Equivalent circuit modeling and vibrometry measurements of the Nigerian-origin Udu Utar drum

Brian E. Anderson
Acoustics Research Group, Department of Physics and Astronomy, Brigham Young University, N283 Eyring Science Center, Provo, Utah 84602

C. Beau Hilton
Department of Humanities, Classics, and Comparative Literature, Brigham Young University, 4110 Joseph F. Smith Building, Provo, Utah 84602

Frank Giorgini
Udu Incorporated, 4425 County Route 67, Freehold, New York 12431
(Received 10 October 2012; revised 20 December 2012; accepted 14 January 2013)

The Udu drum, sometimes called the water pot drum, is a traditional Nigerian instrument. Musicians who play the Udu exploit its aerophone and idiophone resonances. This paper will discuss an electrical equivalent circuit model for the Udu Utar, a modern innovation of the traditional Udu, to predict the low frequency aerophone resonances and will also present scanning laser vibrometry measurements to determine the mode shapes of the dominant idiophone resonances. These analyses not only provide an understanding of the unique sound of the Udu instrument but may also be used by instrument designers to create instruments with resonance frequencies at traditional musical intervals for the various tones produced and to create musical harmonic ratios. The information, specifically the laser vibrometry measurements, may also be useful to musicians in knowing the best places to strike the Udu to excite musical tones. © 2013 Acoustical Society of America.

PACS number(s): 43.75.Hi, 43.20.Ks [TRM]

I. INTRODUCTION

Originating with the Igbo people of Nigeria, the Udu is a clay water pot constructed for musical use. It is both an idiophone—an instrument using vibration of the instrument’s body to produce sound—and an aerophone—an instrument that uses vibrating columns and cavities of air to produce sound. The typical Udu retains the traditional Igbo water pot shape, reminiscent of a gourd, but derives many of its unique aural qualities from the addition of a hole in the side of the pot which enables players to modulate the tones produced by the aerophone. The side-hole water pot drum has uncertain beginnings, and ascertaining the reasons for punching the extra hole in the pot in ancient Igboland will be left to anthropologists. Of its cultural significance, this much is known: until recent decades, only women made and played the Udu, relative to their prominent role in Igbo religion; the deep bass aerophonic resonances of the Udu were and are believed to be the “voices of the ancestors,” and as such the Udu plays an important role in religious ceremonies—in Chinua Achebe’s Things Fall Apart, arguably the most important and influential Igbo and pan-African piece of literature, the Udu is mentioned alongside other Igbo percussion instruments as forming the basis of the rhythmic support for these ceremonies.3

3

Frank Giorgini, an artisan working in upstate New York, is primarily responsible for bringing the Udu into popularity outside of Nigeria. While studying pottery in Maine, Giorgini came into contact with Abbas Ahuwan, a Nigerian potter, and was introduced to the Udu drum. Giorgini began researching and producing Udus in earnest, eventually traveling to Nigeria to learn from master Igbo Udu maker Ahuwan.2,4 Artists such as Sting, Miles Davis, and Alex Acuña have utilized Giorgini’s Udus in their music, and, recently, mass production of the Udu by percussion companies, including Latin Percussion, Inc., has enabled many musicians outside of Nigeria to learn and experiment with the drums.

The literature currently extant on the Udu is limited to a few articles in various music and instrument magazines, describing the sound, method of playing, and background of the drum. The most complete of these is the article written by Giorgini in 1990,2 which includes the history of and his history with the drums, a brief description of how Udu are made, Giorgini’s experimentation and innovation, brief qualitative description of the link between Helmholtz resonances and the Udu, and Giorgini’s goals with Udu production. No in-depth scientific description or modeling of the acoustics of the Udu has yet been published, and the purpose of this paper is to expand the current understanding of these unique instruments by filling this gap.

This paper provides a basis for understanding the sound radiated from an Udu from both idiophonic and aerophonic standpoints by making acoustic measurements of an Udu Utar, one of the mass-produced models from the Giorgini collaboration with Latin Percussion, Inc. An equivalent
II. PLAYING THE UDU

The interest of the Udu drum is primarily in the wide range of sounds that can be coaxed from it. We will qualitatively describe aerophone resonances and how to obtain them, and then idiophonic resonances and how to obtain them. By combining these techniques, a vast sound palette is achievable. Though the Udu Utar is the specific subject of our research (shown in Fig. 1), the sounds obtained are typical of all Udu drums and similar techniques can be applied. Note that in Sec. I, we refer to the side hole as being a hole cut into the large cavity of the pot. However, from this point on we will refer to the hole in the cavity of the pot as the “top hole” and the hole out of the neck of the pot as the “side hole” with reference to their respective positions in the photo in Fig. 1.

The signature sounds of the Udu are the deep bass aerophone resonances and terminal octave slide. By using the palms of the hands to strike and cover either of the openings, low bass tones are achieved. The side hole is typically more responsive to this action with a much stronger response obtained. When the hand strikes a hole and immediately releases, the tone quickly slides up nearly an octave before dissipating.

All of the tone gradations between the lowest note and the highest note can be achieved as well. Closing the top hole and striking the side hole achieves the low tone, and as the player raises one side of the palm on the top hole and continues to strike the side hole the tone rapidly increases in frequency. As the angle between the palm and the top hole increases to perpendicular, the pitch increases to the tone nearly an octave higher. Acoustically the player is dynamically changing the end correction for the top hole, and therefore the amount of acoustic mass loading at that end of the Udu. When the palm covers the top hole the acoustic mass goes to infinity, but as the palm opens up the top hole, from closed to all the way open, the acoustic mass decreases to the finite value determined by the end correction for the acoustical reactance presented to that hole. This will be further analyzed in Sec. III C.

Many other sounds can also be made. The player can choose to only cover part of either hole when striking and thus achieve many different tones; covering the side hole and striking the top hole without completely closing it off can produce very low tones; and a “swoop” sound, similar to a dripping faucet, can be made by covering the side hole and striking the top hole with the palm, completely covering it and immediately releasing.

The various idiophonic resonances of the Udu are excited by tapping different parts of the body of the Udu yielding different dominant tones. These tones are higher in frequency than the aerophonic tones and often ring for some time. The duration of these tones depends on the quality of the Udu (the Utar is a fired clay instrument giving its walls a high degree of stiffness and thus a high quality factor) and the method of holding the Udu. An Udu typically rests in the player’s lap, but this tends to dampen the vibration of the clay. To raise the Udu off of the player’s lap, straw rings that the Udu rests on are traditionally used, and mounts of foam-covered tubular steel are also in use. Both of these methods allow the Udu to vibrate with less damping and longer duration for the idiophonic resonances.

Any type of tap, slap, or slide that the player can think of is considered appropriate technique, but typical playing method consists of tapping with the pads and inner joints of one’s fingers. Using knuckles, nails, and full hand slaps is also common, and persons who have played conga or tabla generally have success transferring the techniques they already know. Non-traditional tools such as mallets are also used on occasion, depending on the musical situation.

Finally, it should be mentioned that Udu drums are sometimes filled partially with water for playing, which opens many more possibilities for aural effects and seems to improve the sound projection in some Udu. These effects will partly be considered in Sec. III E.

III. AEROPHONE RESONANCES

A. Acoustic measurements

There are three main aerophone, or acoustical, resonances that can be easily made on the Udu Utar drum, though these three resonances may be excited in five principal ways. Three of the excitations can be made by striking the side hole of the drum and two more can be made by striking the top hole. The first acoustical resonance can be excited with the side closed and the top open (SCTO) by striking the side hole and leaving the hand there to cover the hole, all the while with the top hole remaining open. The second acoustical resonance can be excited with the side open and the top closed (SOTC) by striking the side hole and releasing the hand quickly to leave the side hole open, all the while with the top hole being closed by the player’s other hand. The third acoustical resonance can be excited with the side open and the top open (SOTO) by striking the side hole and releasing the hand quickly to leave the side hole open, all the
while with the top hole remaining open. The second acoustical resonance can also be excited with the top closed and the side open (TCSO) by striking the top hole and leaving the hand there to cover the hole, all the while with the side hole remaining open. The third acoustical resonance can also be excited with the top open and the side open (TOSO) by striking the top hole and releasing the hand quickly to leave the top hole open, all the while with the side hole remaining open. A significantly audible response at the first acoustical resonance frequency cannot be made by striking the top hole and releasing the hand quickly to leave the top hole open, all the while with the side hole being closed by the player’s other hand.

The five ways to excite the resonances of the Udu Utar drum were individually recorded in an anechoic chamber. A type-1, calibrated, free-field microphone was placed 1 m from the Udu (PCB 377A02 microphone and Larson Davis PRM426 preamplifier) to record the spectra in conjunction with a Hewlett Packard 35670 dynamic signal analyzer. The resonances were produced 3 or 4 times for each recording and the analyzer averaged the results. The resulting spectra are displayed in Fig. 2. Note that the resonances for TOSO and SOTO are at the same frequency as should be expected since the boundary conditions are the same once the hand has excited the instrument and subsequently been removed from the instrument. Note also that the resonances for SOTC and TCSO are also at the same frequency since the boundary conditions are again the same after the initial excitation. The three aerophone resonance frequencies are 73, 113, and 137 Hz, and essentially correspond to the musical notes D₂, A₂, and C³#

As observed from Fig. 2, the Udu Utar essentially has three distinct aerophone resonances. The frequencies of these resonances are nearly spaced according to the musical intervals of a fifth and a seventh relative to the lowest resonance frequency. Perhaps one of the more interesting acoustic features of the sounds produced by the Udu Utar is the varying tone produced by adjusting the opening of one hole while striking the other. This feature is produced by dynamically modifying the degree to which one hand covers the top hole as the side hole is struck and released (ranging from SOTC 73 Hz to SOTO 137 Hz). The musician is thus dynamically changing the end correction (the inertia and resistance at the opening of the top hole) of the top hole. Figure 3 displays a spectrogram from a recording of a player dynamically varying the top hole opening while striking and releasing the side hole opening. This figure will be discussed further later on.

B. Advanced equivalent circuit modeling

The aerophone resonances of the Udu Utar drum are low enough in frequency such that their wavelengths are large compared to the internal dimensions of the drum. For example, the highest aerophone resonance (at present consideration) of 137 Hz corresponds to a wavelength of 2.50 m, whereas the largest internal dimension is approximately 30 cm. For reference, the length of the neck is 14.6 cm and the cavity volume is 9.25 L (9.25 × 10⁻³ m³). Large wavelengths compared to the size of the resonator allow the aerophone resonances of the instrument to be modeled with one-dimensional, electrical equivalent circuit modeling techniques. The advantage of these techniques is that the complicated curvature of the instrument need not be known.
Figure 4(a) displays the simplified-geometry drawing of the Udu Utar used in the equivalent circuit modeling (with the side hole on the left). The various parts of the instrument are then represented as electrical components in the so-called acoustic impedance domain equivalent circuit. The large cavity, labeled “C” in the drawing, of the Utar is modeled using a two-port T-network (the expressions used in T-networks are given by Mason in Ref. 5). The length for the network modeling the large cavity was determined from a measurement of the distance between the center of the top hole and the center of the junction between the neck and the cavity. The surface area of the large cavity was determined by dividing the volume of the cavity (measured by filling the Udu cavity up with water and then measuring the volume of the water) by this measured cavity length. The neck of the instrument, labeled “N1 – N4,” whose geometry flares out towards the side hole and then abruptly constricts to the side hole opening, is modeled with four T-networks in series, using four segments of the neck length and using the average surface area of those segments. The junction between the neck and the cavity is modeled as a mass, \(M_{NJ} = 8 \rho_0/\left[3\pi r_N M(b/a)\right] \) (see Table I for definitions of the symbols used here and throughout the paper), according to Karal’s Eq. (52), with \(H(b/a) = 0.7^6 \).

The interface between the cavity and the top hole is modeled as an orifice with a resistance, \(R_{AOT} = \ln(4r_T/t)\sqrt{2\rho_0\omega\mu/(4S_T)} \), and a mass, \(M_{AOT} = \rho_0r_T^4/4 \), according to the expressions given by Morse and Ingard \([Eq. (9.1.23)]\) and Pierce \(\text{[Eq. (7-5.10)]} \), respectively. The interface between the cavity and the top hole is modeled with four T-networks in series, using four segments of the neck length and using the average surface area of those segments. The junction between the neck and the cavity is modeled as a mass, \(M_{AJ} = 8 \rho_0/\left[3\pi^2 r_N M(h/b/a)\right] \) (see Table I for definitions of the symbols used here and throughout the paper), according to Karal’s Eq. (52), with \(H(h/b/a) = 0.7^6 \).

The interface between the cavity and the top hole is modeled as an orifice with a resistance, \(R_{AOT} = \ln(4r_T/t)\sqrt{2\rho_0\omega\mu/(4S_T)} \), and a mass, \(M_{AOT} = \rho_0r_T^4/4 \), according to the expressions given by Morse and Ingard \([Eq. (9.1.23)]\) and Pierce \(\text{[Eq. (7-5.10)]} \), respectively. The interface between the cavity and the top hole is modeled with four T-networks in series, using four segments of the neck length and using the average surface area of those segments. The junction between the neck and the cavity is modeled as a mass, \(M_{AJ} = 8 \rho_0/\left[3\pi^2 r_N M(h/b/a)\right] \) (see Table I for definitions of the symbols used here and throughout the paper), according to Karal’s Eq. (52), with \(H(h/b/a) = 0.7^6 \).

The interface between the cavity and the top hole is modeled as an orifice with a resistance, \(R_{AOT} = \ln(4r_T/t)\sqrt{2\rho_0\omega\mu/(4S_T)} \), and a mass, \(M_{AOT} = \rho_0r_T^4/4 \), according to the expressions given by Morse and Ingard \([Eq. (9.1.23)]\) and Pierce \(\text{[Eq. (7-5.10)]} \), respectively. The interface between the cavity and the top hole is modeled with four T-networks in series, using four segments of the neck length and using the average surface area of those segments. The junction between the neck and the cavity is modeled as a mass, \(M_{AJ} = 8 \rho_0/\left[3\pi^2 r_N M(h/b/a)\right] \) (see Table I for definitions of the symbols used here and throughout the paper), according to Karal’s Eq. (52), with \(H(h/b/a) = 0.7^6 \).

The interface between the cavity and the top hole is modeled as an orifice with a resistance, \(R_{AOT} = \ln(4r_T/t)\sqrt{2\rho_0\omega\mu/(4S_T)} \), and a mass, \(M_{AOT} = \rho_0r_T^4/4 \), according to the expressions given by Morse and Ingard \([Eq. (9.1.23)]\) and Pierce \(\text{[Eq. (7-5.10)]} \), respectively. The interface between the cavity and the top hole is modeled with four T-networks in series, using four segments of the neck length and using the average surface area of those segments. The junction between the neck and the cavity is modeled as a mass, \(M_{AJ} = 8 \rho_0/\left[3\pi^2 r_N M(h/b/a)\right] \) (see Table I for definitions of the symbols used here and throughout the paper), according to Karal’s Eq. (52), with \(H(h/b/a) = 0.7^6 \).

The interface between the cavity and the top hole is modeled as an orifice with a resistance, \(R_{AOT} = \ln(4r_T/t)\sqrt{2\rho_0\omega\mu/(4S_T)} \), and a mass, \(M_{AOT} = \rho_0r_T^4/4 \), according to the expressions given by Morse and Ingard \([Eq. (9.1.23)]\) and Pierce \(\text{[Eq. (7-5.10)]} \), respectively. The interface between the cavity and the top hole is modeled with four T-networks in series, using four segments of the neck length and using the average surface area of those segments. The junction between the neck and the cavity is modeled as a mass, \(M_{AJ} = 8 \rho_0/\left[3\pi^2 r_N M(h/b/a)\right] \) (see Table I for definitions of the symbols used here and throughout the paper), according to Karal’s Eq. (52), with \(H(h/b/a) = 0.7^6 \).
\[Z_{12} = j \frac{\rho_0 c}{S_c} \tan \left(\frac{kl_c}{2} \right), \]

\[Z_{13} = R_{ART} + R_{AOT} + j \omega (M_{ART} + M_{AOT}). \]

The SOTO resonance, caused when the hand strikes the side hole and releases quickly, is determined by finding the impedance at the terminals labeled “a” in Fig. 4(b), then finding the point at which the imaginary part of this impedance (the reactance) goes to zero. The striking excitation creates a pulse of energy that travels down the neck (represented by impedances \(Z_1 \) through the first term of \(Z_{10} \)) and reaches the junction (represented by the second term in \(Z_{10} \)) at the acoustic cavity. Some of the energy resonates within the cavity (represented by the third term in \(Z_{10} \)), and some escapes through the top hole (represented by \(Z_{13} \)). Some of the initial energy also escapes out the side hole (represented by \(Z_1 \)) without traveling down the neck. The SOTO reactance goes to zero at \(f_{SOTO} = 141.3 \) Hz and represents a 3.1% error from the measured value of 137 Hz [see Fig. 2(a)].

The SOTC resonance is found by setting \(Z_1 = Z_2 = Z_{13} = 0 \) and determining the reactance presented to the terminals labeled “a” in Fig. 4(b). This resonance is similar to that of SOTO except that energy is prevented from escaping from the top hole. The SOTC reactance goes to zero at \(f_{SOTC} = 75.8 \) Hz and represents a 3.8% error from the measured value of 73 Hz [see Fig. 2(a)].

The SCTO resonance is found by determining the reactance presented to the terminals labeled “d” in Fig. 4(b) with the terminals labeled “b” open and by determining the frequency at which the reactance of this impedance equals zero. The SCTO reactance equals zero at \(f_{SCTO} = 113.8 \) Hz and represents a 0.7% error from the measured value of 115 Hz [see Fig. 2(a)].

The TOSO resonance is found by determining the reactance presented to the terminals labeled “d” in Fig. 4(b). The TOSO excitation should present the same resonator as the SOTO excitation. Indeed the TOSO reactance goes to zero at \(f_{TOSO} = 141.2 \) Hz (nearly identical to that found for \(f_{SOTO} \)) and represents a 3.0% error from the measured value of 137 Hz [see Fig. 2(b)].

The TCSO resonance is found by setting \(Z_1 = Z_2 = Z_{13} = 0 \) and determining the reactance presented to the terminals labeled “c” in Fig. 4(b). The TCSO excitation should present the same resonator as the SOTC excitation. Indeed the TCSO reaction goes to zero at \(f_{TCSO} = 75.8 \) Hz (identical to that found for \(f_{SOTC} \)) and represents a 3.8% error from the measured value of 74 Hz [see Fig. 2(b)].

\[R_{ART} = R_{AOT} = \sqrt{\frac{M_{ART} + M_{AOT}}{V}}, \]

\[C_{ART} = C_{AOT} = \sqrt{\frac{V}{\rho_0 c^2}}. \]

The reaction frequencies are predicted to within 3.8% error (average of 2.9% error). A circuit model with further complexities, such as dividing up the neck into smaller sections and dividing the large cavity up into sections could result in even higher accuracy. Perhaps the principal advantage of using the equivalent circuit models is that one may adjust an existing geometrical design of an instrument to optimally produce desired musical intervals, or one may design an entirely new type of Udu drum with desired musical intervals. For example, one could adjust the surface areas of the holes, length of the neck, and/or cavity volume of the Udu Utar in an attempt to adjust the musical intervals to the desired ones. With an accuracy of 3.8%, one may not be able to construct a new design with confidence that it will have the exact musical ratios desired. However, if one models an existing design and wishes to tweak the musical ratios, then the model may be used to determine relative changes in lengths, areas, or volumes required to change the musical ratios by the desired amounts.

As discussed in Sec. II, when one seals off the top hole with one hand and strikes (and releases) the side hole, the deep \(f_{SOTC} = 73 \text{ Hz} \) resonance is excited. However, as one slowly uncovers the top hole while simultaneously continuing to strike the side hole, the pitch increases. When the hand on the top hole is completely removed from covering the hole, a strike at the side hole produces a pitch of \(f_{SOTO} = 137 \text{ Hz} \). A spectrogram of a recorded demonstration of a couple full cycles of this dynamic pitch variation may be found in Fig. 3. A similar type of dynamic pitch variation may also be demonstrated using an pipe where one repeatedly strikes one end of the pipe and varies the degree to which the other end is sealed off, which is akin to exciting the open-closed fundamental resonance of the pipe up to the open-open resonance of the pipe. In the case of the Udu, the \(M_{ART} \) and \(M_{AOT} \) values increase from an open top hole condition to infinity when the top hole is closed, which results in \(Z_{13} \rightarrow \infty \) and hence prevents current from flowing into the \(Z_{12}, Z_{13} \) branch of the circuit.

D. Simplified dual opening Helmholtz Resonator

A simplified model of the Udu is dual opening Helmholtz resonator represented by an acoustic compliance, \(C = V/\rho_0 c^2 \), where \(V \) is the volume of the cavity, representing the cavity with two acoustic masses, \(M_1 = \rho_0 l_1/S_1 \) and \(M_2 = \rho_0 l_2/S_2 \), where \(l \) and \(S \) represent the length and surface area of the “pipe” opening, respectively, representing each of the two openings as shown in Fig. 5(a). For a basic two-opening Helmholtz resonator one would expect the Pythagorean relationship for the resonance with both openings exposed, \(f_2 = (1/2\pi) \sqrt{(M_1 + M_2)/(M_1 M_2 C)} \), to the two resonance frequencies produced when each of the two openings are individually sealed off, \(f_1 = (1/2\pi) \sqrt{1/(M_1 C)} \) and \(f_2 = (1/2\pi) \sqrt{1/(M_2 C)} \), such that \(f_2 = \sqrt{f_1^2 + f_2^2} \). The \(f_2 \) resonance is found by determining the impedance at the terminals labeled “a” in Fig. 5(b) with the terminals labeled “b” left open and by determining the frequency at which the reactance of this impedance equals zero. The \(f_1 \) resonance is found by determining the impedance at the terminals labeled “a” in Fig. 5(b) with the terminals labeled “b” left open and
by determining the frequency at which the reactance of this impedance equals zero.

If we define a quantity $\alpha = M_1/M_2 = (l_1S_2)/(l_2S_1)$ we can plot the frequency ratios $f_2/f_1 = \sqrt{\alpha}$ and $f_{12}/f_1 = \sqrt{\alpha + 1}$ so that we can design a simplified Udu to have musical intervals for these frequency ratios. Note that if $\alpha = 0$ then $f_{12} = f_1$, if $\alpha = 1$ then $f_2 = f_1$, and if $\alpha = \infty$ then $f_{12} = f_2$, none of which are musically useful utilizations of both openings. Here we assume that $M_1 > M_2$ and that one would start by choosing a fundamental frequency f_1 from which to design an Udu cavity and one hole opening. One might wish to view the relationships of the frequency ratios defined above in order to design the second hole opening as shown in Fig. 6. Note that if one selects $\alpha = 1.25$ the frequency ratios result in musical intervals of a second and a fifth relative to f_1, or if one selects $\alpha = 1.78$ the frequency ratios result in musical intervals of a fourth and a sixth. Further note that these frequency ratios are independent of the cavity volume, though the values for the frequencies themselves depend on the cavity volume. Figure 6 may be used to obtain a quick, rough estimate of the resonance frequencies that will result from a new type of Udu design based on the choice of lengths and surface areas of the ports and the volume of the cavity.

The Udu Utar resonance frequencies do not exactly agree with the Pythagorean relationship of the simplified model with, $f_{SOTO} = 137$ Hz whereas $\sqrt{f_{SOTO}^{2} + f_{SCTO}^{2}} = \sqrt{73^2 + 113^2}$ Hz = 134.5 Hz. This -1.8% error departure of this relationship for the Udu Utar is not large but the authors feel that this small departure is perhaps by chance. There are competing complexities in the differences between an idealized dual port Helmholtz resonator and the Utar that one encounters as one improves the equivalent circuit model shown in Fig. 6(b). Some of these complexities include the acoustic resistances in the advanced equivalent circuit model (which do in fact alter the resonance frequency values), the radiation mass loadings, and also the effects of orifice type impedance loadings presented by the relatively small hole openings on the Utar. The reader should note that despite the decent agreement in the relationship of the resonance frequencies of the Utar with the simplified model, the dual port Helmholtz resonator does not predict the actual resonance frequency values of the Utar to even within 100% error accuracy, with predicted values of $f_1 = 93$, $f_2 = 243$, and $f_{12} = 268$ Hz (compared to values of 73, 113, and 137 Hz), underscoring the need for the advanced circuit model.

E. Adjusting the model

In order to test the ability of the equivalent circuit model to predict changes to an Udu design we add water to the large cavity of the Utar as is sometimes done by musicians. When 1.00 L of water is added, we measure two of the resonance frequencies to shift up to values of $f_{SCTO} = 116.5$ Hz and $f_{SOTO} = 143.5$ Hz. The effective length between the neck junction and the top hole, l_C, remains the same when water is added but we must adjust the effective surface area of the cavity. Since the volume of the cavity, $V_C = S_C l_C$, we change S_C from a value of 0.041 m^2 to a value of 0.036 m^2 to account for the decrease in volume of the cavity by 1.00 L. The equivalent circuit model then predicts that $f_{SCTO} = 119.3$ Hz and $f_{SOTO} = 149.1$ Hz resulting in percent errors of 2.4% and 3.9%, respectively.

When 2.00 L of water are added, we shift S_C to a value of 0.032 m^2. The measured resonance frequencies with 2.00 L of water added shift upward further to values of $f_{SCTO} = 123.5$ Hz and $f_{SOTO} = 151.5$ Hz. We then predict resonance frequencies of $f_{SCTO} = 125.6$ Hz and $f_{SOTO} = 158.3$ Hz with the equivalent circuit model. This model is off by 1.7 and 4.5%, respectively.

Thus the model’s predicted resonance frequencies with added water in the cavity are not much larger than the model without the water added. While we may not be able to predict the actual frequency values with accuracy better than 4%, we can use the model to predict the relative resulting change. One way to analyze the model’s ability to make relative predictions is to determine the measured shifts in resonance frequencies as a ratio when water is added and
compare the measured shifts to the predicted shifts we calculate using the model when water is added. The shifts in the measured resonance frequencies when the 1.00 L of water is added are ratios of \(\frac{f^{1L}_{\text{SCTO}}}{f^{1L}_{\text{SCTO}}} = 1.03 \) and \(\frac{f^{1L}_{\text{SCTO}}}{f^{1L}_{\text{SCTO}}} = 1.04 \), and when 2.00 L of water is added the measured ratios are \(\frac{f^{1L}_{\text{SCTO}}}{f^{1L}_{\text{SCTO}}} = 1.09 \) and \(\frac{f^{1L}_{\text{SCTO}}}{f^{1L}_{\text{SCTO}}} = 1.11 \). The corresponding shifts predicted by the model for 1.00 L of added water are \(\frac{f^{1L}_{\text{SCTO}}}{f^{1L}_{\text{SCTO}}} = 1.05 \) and \(\frac{f^{1L}_{\text{SCTO}}}{f^{1L}_{\text{SCTO}}} = 1.06 \), and are \(\frac{f^{1L}_{\text{SCTO}}}{f^{1L}_{\text{SCTO}}} = 1.10 \) and \(\frac{f^{1L}_{\text{SCTO}}}{f^{1L}_{\text{SCTO}}} = 1.12 \) when 2.00 L of water is added. Thus the average measured shifts are 1.04 for 1 L and 1.10 for 2 L while the average calculated shifts are 1.05 for 1 L and 1.11 for 2 L, which is good agreement.

IV. IDIOPHONE RESONANCES

A. Acoustic measurements

As discussed in Sec. II, the Udu is not just an aerophone instrument but is also an idiophone instrument. A musician may take advantage of the rich amount of idiophone sounds by striking the Udu’s surface in various places to excite different relative amounts of various structural resonances of the instrument’s body. One of the more pronounced and musical idiophone sounds of the Udu Utar is made by striking the lip of the end of the instrument where the side hole is located. The resulting tone is similar to that of a cowbell tone. Acoustic recordings of the idiophone resonances produced by the Udu Utar were made in the anechoic chamber using the same equipment described in Sec. III.

Figure 7 displays measured spectra produced when the Udu struck in three different locations: at the cowbell location described above, a couple centimeters west (left) of the top hole, and a couple centimeters north (above) of the top hole. Note that in the spectrum for the cowbell tone that the lowest dominant partial is at 556 Hz (approximately C\(^\# \)) and there exists nearly harmonic partials at 1108 Hz (approximately C\(^\# \)) and at 1644 Hz (approximately G\(^\# \)). These nearly harmonic partials represent ratios of 1.99 and 2.96, respectively, and thus are slightly flat relative to perfect harmonic ratios. Note also the partial at 970 Hz (closet to B\(_3 \)), which is excited strongly by striking near the top hole (with a stronger response when striking to the west of the top hole). This partial has a near harmonic located at 1898 Hz (a ratio of 1.96 relative to the fundamental, nearly an octave above 970 Hz). Thus when one needs more cowbell and strikes the lip of the side hole, a nearly harmonic tone is produced with a fundamental frequency of 556 Hz, while the response at 970 Hz is greatly reduced. When one strikes near the top hole a higher pitched tone results with a fundamental frequency of 970 Hz, while the response at 556 Hz is greatly reduced. Hence the striking location greatly influences the pitch and tonal quality of the idiophone resonances.

B. Scanning laser vibrometer measurements

In order to better understand the structural modes of the Udu Utar that contribute to the tones described in Sec. IV A, a Polytec Scanning Laser Doppler Vibrometer (SLDV) PSV-400 was employed. A LDS Shaker V203, with the shaker’s stinger affixed with bees wax to the underneath side of the side hole lip, was used to drive the Udu at selected resonance frequencies determined from Fig. 7 with a peak to peak voltage amplitude of 500 mV. The sensitivity of the SLDV was adjusted as appropriate to optimize the digitization of the acquired signals. A 3200 Hz bandwidth with 1600 lines of resolution was used along with five complex FFT averages, and a 20 Hz high pass filter. A rectangular grid of scan points was made up of 391 total points (25 by 17) with 218 of those points on the surface of the Utar. Small pieces of reflective tape were placed at each of the scan point locations to optimize the reflectivity of the incident laser signal, and to account for the surface contour variations away from normal incidence. The Udu was driven at frequencies of 556 (C\(^\# \)), 970 (B\(_3 \)), 1108 (C\(^\# \)), 1378 (F\(_5 \)), 1470 (B\(_5 \)), and 1644 (G\(^\# \)) Hz corresponding to most of the dominant resonance frequency peaks in Fig. 7 (the peaks denoted with arrows in Fig. 7).

Figure 8 displays images obtained from the six SLDV measurements. These images represent snapshots in time of the spatial distribution of the surface velocity when the mode reached a maximum in amplitude. Note that while considered not important here (we are interested in the modal shapes only), the velocities displayed in Fig. 8 are only a component of the total out of plane surface velocity at each scan point (a component in the direction of the laser), since not all scan points were on surfaces normal to the laser’s incidence angle. Lines have been drawn onto these modal images to aid visualization of the nodal lines, along with + and – symbols to denote antinodes of relative phases of positive and negative, respectively. The instantaneous velocities are given in units of mm/s. Note that the mode shapes indicate why different modes are more or less strongly excited when the Udu is struck at different locations. For example, the 566 Hz mode [Fig. 8(a)], is strongly excited when struck at the side hole lip due to the presence of the antinode, while it is minimally excited when struck just west of the top hole and hardly excited when struck just north of the top hole, due to the proximity of these striking locations to a node (refer to Fig. 7 to verify the relative strengths of exciting the 566 Hz mode at these striking locations). A similar visual analysis can be made for each of the modes displayed in Fig. 8, and their corresponding levels in the sound spectra displayed in Fig. 7, to note their dependencies on striking location and the proximity of the striking location to the nodes.

FIG. 7. (Color online) Frequency spectra of the sound produced by idiophone resonances of the Udu Utar drum: (a) when struck at the cowbell, (b) when struck north of the top hole, and (c) when struck west of the top hole (north and west striking locations are identified in Fig. 1).
C. Discussion

Knowledge of the modal patterns of the Udu Utar with their corresponding resonance frequencies can assist the musician in learning where to strike the instrument to achieve tones with harmonic overtones. A player typically must find sweet spots, or striking locations that produce musical tones, on the instrument through practice.

The designer of this particular Udu Utar drum spent 2–4 years designing and developing new Udu designs, one of which was the Utar, that “sounded right” to him based on years of experience in both playing and designing Udu drums. Designers do not currently utilize models or measurements to shape the drum and instead rely on their experience with various designs. Designers of the instrument can also benefit from this modal analysis information as they can potentially modify future designs by adding or removing some of the wall material in certain locations in order to tune the instrument as is commonly done for xylophones and marimbas when their bars are undercut to achieve nearly harmonic tuning of upper partial frequencies. It is interesting to note that the designer of the Udu Utar was able to produce a handmade instrument that possesses musically spaced resonance frequencies without the use of a model.

V. CONCLUSIONS

It has been shown that the deep aerophone resonances of the Udu Utar drum may be predicted using electrical equivalent circuit modeling techniques. This may aid an instrument designer in adjusting the design of an Udu drum to result in desired musical intervals for its principal aerophone resonances. The unique ability to produce the full spectrum of tones between the lowest and highest principal resonances by varying the end condition of one of the holes has also been explained. A simplified model of the Utar has been shown, which may be used as a rough starting point for designing a newly shaped Udu. Finally, an example has been given when the model may be adjusted to predict relative changes in the Udu’s tones when the instrument’s geometry is changed.

The idiophone resonance frequencies of the Udu Utar have been found to occur nearly at musical intervals. The modes that correspond to these resonance frequencies have been measured with a scanning laser vibrometer. Visual analysis of the modal patterns allows one to determine the strength of these resonance frequencies in the radiation spectra. Knowledge of these modal patterns may aid a musician in learning how to produce musical tones with harmonic upper partials, and they may aid an instrument designer in determining how the thickness of the Udu walls may be slightly modified to fine tune these resonance frequencies.

ACKNOWLEDGMENTS

We note that the word “Udu” is a registered trademark in the United States owned by Frank Giorgini. The authors...
also wish to thank Timothy Leishman for circuit modeling suggestions. They also wish to thank Hillary Jones, Benjamin Christensen, and Blaine Harker for their assistance in making some of the measurements used in this paper.

5W. P. Mason, Electromechanical Transducers and Wave Filters (Van Nostrand, New York, 1942), pp. 204, 205.