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The transfer of excitation in a dimer is treated as a resonance, using Feshbach's nuclear
reaction formalism. The radiation field-matter interaction is treated simultaneously with
the intermonomeric potential. This gives a unified point of view and allows one to see what
the interference effects are. The Forster vibrational-relaxation mechanism and the Frenkel
exciton are studied for the dimers, and explicit expressions for the decay probability are
obtained.

I. INTRODUCTION

Excitation transfer in dimers ean be under-
stood as a nonradiative transition process. As
such, it is extremely difficult to detect directly
in an experiment. What is observed instead is
the molecular luminescence. Thus, R thorough
study of the radiative processes in dimers should
show the features of excitation transfer. From a
theoretical point of view, both potentials which
cause radiative decay and excitation transfer
should be treated on an equal basis. Essentially,
it is the intermolecular interaction in the dimer
which produces the excitation transfer, and the
radiation field-matter interaction which causes the

fluorescence decay. Up to now, the two mecha-
nisms have always been separated, and the exci-
tation transfer has been studied considering only
the intermolecular interaction.

The excitation transfer in molecular dimers
has been studied, introducing simplifying assump-
tions: Each of the lnterRetlng moleeules ls R

system of two levels; one is the ground state and
the other is the considered excited state. Further-
more when each of the monomers ls individually
electronically excited, there is only one vibra-
tional mode Q of the molecule which is perturbed
by the electronic excitation.

Depending on the importance of the interaction
between the two Dlolecules composing a dimer
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there are several types of energy transfer be-
tween them. Consider first the case, where the
intermolecular distance is such that the energy
associated with the interaction between the mono-
mers is roughly of the same order as the separa-
tion between the monomeric vibrational levels.
In this case, called the Frenkel excitation case,
if the two interacting molecules are identical, the
electronic excitation is delocalized over both
molecules, ' and two different situations may
arise. (a) The energy associated with the inter-
molecular interaction is smaller than the energy
E, necessary to deform the equilibrium nuclear
configuration QD of the ground electronic state of
the monomer in order to obtain the nuclear equi-
librium configuration @0+A, of the considered
monomeric excited state: Here, even if the elec-
tronic excitation is delocalized over both interact-
ing subunits, its localization is very sensitive to
a deformation -X of the normal mode Q, which
can produce trapping or expulsion of the electron-
ic excitation depending on whether or not the de-
formation is towards the equilibrium nuclear con-
figuration of the electronic excited state of the de-
formed monomer. (b) When the energy of the in-
termolecular interaction is larger than E» the ex-
citation is still delocalized, even if a change of the
order of a is effected on the normal mode Q of one
of the monomers.

This Frenkel case, described above, corre-
sponds to values of the intermolecular interaction
parameter which are limited to two cases: that of
strong intermolecular interaction, where a differ-
ent kind of excitation transfer occurs, called the
Wannier exciton case; and that of weak inter-
molecular interactions with the type of excitation
transfer called a Forster exciton.

The Wannier exciton case, which was first de-
fined in crystals, can be visualized for dimers in
the following way: As the interaction between the
molecules becomes more and more important, i. e. ,
when the intermolecular distance becomes of the
order of intramolecular distances, one can arrive
at a situation where the molecular orbitals centered
on different monomers overlap each other. In this
event, the contribution to the dimeric wave func-
tions coming from charge-transfer wave functions
becomes sizeable. ' These charge-transfer wave
functions correspond to removing one electron
from an occupied orbital on one molecule to a
virtual orbital on the neighboring molecule.

In Forster's case of excitation transfer, the
intermolecular interaction is so small with re-
spect to the monomeric vibrational energy separa-
tions that a stationary description of the excited
dimeric states is no longer realistic, and, thus, a
dynamical description is necessary: In this case,

The Hamiltonian for the dimer includes the mo-
lecular Hamiltonians of the monomers A and &
plus the intermolecular interaction H». Thus,
the total Hamiltonian for the field-dimer system
wiQ be

H = H~+ H~+ H~~+ H~+ Hfm

where H, and H, are the radiation-field Hamilto-
nian and the field-matter interaction terms, re-
spectively We sep.arate (l) into two parts:

Ho= Hao+ H'so+ HA

V= T@+Hg~+Hq

(2a)

(2b)

where H0 includes the Born-Oppenheimer terms
of the monomers (the electronic kinetic-energy
operators and the potential interactions within all
the particles composing each molecule) and the
free-field Hamiltonian, and where V contains the
nuclear kinetic operators of A. and 8, the inter-

the excitation transfer is so slow that vibrational
relaxation on each excited monomer might occur
in the meantime.

We shall study here Frenkel's and Forster's
exciton transfers in dimers. The first case, as
we have just discussed, corresponds to a station-
ary description of the dimeric excited state, al-
though a dynamical description can also be formu-
lated. ' However, the stationary approach seems
to be the more realistic one for the Frenkel ex-
citon case. Henry and Kasha have discussed this
in detail, presenting a stationary description of
the radiationless transitions in molecules. This
can be generalized to the dimeric case.

We consider an excited dimer as a compound
system of the dimer and the impinging photon
which has caused the excitation. As such, it is
possible to follow decay through the open channels.
The channels considered are radiative decay and
excitation transfer. In other words, we look at
the exciton as a resonance in this compound sys-
tem, and we study the possible decay channels.
Recently, a similar point of view has been applied
to the radiationless transitions of polyatomic
molecules. ' " We shall closely follow the ap-
proach suggested by Feshbach' ' to treat reso-
nances in compound systems.

It should be pointed out here that the qualitative
features of the way the resonances decay for the
different types of exciton can be traced to the
exact formulation. However, in order to attain
quantitative results, a simplified model for the
dimer is assumed, and the integrals appearing in
the expressions are approximated, disregarding
some minor terms as well.

II. FORMAL DERIVATION
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molecular interaction energy operator H», and
the field-matter interaction term II, .

We next pick up the open decay channels using
a projection operator P and separate the Schro-
dinger equation into tmo coupled equations:

(E -PHP)P( = PHQ{Q$)

(E- QHQ)Q& = QHP(P4),

(Sa)

(Sb)

Moreover, upon defining

QW(E)Q= QHP(E'-PHP) PHQ, (10)

QII = (E - QHQ —QWQ) QHPgI'

Tile E 8'tRIlds fol' llm~a+(E+IIl) Rlld 18 needed
in inverting Eq. (Sa), because P contains the open
channels. Finally, substituting (11) into (V), we
obtain

I',"I' = (y, PHQ(E-QHQ —QWQ) QHP yI'&, (l2)

while the wave function P4 is obtained from (8)
and (11):

where Q is a projection operator orthogonal to P,
which mill eventually select the proper resonance.
The following equation is immediately obtained for
P o

[E-PHP -PHQ(E- QHQ) QHP]P4 =0 . (4)

Because P contains the open channels, we can de-
fine the incoming and outgoing waves for PHP as
as the solutions of the homogeneous equation:

(E -PHP)q'=0

Thus, we can write an expression for the tran-
sition amplitude

~„=~„+(», PHQ(E -QHQ)-'QHP jPy, & (6)

by looking at Ell. (4) as a double potential equation
for Pg and using Gell-Mann and Goldberger's for-
mula. The first term ls the direct or prompt-
process term, which we disregard, while the sec-
ond is the resonant or time-delayed-process term,

wllicll, by 118111g Eq. (Sb), we CRII wl'lte Rs

( f)

In order to eliminate the unknown functions Pg
and QP~ we start from a formal solution of the in-
homogeneous elluation (Sa):

P4;= X,'+(E'-PEP)-'PHQg; (3)

and with the help of (3b) we get

Q q, = (E QHQ) 'QHP[P-X,'+ P(E" PHP) '-PHQ4, -]

~,=IP(s~ VP(E-PHP) 'PVts)

1".=2II~I &'I vPIXI & I pI

(16a)

(16b)

thus, 5' is just a complex constant, and the main
8111gularlty 111 'tile 'tl'Rllsi'tloll 111Rtl'lx (12) 18 R slnlple
complex pole. This means that I 8 &is a metastable
state which will undergo an exponential decay of
total midth I',. A slight deviation from the ex-
ponential law comes from the branch cut owing to
the continuum spectrum. As its contribution is
negligible, ' we shall not worry about it. Radi-
ative decay falls into this category. A more in-
teresting example is radiationless transitions in
the statistical limit' '"' ' where the radiative
decay defines one channel, and the quasicontinuum
of vibrational states, degenerate with the excited
state 8, opens a nonradiative channel. Vfe shall
actually see in Sec. III that Forster's form of ex-
citation transfer is also included in this case.

(b) P consists of two projectors, one given by
a continuum of states of density p, the other de-
fined by an isolated state p., quasidegenerate with the
excitedstate s. In this case, W in (14) will de-
pend explicitly on the energy. Its imaginary part

lm&slwls& =-vl &sl VPI»l'p

kI'„ I (sI VPI II &I

(E —E„)'+—,'r'„
where 1"~ is the relaxation width of the isolated
state. When we substitute this expression for 8'
into {12), we note that two complex poles occur,

Ptj'I =XI+P(E-PHP) PHQ(E-QHQ-QWQ) QHPq& .
(13)

Vfe clearly see in (12) that a resonance will ap-
pear at the singular points of the matrix element
as a function of E. Thus, we are interested in the
matrix elements of W. For a single resonant state
s, we can write Q= Is & (s I, and from (10) we
have

&s~W~s&= &8 VP(E -PHP)-'PVts &,
if P commutes with Ho. Depending on the nature
of the decay channels, several possibilities arise.
We analyze two cases.

(a) The projector P consists of a sum of n pro-
jectors, each projecting into a continuum of states
defined by a constant density of states p,. In this
event, we can separate the right-hand side of (14)
into real and imaginary parts' "by taking the
limit q 0':

(Si WiS )=~, -l(-,'1'8), (i5)
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which cause the appearance of interference terms
in the decay. We shall see in Sec. Iy that this
is the case for the Frenkel exciton, and that the
interference terms are oscillatory.

We now see the advantages of this formulation.
No model has been assumed up to this point, and
we can treat both decay channels at the same time.
It is clearly seen that the main features of our
treatment are model independent, although in order
to obtain quantitative results, it is convenient to
make some approximations.

III. FORSTER EXCITATION TRANSFER

We shall assume that a single level is excited,
from which the decay will take place. In Forster's
case, the coupling between the monomers is so
weak that we can safely assume that one of the
monomers A is excited. The two open decay
channels will thus radiative decay into the dimer
ground state or radiationless transfer to the other
monomer 8:

~=~.10 &&0 I+ ll~&&lul .
The functions IOv ) are eigenstates of H~, and

they stand for the Born-Oppenheimer ground state
times the one-photon states (of frequency k and
polarization e implicitly assumed). The index v

labels the vibronic functions. This channel cor-
responds to one-photon process, i. e. , radiative
decay. The function I 1i1 ) is a singly excited B
function times a ground-state A function, with vi-
bronic quantum number p, times a zero-photon
state.

The eharacteristie feature of Forster's excita-
tion transfer is that the coupling between the mono-
mers is so weak that vibrational relaxation might
take place before excitation transfer. However,
this coupling is large enough to produce an excita-
tion transfer by resonance interaction and not by

simple reemission of the absorbed photon. The
fact that vibrational relaxation takes place before
excitation can be expressed in a different way, by

saying that the vibronie levels have a finite life-
time or have a large bandwidth. In this case, dif-
ferent vibronic levels will overlap, and we can con-
sider the transfer as a transition to a quasicontin-
uum of density (he}, where De is the vibronic
bandwidth (we use natural units in which Fi = 1).

Assuming the state [s& to be a simple Born-
Oppenheimer product times a no-photon state, we

get a total width given by Eq. (16b) after substitut-

ing the definitions of V, [Eq. (2b)] and P [Eq. (17)l:

F F QQ+ Fggl

I'~ is the usual radiative width ' given by

I', =2~p„g„l &slB, lov&l'

where we have allowed radiative decay into several
vibrational levels of the ground state O. The other
term I'„ in (18), is the excitation transfer rate

I"„=(211/b, e)
l

&A*BR
l II„s+T„l»*P)l , . (20)

In this weak-coupling ease, we can consider that
the excited vibronic functions are centered, re-
spectively, on each of the monomers (see Ref. 5

for further details), so that

l~*»&= q(q. ,q. )&(qs, qs)x. (Q.)x„(qs}, (2»)
l»*~& = «q~ Q~) 4(q„q.)x.(q~}x.(Q.),

where the P's represent electronic wave functions
depending on both the electronic coordinate q and
the nuclear coordinate Q, and where the X's repre-
sent vibrational functions depending only on nucle-
ar coordinates.

If we consider only the internal modes of vibra-
tion within each molecule, the operator T~ of the
dimer will be the sum of the nuclear kinetic-energy
operators T„" and Tv of the molecules A and B. In
this case, 1'„will not contribute to the matrix ele-
ment appearing in (20) because g(q, Q) and g(q, Q)
are orthogonal to each other for either monomer A or
8, Then, if we first integrate the matrix element ap-
pearing in (20) over the electronic coordinates, we
get for the excitation transfer rate the following
expression:

I"„={211/~e)V'(Q, )S.'„-=(2~/~~)s'.„, {241

s..=[x,(q.) lx.(q )l „=[a.(q }lx,(q.)].,
are the Franck-Condon factors and Qo represents
the set of nuclear coordinates describing the nuclei

I', = —,[x.(q }x.(q )l~(q)lx. (q.(x.(q &l I' (22)

where

~(q) = [t(q.,q„)t(q„q,) l B„,l q(q„, q„&pq. q, )l
(23)

In both expressions the symbol []s stands for inte
grat1011 ovel' tile 8 coordinate' q and Q 1'epresent
the electronic and nuclear coordinates, respective-
ly. The intermolecular interaction operator H»
depends on both q and Q coordinates. Further-
more, the dependence of Hgg on Q coordinates ean
be divided in two parts, namely, the intramolecular
nuclear coordinates and the intermolecular ones.
Thus, if the monomers are considered to be sepa-
rated by a fixed large distance with respect to the
intramolecular distances within each monomer,
H~z may be thought of as depending strongly on the
electronic coordinates but weakly on the nuclear
ones. In this case, the expression (22) can be
written in the following form:
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positions when they are at their equilibrium con-
figuration for a given intermolecular distance.

Without going into statistical considerations, we
follow Forster arguments ' and introduce the
Boltzmann factor g, so that we have

I"„=(2v/h~)Z, Z g~~,u,'„ (26)

%e see that in the Forster case we have an ad-
ditive law for the widths of the radiative decay and

the excitation transfer following an exponential law.
It is thus an irreversible process. Even if we
obtain the same transfer rate as Forster' for the
excitation transfer, we note that the linear varia-
tion with the time which he gets, typical of a per-
turbatlon expansion~ ls just R fix'st approxima-
tion to the exponential law.

If we now analyze more closely the imaginary
part of W, [EII. (15')] we find for the nonradiative
part

Im(s
~

W~ s)„=—,'I"u /[(E —e') + (—,'I")2]

where I" is the natural width of a single vibronic
level (h&). According to what was stated above,
in the Forster case we have a broad electronic
level, so that g «(—,'I"), i. e. , 2 )g [ «6&.

+~2(q.,q.)4(a., q. ) j(q., q.). (28)

With H» as perturbation, we obtain explicit ex-
pressions for the coefficients C; and C2, and the
electronic energies E', when the following as-
sumptions are lDtx'oduced ' ', The gx'ouIld- Rnd

excited-state potential energies are hax"monic with
the same force constant k, and the equilibrium
positions Q and Q +X, respectively. The inter-
molecular interaction is considered to depend only
on the intermolecular distance B. Kith these as-
sumptions the dimeric electronic energies become"

E'(q' q ) = I'2 + W(R)+ -'~(q" + q ') -(r ~2 "')q'

+ 2)IX + 2 [)'2 & Q +2v2(R)]I~2 (28)

Q =2"'(Q.-q.)

and Vo~ is the vertical excitation energy on each
monomer.

The mixing coefficients of the electronic wave
functions (28) are given by"

C'I(q ) = v[u2X'(q )'~ uzq
~

A2Q-2+ 2v2(R) ~'"

There are two essential differences between the
Forster case and the Frenkel exciton transfex'.
First, the final level of the nonradiative decay
channel is a sharp one, because the excitonic
transfer is expected to be faster than the vibra-
tional relaxation; second, we can no longer con-
sider the initial electronic excitation as going to
a single monomer. This means that we have to
account for the degeneracy of the states A*8 and
AB* in the resonance state s, as well as in the
open channels projection operator.

In order to construct the resonance state s, we
use a form of the usual Born-Oppenheimer ap-
proach applied to the dimers. ' It has been shown

that this approach retains its validity, at least in
the strong- and intermediate-coupling cases. And
it may also be valid in the weak-coupling case for
an increasing number of vibronic levels, since
the exciton binding energy becomes several times
larger than the vibrational enelgy separation on
each monomer, ' The method consists in solving
first the electronic problem, i.e. , with a Hamil-
tonian obtained from (1), disregarding the free-
fleld Hamiltonian H the field-matter interaction
term Il, , and the kinetic energy of both monomers
A and B. In this case, the states A*B and AB*
are degenerate, so the electronic wave function is
chosen to be of the form

e'(a Q) = ~;(q., q.) &(e.,q.) ~(q., q.)

+ 2v2(R)]I/2

&2(q ) =+ &I(- Q )

(31)

(32)

The total wave functions are obtained by multi-
plying the electronic wave functions (28) by the
vibrational functions separable in the in-phase
and out-phase combinations of Q„and Qs "":

:",.(Q', Q ) = $„(q')y,'„(Q )

In (33), y'„(Q") are vibrational wave functions as-
sociated with two potential energies which depend
on the intermolecular coupling v(R), while $„(q')
is simply a displaced harmonic-oscillator wave
function, which does not depend on v(R) and obeys
the same equation in the two dimeric electronic
state. The Born-Oppenheimer wave functions of
the excited dimer can therefore be written as

g.(a Q', q ) = P'(a Q', Q ) =",.(Q', Q )

It should be pointed out that, as far as the Born-
Oppenheimer approach is concerned, the preced-
ing wave function adapts itself to diQerent values
of the intermolecular coupling. The electronic
WRve fullctloll ls adapted to each VRlue of v(R)
through the coefficients C& and Ca, and the vibra-
tional functions (33) are adapted through the de-
pendence on v(R) on the electronic potentials.

Re consider that in the Frenkel exciton case the
resonant state s is one of the normalized functions
(34), namely
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I
s) = [c,'(Q ) iI(q„, Q„)g(qs, Qe)

+ C2(Q )4(qA~QA)4(qs&Qa)]$ g'(Q )X~ (Q )~ (35)

and the state I 1p) is given by the orthogonal one:

I») = ~&~(Q )«q. Q&)~(qs Q&)

+ C, (Q )P(q„,Q„)g(qs, Qs)]$„(Q )X„(Q ), (36)

where the parentheses indicate that we are deal-
ing only with the molecular part of the state.

The Born-Oppenheimer state (35), which is a
nonstationary state of the Hamiltonian (1), may be
prepared by a broad-band optical excitation. This
resonant state Is) of the upper potential (Fig. 1)
is near the state Ilp) belonging to the lower ex-
cited electronic potential, which appears as a dou-
ble-well potential in Fig. 1, where we illustrate a
weak-coupling case. For the intermediate- and
strong-coupling cases, the main difference with

respect to the preceding case is that the state i lv, )

should belong to a single-well potential and should
correspond to a higher vibrationally excited state
in order to be near one of the upper potential
levels. In the three cases of weak, intermediate,
and strong coupling, the state I 1p, ) may correspond
to a highly vibrationally excited level, and will be
practically forbidden for transitions from the
ground vibronic state because of their small Franck-
Condon factors. Thus, the preparation of the
dimer in the resonant state Is) is favored by the
Franck-Condon factor, because Is) can be one of

E+ non radiativer decay

the lower-lying vibronic levels of the upper poten-
tial, and this preparation can be obtained by an
instantaneous flash of incoherent light impinging
on the dimers. Assuming that only the Born-
Oppenheimer state I s) carries dipole strength, in
this broad-band case, we can regard the state Is)
as fully excited, '6 and we can denote it as Is) Ivac)
after excitation. The radiative decay will thus
proceed from Is) to the one-photon electronic
ground state IOv;ke), where we write explicitly
the wave vector k and the polarization e of the
emitted photon.

The interaction term between (35) and (36) is

u=(sIT, I1I ), (3'7)

E,~
= (s

I
Qe 'P

I
Ov)

because (35) and (36) are Born-Oppenheimer wave

functions and (3V) produces the vibronic mixing be-
tween the two. ' Note that now the interaction be-
tween the resonant states Is) and I 1 p) does not

arise, as in the Forster exciton case, from the
intermolecular interaction. It appears from the
deviation of the true stationary-state wave func-
tions from those of the usual Born-Oppenheimer
approximation. Here, as we shall see later, we

take into account the vibronic correction, which

gives the exact dimeric total wave functions, as
a perturbation leading to a time-dependent formal-
ism. In this sense, there is a parallelism be-
tween this approach for dimers and Lin's treat-
ment for the radiationless transitions in molec-
ules. "

We shall next obtain an explicit expression for
the radiative decay rate of the resonance state

I s). Thus, we shall concentrate on the partial
process of transition from Is) to the one-photon

ground state. The transition amplitude is given
15, 18' 19

= (2mi)
' J (e

I
Q(E H) 'P Ov) e ~1' -dE, (38)

radiative

ound-state

the imaginary Laplace transform of the resolvent,
where 6 is a contour extending from ic+ ~ to ic —~,
with c a positive constant large enough so that no

singularities of the resolvent lie above g .
From the Lippmann-Schwinger equation (13), we

can extract an explicit expression for P(E —H) 'Q:

P(E-H) Q = P(E-PHP) PHQ(E-QHQ-QWQ) Q

(39)
where E is now regarded as a complex variable.
Using Eq. (39), we can write

FIG. 1. The upper E' and the lower E- electronic
dimeric potentials in the weak-coupling case. The ex-
citation oscillates between J s) and I 1 u) which belong
to E' and E-, respectively.

&OvlP(E'-H)-'Q s) =(E-E -~) '(OvlHf Is)

~ LE-E,+-,'ir„u'/(E-E. +-,'ir„')]-',-
(4o)
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grhere Eo is the molecular ground energy, and gre

have incorporated the radiative level shift into E, .
I ~ ls the radiative lifetime (19). The matrix ele-
ment of H, grill be simply the electric dipole ma-
trix element between ivac) and Ik, e), and is al-
most constant. 0"

In order to evaluate the integral in (38), we note
that this matrix element has tgro complex poles at
the energies

~,= —,'{~--',tr~f[z, —z„-~(r„-r„)]'+4u'P~)

I'= I'„+F~

Laplace transforming Eq. (40), we get

(0~~fftm~ )s ~+ Zu+ 2~ r))@-f(so+)))t( I e k{&,-so-))))),
A., -A. 80+k -A,

.{) +*' ~-If)I;))){{ ~-I)A -R)-))))) {44)
Eo+0 -A.

The f'gÃggN58 decRy probability ls Qo%' given by

= fly pZvy p (41)
d P(t) =dp„dk iEo, i (45)

&=E,+E„,
and integrating over the frequenciesdk and the prop-
RgRtlon directions 4Q» we get

I'„
(a.-s )'+4(&.-& )'

(s.-Z, )'+4(&.-r.)'
(1 -),,)),(&--Z~)'-~(&--r. )' (I, ~))

{x,-a*).2R. -'(~ -z .—."I )
"--z (46)

which contains two direct terms and an interference
term. As the levels E, and E„are almost degen-
erate (Fig. 1), for a sharp resonance we can ex-
pand the square root in Eq. (14) as

(47)

Expression (46) simplifies to (Fig. 2)

I (t) = I 'r„(I-e-"")—[r„/2(4s'+-,'r')]

x [-,'r(I-e ""cos2ut)+2ue r'"sin2ut] . (48)

This expression for the radiative decay shows two
competitive processes: One is the normal exponen-
tial decay, while the other one is the oscillatory
excitation transfer between the states Is) and l1))).
Inspection of Eq. (48) yields the frequency with
which the excitation oscillates:

Oppenheimer separability applies to the states of
each monomer involved in the resonance trans-

1-3,21

If we calculate the expression (3V) for R, taking
into account the equations (35), (36), and (50), and
integrating only over the electronic coordinates,
we find

~= J c;(q )&..(q')x.' (q )T.c,(q )&.(Q')x.(q )dq'dq

+ J ci(q )], (q')x', (q ) r c (q )

«.(Q')x, (q )dq'dq,
where the kinetic-energy operator T„can be writ-
teQ 1Q terms of the 1Q- Rnd out-of-phRse cool d1

nates, as follows:

Finally, we shall examine some properties of the
coupling term u. Yo this end, we obtain RQ explic-
it expression for this term. First, we consider
that the adiabaticity of the electronic wave function
(28) resides only on the coefficients C,' and C;,"
1.e. ,

[T,~{e,q We, q )]=[T,t(e .q )4(e, q )1=o
(50)

wh1ch ls equlvRleQt to the assumption thRt the Born-

Because the electronic potentials depending on the
Q coordinatea~ are invariant under reflection Q

-Q, the vibrational functions x'„(Q ) are even or
odd depending on the value of the quantum number
) . Thus, taking into account Eq. (32) and (52),
relation (51) becomes

= [1 (-1)"'"'"][f&;(Q')7'$.(q')dq"

~ Jc;(Q)x.'(Q)x, (q)c (q)tq
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e &2 &s 2O

I 7

„P{t)
I '+16u .

(b) When v+ v ls odds both vlbl'a'tloIlal 111odes Q
and Q contribute to the frequency with which the
transfer of excitation between Is) and I ly) occurs.
(c) The second term in (53), in which a matrix
element of the out-of-phase vibration nuclear ki-
netic operator appears, becomes important in the
weak-coupling case. In this event, the dimeric
electronic wave functions (28) depend strongly on
the nuclear coordinates near q =0; the coefficients
C'I(Q ) and Cz(Q ), when the intermolecular cou-
pling tends to 0, become step functions centered at
Q =0. ' The corresponding derivatives might
assume important values near Q =0, thus pro-
ducing large values of p, . This implies a. high-fre-
quency oscillation between the two quasidegenerate
states Is) and I III) of the same quantum number
related to the in-phase vibrations of the dixner.

V. CONCLUSIONS

2O ut

FIG. 2. (a) Contribution from the interference term
to Eq. (48). It is a damped oscillation of frequency 7(' 'I.
(b) The radiation transition probability, Eq. (48). The
effect of the excitonic oscillahon reflects as inflection
points at times v, 2v, ... . Dashed line denotes the
normal exponential with asymptote I"„jI'. All graphs
are plotted for a value I'=

2 g.

+ 5..J Cl(Q )X' (9 )T X.(Q )C (Q )dQ ] (53)

Inspection of this equation reveals the following
properties of u'. (a) It vanishes when the inter-
acting states Is) and IlII) have vibrational func-
tions X'„,(Q ) and y„(Q ), respectively, which are
both even or odd. This is in agr eement with the
correlation energy diagram discussed in Ref. 21.

Studying the whole scattering process of a photon
impinging on a dimer, we have been able to inter-
pret, in the Forster exciton case, the excitonic
transfer as a decay process of a compound state.
Moreover, we found an exponential decay law where
the radiative and nonradiative widths are additive.

In the Frenkel exciton case, we constructed adia-
batic Born-Oppenheimer wave functions which take
into account the intermolecular interaction. The
exciton transfer is thus hidden by a quasistationary
description of the excited dimer. Here, the inter-
action between two quasidegenerate Born-Oppen-
heimer states, produced by the vibronic correc-
tions, induces a damped oscillatorytransfer between
them. This is in competition with the radiative de-
cay to the ground state, the two process being cou-
pled to each other. The frequency with which the
excitation oscillates between the two excited Born-
Oppenheimer states depends drastically upon the
parity of these functions. Furthermore, in weak-
coupling cases, this frequency is larger for inter-
acting states with equal II (which is the vibrational
quantum number associated with the in-phase di-
meric vibrations) than for states with different p. .
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The mean life of the metastable 2 P~ state of the 0+ ion has been determined by measuring

the decay length of the 1 So-2 P~ 5,21.8) radiation emerging from a 20-MeV beam of highly

stripped oxygen ions. The result is v' = (6.6+0.5) @10 sec which compares favorably vnth

our earlier measurement of (6+1)&10 sec . Mixing of singlet levels above m=2, a feature
of some recent calculations of this lifetime, is needed to bring about overlap of theoretical
and experimental results. Additional information concerning excitation of one- and bvo-

electron ions in such beams is presented.

I. INTRODUCTION

Spin-orbit lnteractlons ln atoms I1ave long been
known to couple levels of different electronic spin.
In light atoms, such as helium, the consequent vi-
olation of I8 coupling is small; but in two-electron
systems of higher Z, the violation is much en-
hanced. It is the increased strength of the spin-
orbit interactions which obscures the clear separa-
tion of singlet and triplet systems. The spin-orbit
interactions a,re stronger because the electrons are
pulled in to substantially smaller radii and have
higher velocities. For excited levels of sufficient-
ly high Z, there then occur a variety of situations
in which a radiative decay channel involving a spin
flip is more probable than any which conserve spin.
Such so-caGed intercombination transitions are
common for heavy atoms, the best known, perhaps,
being the one which yields the X253V resonance line
of Hg.

A case in point is the 1'80-2 3P& transition in he].-
iumlike ions, which begins to dominate the compet-
ing 2 S,-2 P, transition for g ~ V. The spin-orbit
interactions admix the 2 'P, state with the O'P&

state (and to a lesser extent admix higher singlet
P states); the over-all transition probability can
then be calculated approximately from the allowed
singlet P-state transition probabilities, weighted
by the corresponding percentage admixtures in the
wave function. The 2 Po ~ states decay within the
triplet system since transitions to the ground state
are folbldden by the selection x"ules on J.

Within the error limits of oux' eal lier expex'l-
ments, ' and taking the smaller, allowed 2 8,-2 P,
transition probabilities as known to good accuracy,
agreement was obtained with the calculations of El-
ton and the more recent ones of Da].garno, Drake,
and Victor and of Drake and Dalgarno4. for the
1 80-2 P, transition probability in both the N ' and


