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Using semiclassical expressions for eigenphase shifts and bound state energies arising from WKB 
approximations to the solutions of coupled equations. we show that quantum mechanical formulas for the 
third virial coefficient (restricted to positive potentials) and for the second virial cofficient (with anisotropic 
interactions) lead to the known classical results when Ii goes to zero. The procedure can be extended to the 
case of higher virials. 

INTRODUCTION 

In this article we propose to follow in some of the 
footsteps of Kahn and Uhlenbeck.1 Some time ago Uhlen
beck and Beth2 and independently, Gropper3 obtained 
fqlly quantum mechanical (QM) formulas for the second 
virial coefficient of gases subject to spherical poten
tials. As part of his doctoral thesis, Kahnl then showed 
that, using WKB or semiclassical approximations for 
two-body phase shifts and bound state energies, one 
could recover from these QM formulas the well-known 
classical expression for the second vi rial, in the limit 
in which 11 - O. Since, in the same limit, we expect the 
QM partition function to take the form of its (properly 
normalized) classical counterpart, this is a satisfactory 
result. The derivation of additional asymptotic terms 
(11 2 and higher) and numerical evaluations of the basic 
formula then complemented the QM theory in a useful 
and desirable way. 

Our aim in this paper is to show that generalizations 
of the formula of Uhlenbeck and Beth expressions for the 
third virial coefficient4 and for the second virial with 
anisotropic interactions5 reduce to the classical expres
Sions, in the limit 11 - O. 

The formulations for the virials, from which we start, 
involve eigenphase shifts and eigenvalues which arise 
from the characterization of the solutions of coupled 
equations. These in turn are the results of expansions 
of the wave functions in terms of hyperspherical har
monics for the third vi rial or of products of spherical 
harmonics for the second virial. WKB expressions for 
phases and eigenvalues must then, perforce, involve a 
semiclassical treatment of the coupled equations. 

We think that the results that we obtain are of some 
interest. To take the third virial, the formula from 
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which we start must clearly involve a three-body prob
lem with its attendant difficulties. Buslaevand 
Merkuriev6 have stated that in the formulas for the 
cluster in terms of S matrices, 7 additional terms should 
appear to "counter" Singularities appearing in selected 
plane wave matrix elements of the S matrices which 
are involved. Dashen and Ma, 7 in an analysis of the 
singularities, show that those appearing in the cluster 
expressions cancel out and that, further, they never 
appear if an angular momentum decomposition is car
ried out. 

The fact that in our limit we recover the classical re
sult does not, obviously, provide a proof of the primary 
QM formula. It does, however, meet a necessary re
quirement and increases our confidence in its correct
ness and usefulness. 

Since numerical work involving the use of the basic 
formula is forthcoming, and, through other methods, 
QM corrections useful at high temperatures have been 
obtained, the paths of the 30's are perhaps being re
traced for the higher virials. 

SECOND VI RIAL: SPHERICAL POTENTIAL 

To begin with, we state and modify the arguments of 
Kahn, I to simplify and generalize his reasoning. As is 
usual in the application of the semiclassical method one 
writes the solution of the time independent radial Schro
dinger equation: 

(1 ) 

as 

'It=exp[(i/1I)5(r)] , 

where 

5(r)=50 + T51~~)52+'" (2) 

Taking into account terms up to 51 only, using the 
connection formulas, and assuming that there is a left 
turning point, we obtain the semiclassical expression 
for the phase shifts: 
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Larsen, Palma, and Berrondo: WKB for coupled equations 5817 

'/),(k)=i1T(l+i) -kro+ l~ [v'k2 -!(r) -kldr, (3) 
TO 

where !(r) = (2iJ./Ii 2)V(r) + [(Z + W /r21, k2 = (2iJ./1f2)E, /-L 
= reduced mass. 

Equation (3) is slightly different from Kahn's in that 
we use Langer's modification which leads to (l + i) in
stead of v'l(I+I}. The expression must also be general
ized to the case of more turning pOints. This is not 
trivial and requires comment. 

Let us first observe that Kahn, and Curtiss and 
Powers8 (using their formalism exploiting the behavior 
of the density matrix and its relationship to the deriva
tive of the phase shifts), extend the integration in Eq. 
(3) wherever the wave function oscillates, i. e., wher
ever the argument of the square root is positive. Thus 
given three turning points, with a positive region in 
[J(r) - k 2] between r 2 and r 3, Eq. (3) becomes 

(4) 

Actually Curtiss and Powers give their result for a 
reduced phase shift (essentially If'/) as a sum of func
tions of classical observables, energy and angular mo
mentum, multiplied in higher order terms by powers 
of If 2 or of the de Boer parameter squared. Their first 
order result, restated for any If not equal to zero, leads 
immediately to Eq. (4). 

Within the range of energy and angular momentum for 
which multiple turning points occur, the wave functions 
at any fixed value of the energy will pass through multi
pIe resonances, as If is made small, and the phase will 
increase by 1T at each resonance. 

This must be taken into account. Curitss' formula, 
which includes a contribution from the inner region does 
precisely that. It must be looked at, either as giving for 
a particular phase shift the result of the semiclassical 
limit as If - 0, or as giving (for small If) the result of 
the average of the phase shift over a small range of the 
energy-large enough, however, to include many reso
nances. 

From Eqs. (3) and (4) we can now proceed to calcu
late the continuum part of the Boltzmann second vi~ial 
coefficient which is given by the following formulas1•2•9: 

(5) 

x exp[ - (A~/21T)k21 , 

where the thermal wavelength AT is given by A~ = h2/ 
21TmKT; K is Boltzmann's constant, T is the temperature. 

We follow a more direct method than that used by 
Kahn, in order to obtain the classical limit of Eq. (5). 
First we perform an integration by parts and, using 
Levinson's theorem to evaluate the surface terms, ob
tain an additional bound state contribution: 

B, = - ~NA~ ~~ {~(Z + i) - kro 

+ l~ [v'k2 - !(r) - k ldr}k exp[ - (A~/21T)k21dk (6) 
TO 

+ an additional bound state expression. 

As we shall see, the case of more turning points will 
not cause problems. Assume for the moment that the 
potential is never negative and interchange the order of 
the integrations. We obtain: 

1~ dr [f~ dk v'k2 - !(r) k exp[ - (A~/21T)k21 
o "1TTI 

- ~~ dk k2 exp[ - (AV21TW1] • (7) 

The last integral can, of course, be evaluated on sight 
and, after a minor change of variables, so can the one 
on the left. We obtain for the continuum 

,f2 5 {1T 1 1T 1T2 1 
B, = - ---;-NAT "2(Z + 2)~ + T2 A~ 

x ~~ dr[exp{-!3V(r) -(A~/21T)[(l+W/~]}-1]}. 
(8) 

In this procedure (as contrasted with Kahn's) there is 
no need to divide the integration plane into several re
gions. If there is more than one turning point, the 
change in the order of integration works beautifully. 
The lower boundary on k (again given by v'f\Yf) simply 
picks up the contribution of the classically allowed re
gions in the r - k plane. 

If the potential has a part which is negative, !(r) will 
also at times be negative for some r's. For those val
ues of r it is clear that the lower limit of the left-hand 
k integral in expression (7) will be zero. In order to 
obtain Eq. (8) we must add the contribution of the lth 
partial wave to the bound state part, which reads 

(9) 

As If - 0, the well will become filled with bound states 
and we can surely pass from the discrete index n to a 
continuous variable: 

(10) 

Effectuating a partial integration and setting the surface 
terms to zero we find 

,f2 [13 1. 0 
] B, = - -NA~ ~ dE n(E) e-BE 

1T T v::ln 
(11) 

Using the WKB quantization condition 

(12) 

where the integral is taken between the two turning 
points of the classical motion in the well for negative k2

, 

and neglecting the i as we approach If = 0, we can write 
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5818 Larsen, Palma, and Berrondo: WKB for coupled equations 

B~a= _ ~N'\~!. fO d(k2) 
1T 2 f(r)m1D 

X (f-ik2 - j(r) dr) exp[ - (,\V21T)k2] . (13) 

Interchanging the integrations we obtain 

ba ..J2 5
1 f B, = --:;-N'\T2 dr 

x fO d(k2) .Jk2 - j(r) exp[ - (,\V21T)k2] , 
I(r) 

(14) 

where the limits on the r integration are the values of r 
for whichj(r) = 0, i. e., where the effective potential 
crosses the zero energy axis. Since for these values of 
r the energy integration of the left-hand integral in Eq. 
(7) stops at k or k2 = 0, we see that the above integral 
complements exactly that integral. Thus, with or with
out additional turning pOints, the sum of the continuum 
contribution lead us to rewrite Eq. (7) as 

[00 dr [~fOO d(k2) .Jk2 _ j(r) exp[ - (,\V21T)k2] 
o I (T) 

(15) 

which then gives Eq. (8) as the total contribution to the 
lth partial wave of the virial. 

In order to bring the term (1T/2)(1 + t) into the inte
grals, Kahn now uses the identity 

(16) 

to obtain 

..J2 (1T2 )£00 {[ ,\2 (Z + 1.)2J 
B, = -7N'\~ ~ 0 dr exp -i3V(r) - ~--;yf-

_ exp _::z-.-
[ 

,\2 U+WJ} 
21T r ' 

(17) 

where 13= 1/(KT). Following Kahn we evaluateL: (2l + 1) 
x exp[ - i3Z(l + 1)/~] using an asymptotic expansion and 
obtain ~/i3 as the leading term. Since V(r) is spheri
cally symmetric the answer is 

B Nfd (-aV(r) 1) 
cia •• = - 2" r e -. (18) 

For a more general treatment, it is convenient to re
write the sums over I as traces. For example, (letting 
11 2/2,.. = 1) 

~ (2l + 1) exp [- f3 ~ - f3V(r)] 

(19) 

We write the angular trace as 

faw(w lexP{-f3[;? + v(r~} Iw) 
= faw(w lexp (- f3;?)1 w) exp[ - i3V(r)] (20) 

since in this case V(r) commutes with L2, and w repre-

sents the angles e, cpo We then have 

(wi exp (- i3;?)lw) = t;<w Il, m) exp [_i3l(l~ 1)J <I, m Iw) 

" * [ l(l + 1)J =L."Y"m(e,CP)Y"m(e,cp)exp -i3--:yr- • 
I,m 

(21) 

The sum over m gives [(21 + 1)/41T ]p,[cos(O) 1 = (2I + 1)/ 
41T and thus we obtain 

(22) 

which yields the desired result if we appeal once more 
to the fact that V(r) is spherically symmetric. 

In the work that follows the traces are the expressions 
that appear naturally and they lead to formulas involv
ing angular. integrations. We also note that in so far as 
the asymptotic expansion is concerned, it does not mat
ter if (Z + W or l(Z + 1) appears in the exponential. The 
leading result is the same. 

THIRD VIRIAL COEFFICIENT 

To apply the method of the preceding section to the 
semiclassical calculation of the third virial coefficient, 
we will start with an expression for the third cluster 
(i. e., for the third coeffi cient in the fugacity expansion 
for the pressure) in terms of three-body shifts. De
rived by Larsen and Mascheroni, 4 and based on a hyper
spherical harmonic expansion, it reads: 

bBoltz= (2S+1)3,,/3 1 L (00 dkk[ (123)(k) 
3 (21T)2'\T ~ ) 0 11~ 

- 311i1213 )(k) 1 exp (- ~ k2
) • (23) 

Here 1) (123) is a three-body phase shift associated with 
the comparison of the wave function of three interacting 
particles with that of three free particles. 1) (1213) is 
again a three-body phase shift, but one for which only 
particles 1 and 2 are allowed to interact, particle 3 
acting as a spectator, and a comparison is made with 
three free particles. The'\ is put here only as a re
minder that we have to provide indices to enumerate the 
phase shifts, and differently for 1)(!23) and for 1)11213>, and 
systematically sum over them. 

The formula above was derived for the case of no two
or three-body bound states (e. g., for 3 He3 atoms) 
though the potential can have an attractive part. For 
the purposes of this article, however, we impose a fur
ther requirement: that the potential have no negative 
part. This implies that as 11 becomes small, no bound 
state can appear. 

We also note that we can rewrite the bracket in Eq. 
(23) as 

[1)i123 )(k) _l1i12/3 )(k) _l1i13/2 )(k) _11~<23/1l(k)] , (24) 

which is a form which arises naturally when using an 
Ursell expansion in the derivation of the phase shift 
formula. We shall use it later to obtain an explicitly 
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convergent integral for the cluster. See Eq. (41). 

The phase shifts appearing in Eq. (23) are obtained 
from the solutions of coupled equations such as 

(25) 

These arise from expanding the internal wave function 
of the three particles in hyperspherical harmonics, in
serting the wave function in the SchrOdinger equation, 
and taking inner products with the hyper spherical (sur
face) harmonics. Thus, 

(26) 

The hyper radius p is the magnitude of a six-dimen
sional vector formed from the two Jacobi vectors: 

_ (E) E = m1l2[~(r1 + r2) - r3] , 

P - \71 71 = 2-1/2 (r1 - r2) • 
(27) 

The 1/'s are the harmonics and the angles n describe 
the orientation of P in the six-dimensional space; K rep
resents a set of indices enumerating the harmonics. N 
in Eq. (25) is the order of the harmonic (and a subset 
of K). V KK' is a matrix element formed by integrating 
over the angles a binary potential (or a sum of binary 
potentials) with two normalized harmonics. In any cal
culation one limits oneself to a finite number of har
monics, which can then be increased to demonstrate 
convergence. 

From the solution of Eq. (25) one then obtains an R 
matrix, which when diagonalized provides us with the 
required eigenphase shifts. 

The idea behind the WKB treatment of this problem 
consists in arguing that when the matrix M changes 
slowly within oscillations of the solutions, then one can 
diagonalize the set of equations, i. e., obtain a set of 
uncoupled equations with effective potentials. 

The uncoupled equations, in turn, can be treated in a 
more or less conventional WKB fashion. 

Since M is symmetric and can be chosen real we can 
diagonalize M for any particular p. If M changes slowly 
enough so that we can neglect all terms containing de
rivatives of the matrix U which diagonalizes M we will 
obtain 

(28) 

where cp = U¢ and !I. = UTMU and lI.(p) is a diagonal ma
trix. 

The set of second-order equations displayed above is 
equivalent to the set of first order equations proposed 
by Eu10 (see his equations II. 18). We note that while 
he keeps the diagonal part of [U2~(d/dx) U2] where U2 
plays the same role as our U, our U is orthogonal and 
the diagonal elements of [If'(d/ dp) U] are equal to zero. 
Eu's solutions (II. 19) are precisely the ones that we ob-

tain from Eq. (28). Eu also argues that corrections to 
these solutions, stemming from the neglected terms 
involving the derivative of U2, are of order at least h1/2 

higher than those kept. 

Fulling11 in a more recent work, writes a systematic 
WKB (adiabatic) solution for Eq. (25) valid away from 
turning pOints and crossings of the elements (eigenval
ues) \., of !I.. He also assumes what we call (k21 - M) 
to be a positive definite matrix. 

The leading term in his expansion reproduces pre
cisely the leading two terms (the square root normaliza
tion and the phase) of our WKB solution: cpo The other 
terms are of higher (integral) order in 1i. He empha
sizes also, that the eigenvectors must be chosen with 
care so that, e. g., "capricious" phases are not intro
duced in the eigenvectors upon changing the value of p. 
Since we can choose our vectors to be real, we need 
only require continuity as a function of p to essentially 
determine our function cpo 

The phases of cp can now be obtained by conSidering 
simplified forms of asymptotic solutions for the ¢ which 
appears in Eq. (28). The square root normalization 
does not affect the phase shift. Thus, we write 

¢v- cos~p -kpo- ~)+ ~oo[;2 -\.(p) - ~ -k]dP, 

o (29) 

¢~ree_ cos [kP - (N + 2) ~ - ~J . 
The lower limit of the integral is written here as Po. 

The situation involving multiple turning points has to be 
treated, again, by replacing the single integral by a 
sum of such integrals, each one evaluated over a physi
cally allowed region. For the case of a single turning 
point, we find 

7]v-(N+2)~-kPo+ foo [}i-\.-~_k1dP (30) 
'0 p J 

with the obvious extensions for multiple turning points. 

Let us, to be definite, consider one of the phase
shifts: 7](123). According to Eq. (23) we have to inte
grate the phase shifts over the wave number: 

~oo dk k7] (123 )(k) exp (_ ~k2) • 

Inserting the expression for the phase shift, Eq. (30) 
and interchanging the order of integration as was done 
for the case of the second virial, we obtain 

(N + 2) 1T2 + 2 (1T2) 

~ 4 
x £oo dp {exp [_ ~ ( \. + ~) ] - 1} (31) 

which may be written as 

2(1T
2

) roo { [,\2 ! 1 .\1 r ,\2 (N +2)2J} T Jo dp exp - :t;,\. + 4p2}T exp L-:t; p2 . 

(32) 

Our virial formula involves a summation over II and 
therefore we can rewrite the exponentials in terms of 
traces: 
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5820 Larsen, Palma, and Berrondo: WKB for coupled equations 

~ { [A2 ( 1 )] [A2 (N +2)2J} ~ exp - ~ A" + 4'il - exp - ~ ,} 

= TrR {exp ~ ~A(P)] _ exp (_ ~ ~2pt t]} , (33) 

where the trace is restricted so as not to involve p 
(which may be considered a parameter of the matrix 
elements, and Ii 2~2 is the grand angular momentum 
operator whose values are diagonal in the hyperspheri
cal basis. Since 

exp [- ~A(P~ =exp (- ~UTMU) 

=U
T 

exp (- ~M) U 

the trace becomes 

{ [ 
A2 1 (A2 ~2 + .!.)} 

TrR exp - ~M(p)J - exp - ~ T 

(34) 

(35) 
Here V is the potential V(12) + V(13) + V(23), associated 
with 1/ which appears in our original basis as V KK" 

Since we are interested in recovering the classical 
expressions, we can make use of the commutator ex
pansion and write the exponential as the product of two 
exponentials, discarding the terms of higher order in Ii. 
Introducing, then eigenkets and eigenbras which depend 
on the hyperspherical angles, conjugate to the discrete 
variables, we can write the trace as 

fdn(n I exp (- ~: ~2pt t) I n){exp[ - {W(p)] -1} . (36) 

The matrix element above can now be evaluated and 
to leading order equals (p/AT)5, as we show: 

(n lexp(- ~ ~2ptt)ln) 
(37) 

understanding that the sum enumerates the order of the 
polynomials N and the lineary independent polynomials 
of degree N. The sum over jJ of the product of poly
nomials, keeping N fixed, yieldsl2

: 

(38) 

An Euler McLaurin expansion13 yields easily the first 
term of an asymptotic expansion for the remaining sum 
in the expression for the matrix element: 

1 L (N+3)!(N+2»)ex [_ ~ (N+2)2] 
;S N 12N! P 47T p2 

= 12~7T3) ~ [(N + 2)4 - (N + 2)2] 

[ 
A~ (N + 2)2J p5 

X exp - - 2 - 5"" + ... 
47T P AT 

Apart from a factor [(25 + 1)3v'3]![(27T)2AT ], 
that the contribution of 1/ (123) is then 

(39) 

we see 

2(112) 1 f" J """i'3~ dpp5 dn{exp[-/3V(p)]-1} 
T T 0 

= 2~~2) J d~ dr/(exp{- /3[V(12) + V(13) + V(23)]} -1) . 
T 

(40) 

The expression above, derived solely from the con
tribution of 1/ (123), diverges for the infinite volume. 
However, including the terms in 1/ (1213), 1] <23/1>, 1] (13/2) 

in the bracket (24), we obtain a convergent answer. The 
complete result is 

b~oltz = (2S; 1) *f J d~ dr/ (exp{- /3[ V(12) + V(13) + V(23)]} 

- exp[ - /3V(12)]- exp[ - /3V(13)] - exp[ - /3V(23)] + 2) • 
(41) 

Integrating over R the center-of-mass coordinate, 
dividing by the volume V and changing coordinates to rb 

r2' r3 we obtain 

Boltz (2S + 1)3 1 f 
b3 = 3! VA~ drl dr2 dr3 '" , (42) 

since the Jacobian of the transformation from R, e, 1] 

to rb r2' r3 is 3-3/2
• 

Finally, the contribution of the third cluster to the 
third virial equals - 2N2b3/bi, where b1 = (2S + 1)/AT , 

and thus 

b
Boltz 

1 f T = 31 V dr1 dr2 dr3 

X (exp{- /3[V(12) + V(13) + V(23)]}- ... ) , (43) 

which is the classical expression with all the correct 
factors. We recall that the factor of A-,J! which appears 
in the lth cluster is sometimes absorbed in the fugacity. 

SECOND VIRIAL WITH ANISOTROPIC INTERACTIONS 

We conSider a specific case: a hydrogen molecule 
interacting with a helium atom. In this case, again, 
the quantum mechanical formulation involves sets of 
coupled equations and a generalized Uhlenbeck and Beth
eigenphase shift formula5 and we wish to obtain semi
classical expressions for the eigenphase shifts. 

We write the eigenfunction of the system as linear 
combinations of products of wave functions representing 
the internal states of the molecules together with ampli
tudes describing the relative motion of the two centers 
of mass. 

The radial part of the amplitudes satisfy the differen
tial equations: 

I' 

where 

_ d2 (2 2f.L 0) L(L + 1) 
D , = drl + k - JiTEv.r - r2 , 

V(R,r)=LVj(R,r)PJ(coSY) . 
j 

(44) 
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.187.97.20 On: Wed, 19 Mar 2014 02:58:51



Larsen, Palma, and Berrondo: WKB for coupled equations 5821 

The x.,,(R) denotes the radial part of the wave functions 
of the isolated molecule for the vibrational-rotational 
state v, J. The E:2. are the energies of the molecule 
corresponding to that state. 

The 'Y'J:~ form a complete orthonormal set of functions, 
simultaneous eigenfunctions of the total angular momen
tum, L e., of K2, of its projection on the z axis K z , of 
J2 and L2, where J is the angular momentum of the mo
lecular rotation and L the angular momentum of the 
relative motion of the two particles. We abbreviate 
vJL by 1. 

To pursue the treatment which is now familiar we ab
sorb the (2jJ./n2k2. into the M and the A. I. e., 

2jJ. 0 (L +-W -t 
M 1/' = ifTE: •• + 1:2 + VII' (45) 

After the system is uncoupled the solutions to the equa
tions will at large distances have oscillations charac
terized by k~. = k2 - (2jJ./1i 2)E2. and we form "\, = Av 
- (2jJ./1i 2)E:2 .. for each Av substracting the appropriate 
energy of excitation of the molecule. The phase shifts 
are then given by: 

where, for Simplicity, we consider one turning point ro 
where k~. ="\,. 

In terms of these phase shifts the continuum part of 
the mixed virial is given by 

cont NAf, 1 f 
B He ,H2 = - 4(7T ) Qrot+vlb dk k 

x [f;(2K + l)1)~(k)] exp (- ~k2) , (47) 

where Qrot+vlb is the partition function of the isolated 
molecule, A~ = [h2/(27TjJ.KT)], and jJ. is the relative mass 
of He and H2. 

An important point, now, is that we must integrate 
the phase shift from its threshold which is no longer 
necessarily zero. Thus, 

i~ dk k1)(k) exp (- ~k2) 
(2" Ih 2 ).~. 7T 

=exp(- (3E:2.)~" dk •• k •• 1)(k) exp (- ~k~.) • (48) 

Continuing in the same vein as before we obtain: 

2 (7T2
) f~ 
~ exp( - (3E:~) dr 

" 0 

x{exp[-~("\'+b-)] -exp[-~(L;;WJ}. (49) 

Reabsorbing the E:e. into ~ and summing over all II, K, 
and M we recover an expression involving A: 

2~12) fdrTrR{ex p [- ~A(r)J 
r A~ (,e2+t) l} 

- exp l- 47T 1:2 - (3H OJ , (50) 

where H 0 is the Hamiltonian for the isolated molecule, 
,e2 the square of the angular momentum operator, and 
the trace does not involve r. Changing basis for the 
first term we obtain our matrix M, and further 

2~f) fdrTrR{exP[-{3V(Rr)- ~~ (,e~t) -(3Ho] 

(51) 

To demonstrate that in the semiclassical limit we ob
tain the classical expressions we need to make contact 
with the formulas obtained classically by others. Typi
cally, the molecules are replaced by rigid dumbels14 

and the potential V(Rry) is then, no longer, a function 
of R. 

Dropping the R dependence is sufficient to allow us 
to factor the trace. We obtain [apart from 2(7T2)/A~]: 

r {[ A2 (,e2+~)] Tr[exP(-{3Ho)]j drTr R exp -(3V(r) - % --;r-

(52) 

where w is the set of angles associated with r. 

The sum over the angular momentum gives 41T? /A~ 
and Qrot appears also in the denominator of the vi rial 
formula because the mixed virial involves the ratio of 
the second cluster with the isolated first clusters and 
thus the Qrot cancels out in the final formula. The re
sult is 

B He,H2 = - ~ fdr {exp[-{3V(r)]-l} . (53) 

The inclusion of bound states is straightforward, fol
lows the path outlined earlier when discussing spherical 
potentials, and leads to the above result. 

If we want to allow for a nonrigid molecule in a clas
sical way we will obtain from our trace (using the first 
term in a Bloch equation expansion of the matrix ele
ments of e-BHo): 

fdRf drexp[ - (3Vo(R)] {exp[ - {3V(R, r)]-l}, (54) 

which, to obtain the virial, will have to be divided by 
the nonkinetic part of the rotational-vibrational partition 
function, Le., divided by JdRexp[-{3Vo(R)]. Vo(R) is 
the potential appearing in Ho. 
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