy deposited in the medium and
the minimum value required to create the current pulse-medium excitation gives uwaste(t), the
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amount of energy density that has been “wasted” in creating the pulse-medium state at a given
point in time. Since uwaste(t) represents the minimum amount of energy that must have been
dissipated up to a given time, it gives the lower bound for energy dissipation up to time t.

The combination of uwaste(t) and uirrec(t) define a range of acceptable values for the real-time
dissipation up to time t at a given point. This range is a natural reflection of the fact that the
transformation to random thermal energy does not happen at a precise instant, so the amount of
dissipation as a function of time is necessarily “fuzzy.” However, any point-wise notion of real-
time loss that is smaller than the waste energy density or larger than the irrecoverable energy
cannot be associated with a (macroscopically) possible process of energy flow.

When fields propagate through an extended medium, the electric field changes slightly at
each successive point due its interaction with previous points. This makes the point-wise anal-
ysis of energy dissipation inappropriate for propagation problems where energy is distributed
throughout a medium. For example, it may be tempting to calculate uirrec(z, t) at each point
in the medium and then integrate over space to find the total irrecoverable energy. This ap-
proach is incorrect since it calculates optimum future fields for each point independent of all
other points in the medium. These independently chosen future fields are typically incompatible
because they do not satisfy the causal connections required by Maxwell’s equations between
points in the medium. Calculating the real-time dissipation using this naive approach would
underestimate the amount of dissipation that has occurred up to a given time.

In this paper, we present methods for describing real-time dissipation for pulse propagation
in an extended medium one-dimensional medium. This method considers fixed past fields and
potential future fields that are consistent (via Maxwell’s equations) throughout the medium.
This method treats the loss in the medium as a whole, rather than focusing on a single point, so
that the results can be used to analyze propagation appropriately. The approach in this paper is
analogous to the first point-wise method which yields uirrec.

2. Definitions

We consider a one-dimensional dielectric slab located in a region 0 ≤ z ≤ L with vacuum on
either side, and linearly polarized “planar” pulses of the form

E(z, t) = E(z, t)j,
P(z, t) = P(z, t)j,
H(z, t) = H(z, t)i

(1)

propagating in the k direction through this system, where i, j, and k are the typical unit vectors
along x, y, and z. For a linear isotropic medium, the dielectric polarization field P is related to
E through the susceptibility χ(ω) via

P̂(z,ω) = χ(ω)
(
θ
+ (z)−θ

+ (z−L)
)

Ê(z,ω), (2)

where θ+ denotes the unit step supported only for positive argument. The “hat” notation indi-
cates the Fourier transform of a temporal field, defined by

F̂(z,ω) =
1√
2π

+∞∫
−∞

dt F(z, t)e+iωt

F(z, t) =
1√
2π

+∞∫
−∞

dω F̂(z,ω)e−iωt .

(3)
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The pulse described by Eq. (1) must satisfy Maxwell’s equations, which, for our geometry,
are given by

Ĥ(z,ω) =
c
−iω

Ê ′(z,ω) (4)

and

Ê ′′(z,ω) =−ω2

c2

(
1+χ(ω)

[
θ
+(z)−θ

+(z−L)
])

Ê(z,ω) (5)

in the frequency domain. For a pulse originating from z = −∞ and impinging on the interface
located at z = 0, we can write the electric field solution to Maxwell’s equations in the form

Ê(z,ω) =


Êi(ω)eik0(ω)z + Êr(ω)e−ik0(ω)z z≤ 0

Ê f (ω)eik(ω)z + Êb(ω)e−ik(ω)z 0≤ z≤ L

Êt(ω)eik0(ω)(z−L) z≥ L

(6)

where k0(ω) = ω/c is the vacuum wave number, k(ω) = ωN (ω)/c is the complex wavenum-
ber in the medium, and the complex index of refraction N (ω) is defined by

N (ω) =
√

1+χ(ω) =
√

ε(ω) = n(ω)+ iκ(ω). (7)

In Eq. (7) we must take the branch of the square root so that n(ω) and κ(ω) are positive for all
ω in the right half of the upper half plane. In Eq. (6), Êi(ω) and Êr(ω) describe the incident
and reflected fields at z = 0 on the vacuum side of the interface, Ê f (ω) and Êb(ω) describe the
forward and backward traveling fields at z = 0 on the medium side of the interface, and Êt(ω)
gives the transmitted field in vacuum at z = L.

Using this formalism, we can model an arbitrary one-dimensional incident pulse originating
at z=−∞. The incident pulse is specified by choosing Êi(ω), and the remaining fields in Eq. (6)
are then determined by requiring that Ê(z,ω) and Ê ′(z,ω) be continuous across the boundaries
at z = 0 and z = L. This process produces the following Fresnel-type relationships for the fields
in Eq. (6):

Êt(ω) = t(ω)Êi(ω)

Êr(ω) = r(ω)Êi(ω)

Ê f (ω) = f (ω)Êi(ω)e−ik(ω)L

Êb(ω) = b(ω)Êi(ω)eik(ω)L

(8)

where

t(ω) =
4N (ω)

(1+N (ω))2e−ik(ω)L− (1−N (ω))2 eik(ω)L

r(ω) = 2i
sin(k(ω)L)

N (ω)+1
N (ω)−1 e−ik(ω)L− N (ω)−1

N (ω)+1 eik(ω)L

f (ω) =
2(N (ω)+1)

(1+N (ω))2e−ik(ω)L− (1−N (ω))2eik(ω)L

b(ω) =
2(N (ω)−1)

(1+N (ω))2 e−ik(ω)L− (1−N (ω))2 eik(ω)L

(9)

Each of the electric fields in Eq. (8) has an associated magnetic field specified by Eq. (4).
Energy exchange is well-described in the context of Poynting’s theorem,

u̇(z, t)+ c∇ ·S(z, t) = 0, (10)
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which connects the energy density u(z, t) with the Poynting flux S(z, t) = E(z, t)×H(z, t) at
each point z in the medium. We use the Heaviside-Lorentz system of units with ε0 = 1 = µ0,
and indicate the partial time derivative with a dot (as in u̇). The energy density is typically
divided as

u(z, t) = ufield(z, t)+uint(z, t) (11)

where the field energy density is given by

ufield(z, t) =
1
2

H(z, t) ·H(z, t)+
1
2

E(z, t) ·E(z, t) (12)

and the energy density associated with pulse-medium interactions is given by

uint(z, t) =
t∫

−∞

dτ E(z,τ) · Ṗ(z,τ). (13)

The total “planer” energy for this system is given by

Utot :=
∫ +∞

−∞

dz u(z, t). (14)

Utot is conserved (i.e. independent of t), and will be finite for incident fields with finite duration.
We can spatially divide energy integral Eq. (14) as

Utot =U(−∞,0](t)+U[0,L](t)+U[L,∞)(t) (15)

where U(−∞,0](t), U[0,L](t), and U[L,∞)(t) are, respectively, the total energy densities to the left
of the medium, inside the medium, and to the right of the medium at a given time t. Be-
fore the pulse arrives at the first interface, Utot is given by the incident energy field energy
U(−∞,0](−∞). After all exchange processes have ceased, the energy is split between reflected
energy U(−∞,0](∞), dissipated thermal energy U[0,L](∞), and transmitted energy U[L,∞)(∞). Dur-
ing the interaction, the energy in the medium is divided as in the point-wise case between field
energy and energy stored in the medium

U[0,L](t) =U[0,L],field(t)+Uint(t) (16)

To define a meaningful notion of real-time loss at an arbitrary time t, we divide the incident
field into the past field prior to t and the future field subsequent to t. The past field is fixed
for any given time t, but conceptually we can consider various future fields that would change
eventual dissipation in the medium. We can then find the future field that results in the minimum
eventual loss. (We make the process for finding this field mathematically precise in the next
section.) With this optimum future field in hand, we can then divide the energy in the medium
as

Uint(t) =Uirrec(t)+Urec(t), (17)

where Uirrec(t) is energy stored in the medium that must eventually be dissipated, and Urec(t)
is the energy stored in the medium that could potentially be returned to the field through either
reflection or transmission with an appropriate future field. Analogous to uirrec in the point-wise
case, Uirrec(t) gives an upper bound for valid notions of loss in an extended medium.

The above approach for calculating Uirrec(t) treats both the reflected and transmitted field
energy as being equally well “recovered” from the medium. In propagation systems, one often
focuses on the energy that is transmitted in the positive z direction, so that both dissipated and
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reflected energy are equally regarded as “lost.” For this sort of system it is more natural to
divide the energy stored in the medium as

Uint(t) =Uloss(t)+Utrans(t), (18)

where Uloss(t) represents the energy in the medium that must eventually be lost due either
to dissipation or reflection, and Utrans(t) represents the energy in the medium that could be
eventually transmitted from the medium in the positive z direction. In Section 3 we illustrate
how to derive a formula for Uloss(t). Calculating Uirrec(t) can be handled as a special case of
this more general definition.

3. Minimizing future loss

The total eventual loss in our system is given by:

Uloss(∞) = c
∫ +∞

−∞

dω
∣∣Êr(0,ω)

∣∣2 +∫ +∞

−∞

dω

∫ L

0
dz ρ(ω)

∣∣Ê(z,ω)
∣∣2 (19)

where ρ(ω) = Re[−iωχ(ω)]. The first term in Eq. (19) gives the eventual loss due to reflection
U(−∞,0](∞), and the second term gives the eventual loss due to dissipation U[0,L](∞). We seek
to find the minimum possible Uloss(∞) while treating the past incident field (before time t) as
fixed and allowing the future field to vary. Utilizing Eq. (2), Eq. (6), Eq. (8), and Eq. (9), we
can manipulate Eq. (19) into the form

Uloss(∞) = L
γ

ω2
p

∫
∞

−∞

dω m(ω)
∣∣ωχ(ω)Êi(0,ω)

∣∣2 (20)

where

m(ω) =
ω2

p

γ(L/c)
M(ω)

|−iωχ(ω)|2
, (21)

and

M(ω) = |r(ω)|2 +ρ(ω)
∫ L/c

0
dτ

∣∣∣ f (ω)e−iωN (ω)τ +b(ω)eiωN (ω)τ
∣∣∣2. (22)

The parameter γ describes the dissipation rate at high frequency, and is given by

γ = lim
ω→∞
− ω Im χ(ω)

Re χ(ω)
, (23)

and the plasma frequency ωp is given by

ω
2
p = lim

ω→∞
−ω

2
χ(ω). (24)

When computing m(ω), it is useful to note there that the integral in Eq. (22) can be calculated
as ∫

τL:=L/c

0
dτ

∣∣∣ f (ω)e−iωN (ω)τ +b(ω)e+iωN (ω)τ
∣∣∣2

=
(
| f (ω)|2eτLωκ(ω)+ |b(ω)|2e−τLωκ(ω)

) sinh(τLωκ(ω))

ωκ(ω)

+
(

f (ω)b∗(ω)e−iτLωn(ω)+b(ω) f ∗(ω)e+iτLωn(ω)
) sin(τLωn(ω))

ωn(ω)
. (25)
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The quantity m(ω) in Eq. (21) is real for real frequencies ω and its complex conjugate m∗

satisfies m∗(ω) = m(−ω∗), so that m is the Fourier transform of a real, even function. The form
of m(ω) was chosen in Eq. (21) such that we have limω→∞ m(ω) = 1, and also so that the limit
as ω → 0 gives

lim
ω→0

m(ω) =
ω2

p

γ(L/c)

(
(L/c)2

4
+

Im [χ ′(0)]
χ2(0)

(L/c)
)
, (26)

so that Eq. (28) is well-behaved near ω = 0. It is thus possible to factor m as

m(ω) = m+(ω)m+(−ω) (27)

where m+(ω) and its reciprocal 1/m+(ω) are analytic and tending to unity in the upper half ω

plane, and m∗+(ω) = m+(−ω∗). The factorization Eq. (27) is accomplished according to

m+(ω) =
(
exp◦F ◦θ

+
0 ◦F−1 ◦ log

)
m(ω) (28)

where θ
+
0 is the unit step function supported for positive times and ◦ is the composition op-

erator. (I.e., to calculate the right hand side of Eq. (28) one computes the exponential of the
Fourier transform of the step function multiplied by the inverse Fourier transform of the log of
m(ω).) The logarithm in Eq. (28) goes to zero for large ω as 1/ω2, so that the inverse Fourier
transform F−1 results in a continuous function of time.

Using the factorization of m(ω) in Eq. (27), and introducing the definition ˆ̇Peff(ω) ≡
−iωm+(ω)χ(ω)Êi(0,ω) we can recast Eq. (20) as

Uloss(∞) = L
γ

ω2
p

+∞∫
−∞

dω

∣∣∣ ˆ̇Peff(ω)
∣∣∣2. (29)

Then via Parseval’s theorem, we have

Uloss(∞) = L
γ

ω2
p

+∞∫
−∞

dτ Ṗ2
eff(τ), (30)

where we have dropped the absolute value operation because the time-domain transform

Ṗeff(τ) := F−1
[

ˆ̇Peff(ω)
]

(31)

is real-valued due to the symmetry of ˆ̇Peff(ω). The quantity Peff has units of polarization, al-
though it is not associated with any particular point in the slab, but rather with the slab in its en-
tirety. Because m+(ω) is analytic in the upper half ω plane, Peff(τ) depends only on past values
of the incident field Ei(τ). Equivalently, with linearity and stationarity (no absolute origin in
time), if Ei(0,τ < t) = 0 then we must have Peff(τ < t) = 0. Conversely, because 1/m+(ω) is
also analytic in the upper half plane, if Peff(τ < t) = 0 then we must have Ei(0,τ < t) = 0. This
“reciprocal causality” property will be important in assuring that our notion of loss is unique
and well-defined.

To distinguish past and future losses, we write the incident field in terms of its past and future
components

(Ei)
−
t (τ) =

{
Ei(τ), τ ≤ t

0, τ > t ,

(Ei)
+
t (τ) :=

{
0, τ ≤ t

Ei(τ), τ > t .
(32)
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The fields in Eq. (32) are evaluated at z= 0, but we have omitted the spatial coordinate to reduce
notational clutter. Then, we write Peff(τ) as Peff[Ei](τ) to explicitly show its dependence on the
incident field Ei, and then use Eq. (32) to write Eq. (30) to explicitly show the dependence on
past and future fields as

Uloss[Ei](∞) = L
γ

ωp2

t∫
−∞

dτ Ṗ2
eff
[
(Ei)

−
t +(Ei)

+
t
]
(τ)+L

γ

ωp2

+∞∫
t

dτ Ṗ2
eff
[
(Ei)

−
t +(Ei)

+
t
]
(τ).

(33)
Because Ṗ2

eff(τ) depends only on past values of the field, we can then recast the first term and
write

Uloss[Ei](∞) = L
γ

ωp2

t∫
−∞

dτ Ṗ2
eff
[
(Ei)

−
t
]
(τ)+L

γ

ωp2

+∞∫
t

dτ Ṗ2
eff
[
(Ei)

−
t +(Ei)

+
t
]
(τ). (34)

Because Ṗeff(τ) is real, the first term in Eq. (34) is monotonic increasing. The second term must
also be nonnegative, so to minimize Uloss(∞) given a fixed past field, we seek an “optimum”
future field (Ei)

+
t,opt such that the second part of Eq. (34) vanishes:

L
γ

ωp2

+∞∫
t

dτ

∣∣∣Ṗeff

[
(Ei)

−
t +(Ei)

+
t,opt

]
(τ)
∣∣∣2 ≡ 0, τ > t. (35)

Since the integrand in Eq. (35) is nonnegative, it is necessary to demand

Ṗeff

[
(Ei)

−
t +(Ei)

+
t,opt

]
(τ)≡ 0, (τ > t). (36)

After some transforms and algebra, we can solve Eq. (36) to find the optimum future field

(Ei)
+
t,opt =−

(
F−1 ◦ eiωt ◦M−1

+ ◦F ◦θ
+
0 ◦F−1 ◦M+ ◦ e−iωt ◦F

)
(Ei)

−
t , (37)

where
M+(ω) :=−iωm+(ω)χ(ω). (38)

Importantly

M−1
+ (ω) :=

1
M+(ω)

=
1

−iωm+(ω)χ(ω)
(39)

is analytic in the (open) upper half plane, so that the last steps in Eq. (37) do in fact render
(Ei)

+
t,opt as a time series supported only after τ = t.

With the optimum future field, Eq. (34) now gives an unambiguous meaning to our concept
of loss. The fixed past losses at any time t are given by

Uloss(t) = L
γ

ω2
p

t∫
−∞

dτ Ṗ2
eff
[
(Ei)

−
t
]
(τ). (40)

Future losses, given by the second term in Eq. (34), can in principle be avoided by replacing
the future field with its optimum value, calculated using Eq. (37).

As indicated in the previous section, it is possible to use this same derivation to arrive at a
formula for Uirrec(t), which treats both reflection and transmission as equally valid methods of
recovering energy stored in the medium back to the field. The formula for Uirrec(t) has the same
form as Eq. (40), except that in Eq. (22) the definition of M(ω) is replaced by

Mirrec(ω) = ρ(ω)
∫ L/c

0
dτ

∣∣∣ f (ω)e−iωN (ω)τ +b(ω)eiωN (ω)τ
∣∣∣2, (41)

i.e., the reflection term is set to zero.
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4. Examples

To illustrate the use of the concepts, consider the specific case of a Lorentz oscillator medium
where χ(ω) has the form

χ(ω) =
N

∑
j=1

χ j(ω) =
N

∑
j=1

f jω
2
p j

ω2
j − iγ jω−ω2 . (42)

The parameters f j, ωp j , ω j, and γ j are the oscillator strength, plasma frequency, resonant fre-
quency, and damping rate of the jth Lorentz oscillator. We consider a Gaussian pulse of the
form

Ei(t) = E0e−t2/τ2
cos(ω̄t +φ) (43)

incident on this medium and study the energy dynamics in this interaction.
For our first example, consider a double resonance medium with parameters

γ1 = 0.1γ2

ω1 = ω2 = 100γ2

f1ω
2
p1
=−9.95γ

2
2

f2ωp2 = 100γ
2
2

L = c/γ2

(44)
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Fig. 1. The real (a) and imaginary (b) parts of the the index of refraction for the parameters
in Eq. (44). (c) The group delay function for this medium. (d) The power spectrum of the
pulse, which has been arbitrarily normalized to have a maximum value of one. This pulse-
medium combination should exhibit moderately slow propagation delays, around 900 times
slower than c.
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For our incident field, we choose a relatively narrowband pulse with

τ = 1000γ
−1
2

ω̄ = 100γ2

φ = 0.

(45)

Figures 1(a)–1(c) plot n(ω), κ(ω), and dk/dω (the group delay function) for this medium. Note
that the pulse spectrum is centered in a mostly transparent region where index varies rapidly,
resulting in a group delay function that predicts moderately slow delay times about 900 times
slower than c. We calculated the spatial distribution of the energy densities associated with this
pulse, and Fig. 2 shows an animation of the evolution of the distribution as time progresses.
Figure 2(a) shows the large scale behavior of this pulse as it moves from the vacuum on the
left, through the medium (indicated by the vertical green line), and then into the vacuum on
the right. The blue solid line indicates the distribution of field energy, while a dotted red line
indicates how the pulse would have propagated if the medium were not there for comparison.
In both cases we have time-averaged the rapid fluctuations at the optical frequency to give only
the smooth envelope of the distributions. As expected, the pulse propagates slowly through the
medium and emerges during the trailing edge of the dotted reference pulse.

Figure 2(b) plots ufield(z, t) and Fig. 2(c) plots uint(z, t) in the medium. The field energy in
the medium is the portion of the energy that is actively being transported, and shows a peak
traversing the medium approximately 900 times slower than c. The total energy in the medium
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Fig. 2. An animation of the spatial distribution of energy densities as the pulse defined in
Eq. (45) traverses the medium defined in Eq. (44) (Media 1). (a) The propagation in vacuum
before and after the medium, represented by the vertical line at z = 0. The solid line plots
the field energy distribution with the medium present and the dotted line plots the field
energy distribution would have been if the medium were not present for comparison. (b)
The distribution of ufield in the medium. (c) The distribution of uint in the medium. All plots
have been locally time-averaged to remove the rapid fluctuations at the carrier frequency.
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Fig. 3. The total energy stored in the medium Uint compared with the real-time loss Uloss of
energy for the pulse-medium combination illustrated in Fig. 2.

Uint(t) is stationary, and can be divided into a portion Utrans that could be transmitted with the
appropriate future pulse, and a portion Uloss that must remain in the medium.

Figure 3 plots the total energy stored in the medium Uint(t) compared with the real-time
loss Uloss(t) calculated using Eq. (40). Utrans is the difference of these two curves. Comparing
Ufield to Utrans, we find that only about 0.2% of the undissipated energy is actually moving via
Poynting flux at any given time while the rest remains stationary in the medium. Thus, the
average speed of all the energy is heavily influenced by the stationary portion of the energy and
the dramatic slow propagation is observed.

Notice that a large fraction of the incident energy is lost from this Gaussian pulse during the
times when it is entering the medium. Eventually, the remaining energy is transmitted into the
vacuum to the right, and Uint and Uloss take on the same value at large times (i.e. all the energy
remaining in the medium has been dissipated). We can engineer a more efficient extraction
of energy by using Eq. (37) to calculate a second half of a pulse that will extract all energy
available in the medium after a certain time. We take the pulse before t = 0 to be as defined
by Eq. (45), and after t = 0 we append the optimal recovery pulse calculated by Eq. (37).
Figure 4(a) shows the temporal profile of the original incident pulse, and Fig. 4(b) shows the
pulse with the optimum recovery field appended to the second half.

Figure 5 shows an animation of the pulse in Fig. 4(b) propagating through the medium de-
fined by Eq. (44). The optimum field contains a delta function represented by the arrow in
Fig. 4(b). This feature is not resolved in the animation because it is much too narrow for the
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Fig. 4. (a) The temporal profile of a the Gaussian pulse Eq. (43) with the parameters in
Eq. (45). (b) The first half of the pulse is the same as (a), but the second half is the optimum
future recovery field for the medium described in Eq. (44).
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Fig. 5. An animation of the spatial distribution of energy densities as the pulse defined in
Eq. (45) traverses the medium defined in Eq. (44) (Media 2). (a) The propagation in vacuum
before and after the medium, represented by the vertical line at z = 0. The solid line plots
the field energy distribution with the medium present and the dotted line plots the field
energy distribution would have been if the medium were not present for comparison. (b)
The distribution of ufield in the medium. (c) The distribution of uint in the medium. All plots
have been locally time-averaged to remove the rapid fluctuations at the carrier frequency.

resolution of the movie, but is included in the calculations used to generate the movie. A true
delta function would not be possible to create in a physical experiment. Nevertheless, in our
simulation a narrow downward peak in the pulse profile is sufficient to capture the essential
behavior of the recovery field.

For the example parameters we have chosen, there is very little reflected light because the
index of refraction for the medium is near unity for the frequencies in the pulse. In cases where
there is significant reflection, the recovery field can contains repeated pulses separated by the
round-trip traversal time of the medium. This sequence of pulses results from our requirement
that the optimal recovery pulse cause the maximum amount of light to be transmitted, rather
than just removed from the medium. The sequence of afterpulses interferes with the backward
traveling portion of the field in the medium so as to cause the energy to be transmitted to the
right rather than reflected to the left. If one wishes to avoid this feature in a recovery pulse, it is
necessary use Eq. (41) in calculating the recovery field as discussed previously.

In Fig. 6 we plot the real-time loss Uloss and the total energy in the medium Uint for this
modified pulse. For comparison, the plots from Fig. 3 (for the unmodified pulse in Fig. 4(a))
are repeated as dashed lines. Note that after t = 0, when we switch to the optimal recovery field,
there is no additional loss for this pulse. The energy that has been deposited in the medium prior
to t = 0 is extracted by the optimum recovery field and produces the delayed portion of energy
transmitted to the vacuum after the medium.
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Fig. 6. The solid lines plot the total energy stored in the medium Uint and the real-time loss
Uloss of energy for the pulse-medium combination illustrated in Fig. 5. Dashed lines plot
the same quantities from Fig. 3 for comparison.

5. Conclusion

We have introduced a method for calculating the real-time loss of energy stored in a medium
that is valid for pulses propagating in extended media. This method for calculating dissipation
is consistent with Maxwell’s equations and allows one to analyze real-time loss in propagation
settings. A complete understanding of real-time loss is important in applications such as slow
and fast pulse propagation experiments where the timing of energy flows in and out of the
pulse are crucial. We have illustrated the use of this formalism in analyzing a typical “slow
light” propagation situation, and illustrated a simple method for engineering pulse shapes for
optimal energy recovery. While this example employed a specific model (the Lorentz model),
the formalism is independent of the model used to represent the material.

#203993 - $15.00 USD Received 3 Jan 2014; revised 11 Feb 2014; accepted 12 Feb 2014; published 19 Feb 2014
(C) 2014 OSA 24 February 2014 | Vol. 22,  No. 4 | DOI:10.1364/OE.22.004453 | OPTICS EXPRESS  4465




