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ABSTRACT

OPTICAL PULSE PROPAGATION

IN DISPERSIVE SYSTEMS

Michael J. Ware

Department of Physics and Astronomy

Doctor of Philosophy

A new context for the group delay function is presented describing electromagnetic

pulse propagation in a uniform linear dielectric medium. In contrast to the traditional

formulation, this new context retains validity for pulses of any bandwidth, propagating

in media with arbitrarily complicated resonance structures. The new context defines the

arrival time of a light pulse at a point in space (using a time expectation integral over the

Poynting vector) and considers the delay between pulse arrival times at two distinct points.

This delay consists of two parts: a spectral superposition of group delays and a delay

due to spectral reshaping via absorption or amplification. The traditional formulation

of group velocity is recovered by taking a narrowband limit of this generalized context.

The use of the new context is illustrated for pulses propagating both superluminally and

subluminally in amplifying and absorbing media. The inevitable transition to subluminal

behavior for any initially superluminal pulse is also demonstrated.



The energy exchanged between an electromagnetic pulse and a linear dielectric

medium in which it propagates is also considered. It is this exchange of energy which

allows for the superluminal behavior of the centroid of field energy. While group veloc-

ity indicates the presence of field energy (the locus of which can move with arbitrary

speed), the velocity of energy transport maintains strict luminality. This indicates that

the medium exchanges energy differently with the leading and trailing portions of the

pulse. The reason for this asymmetric treatment is clearly demonstrated by rewriting the

exchange energy in terms of the instantaneous spectrum (i.e., the spectrum of the pulse

truncated at each new instant as a given locale in the medium experiences the pulse).

This description for the exchange energy directly emphasizes the role of the principle of

causality and gives insight into the phenomenon of superluminal pulse propagation.
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Chapter 1

Introduction

The speed at which light travels has captured the interest of people throughout history. In

the 1600’s Galileo Galilei attempted to determine the speed of light by measuring the time

required for an assistant located about a mile away to return a light signal produced by

uncovering a lantern. In his report of the experiment, Galileo records that “I was unable

to make sure whether the facing light appeared instantaneously. But if not instantaneous,

light is very swift."2 In subsequent years, as scientific understanding and technology have

progressed, researchers have greatly improved upon this preliminary observation. Today

we are able to measure the vacuum speed of light (c) with such precision that in 1983 the

meter was redefined in terms of c.

Propagation in a dispersive system is somewhat more complicated than the vacuum

case. Nevertheless, the methods used to solve Maxwell’s equations in these systems are

well developed, and the behavior of the solutions has been described in great detail.

Researchers also routinely measure the velocity of propagation through these systems in

the laboratory. The generic experiment used to determine propagation velocity consists

of measuring the time delay between when the peak (or some other feature) of a pulse

enters and exits a system. Since the spatial dimensions of the system are known, the

1
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average velocity of the pulse in the system can then be inferred. For the vast majority

of dispersive systems this type of experiment yields the pedestrian result that the pulse

traverses the system at a velocity somewhat slower than c . However, by carefully selecting

the pulse and system it is possible to create situations where the delay times correspond

to velocities greater than c, or are even negative (i.e., the exiting pulse peak leaves the

system before the entering pulse peak arrives at the entrance). These observations have

led to a revived interest in studying the theoretical explanation of how pulses propagate.

In this work, we consider the propagation of electromagnetic pulses in dispersive

systems. We present a new context which gives a natural explanation for the apparently

anomalous ‘superluminal’ results mentioned above. We begin by briefly sketching the

history of the study of propagation velocity in dispersive systems. Although this history

is in no way comprehensive, it is included to give context and motivation for the work

presented in subsequent chapters. We then give an overview of the concepts that will be

addressed in this work, and point out how they relate to previous work done in this area.

1.1 Historical Background

The study of wave propagation is among the oldest and most well explored branches of

physics. One of the fundamental issues that arises in this study is the velocity at which a

disturbance propagates from point to point in a dispersive medium. In 1839, Hamilton

introduced the concept of group velocity to describe the speed at which mechanical

disturbances propagate from regions that are fully excited to regions that are at rest in a

system. The idea of group velocity was later re-introduced by Stokes in 1876 and further

developed and generalized by Lord Rayleigh, again in connection with mechanical waves.

(For a summary of the history of group velocity see Ref. [3].) This early work demonstrated

that if absorption is small, the group velocity gives the speed at which a mechanical pulse
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propagates through a system. As the wave nature of light was fully appreciated, this result

was also applied to optical pulses in dispersive systems.

In the early 1900’s, as the principles of relativity unfolded, there was a resurgence

of interest in the concept of group velocity. This renewed interest stemmed from the

fact that it is possible to have group velocities larger than c in an absorption band of a

dielectric medium. If group velocity represents the speed at which a signal can be sent,

this situation presents a problem for the theory of relativity, which predicts that causality

can only be preserved if communication at speeds greater than c is prohibited. This led

Sommerfeld and Brillouin4 to study whether it is possible to send information faster than

the speed of light. They analyzed the behavior of a signal produced when a harmonic

electric field is abruptly turned on and then allowed to propagate in a medium. In this

analysis, they proved that the velocity at which an abrupt signal edge travels in a causal

medium (i.e., a medium that cannot anticipate the form of a pulse before experiencing it)

is always strictly bounded by c, thus confirming the prediction of relativity. Additionally,

they introduced the concept of energy velocity, which is defined as the rate of energy flow

(i.e., the Poynting vector) divided by the energy density at a point.

In 1970 Garrett and McCumber revisited the problem of pulse propagation in ab-

sorption regions where group velocity exceeds c. In their paper5 they analyzed the

propagation of a Gaussian light pulse whose spectrum is centered on-resonance. They

demonstrated that if a pulse has sufficiently narrow bandwidth, it remains almost Gaus-

sian as it propagates and the pulse peak can move at velocities faster than c (as predicted

by group velocity). In 1971, Crisp commented on this paper and pointed out that the

superluminal velocity of the peak is simply a result of the leading edge of the pulse expe-

riencing less absorption than the trailing portion, causing the pulse’s “center of gravity to

move forward at a velocity greater than the phase velocity of light.”6 In 1982, Chu and

Wong7 observed the Garrett and McCumber effect (i.e., a superluminal delay time for an
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on-resonance pulse in an absorbing media) in the laboratory.

Because the Garrett and McCumber effect occurs in an absorbing medium, the leading

edge of the propagating pulse is always within the envelope of the initial pulse propagated

forward at c. Thus, this situation presents no problems for causality. An analogous

‘superluminal’ situation could be constructed by sending the pulse through vacuum

and setting a first detector to click at the peak amplitude of the incoming pulse, and

a second detector to click at a lower amplitude. The second detector is then triggered

before the arrival of the pulse peak, and the delay between the clicks is ‘superluminal’

while obviously nothing has gone faster than the speed of light.

Perhaps more intriguing than the Garrett and McCumber effect is an experiment

proposed by Raymond Chiao8 in 1993. In this experiment, a narrowband pulse is tuned to

the spectral region just outside of an amplifying resonance. As the pulse passes through

the medium, the peak of the transmitted pulse travels faster than c. However, unlike the

absorbing case the exiting pulse is not contained within the envelope of the original pulse

propagated forward at c . Thus, the simple argument presented in the previous paragraph

about causality in the absorbing case is not obviously applied here. In 2000 Wang9

experimentally demonstrated the Chiao effect using Caesium gas as the propagation

medium.

1.2 Motivation

While the solutions to Maxwell’s equations accurately model each of the pulse propa-

gation situations mentioned in section 1.1 (as they must), there has been considerable

discussion about validity of several of the methods used to describe the behavior of these

solutions. In order to get a flavor for this discussion and give motivation for this work,

we include several quotes from various participants in the discussion. This presentation
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simplifies the issues involved, but introduces many of the key questions to be addressed

in this work.

One of the principle concepts that has come under scrutiny in this discussion is group

velocity. The analysis of Sommerfeld and Brillouin revealed some of the shortcomings of

group velocity in describing the velocity of a signal front. The energy velocity description

introduced by Sommerfeld and Brillouin does not suffer from the same shortcomings

(although it has some of its own), possibly making it more appealing than the group

velocity description. This prompted Chu and Wong to make the following comment in

the report detailing their observation of the Garrett and McCumber effect:

Physicists may be tempted to analyze pulse propagation experiments in

terms of energy velocities and not group velocities. Nevertheless, Garrett

and McCumber have shown under certain easily satisfied approximations

. . . that the pulse will propagate with a velocity equal to the group velocity,

even when [superluminal or negative]. . . . The work reported here . . . clearly

demonstrates that [energy velocity] is not the measured quantity in this type

of pulse propagation experiment.7

Oughstun took issue with this statement of Chu and Wong. He stated that the experi-

mental results published by Chu and Wong, which “were purported to disprove the energy

velocity description while verifying the group velocity description,"10 rather showed that

the the two descriptions had different regions of validity. Oughstun summarized this

result as follows:

As a pulse propagates away from its input plane, its dynamical evolution

is initially characterized by the group velocity description, but as the prop-

agation distance increases and the pulse dispersion becomes mature, its

dynamical evolution becomes characterized by the asymptotic description
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and its resultant energy velocity description.11

Oughstun also pointed out12 that the Taylor series expansion techniques used to derive

the group velocity description fail when broadband pulses are considered. Because of

these failures, he champions the energy velocity description as the more useful descrip-

tion:

Whereas the group-velocity description decreases monotonically in accuracy

as the propagation distance increases above an absorption depth, the asymp-

totic description and its derivative energy velocity description increase in

accuracy as the propagation distance increases. . . . Although the asymptotic

description is somewhat more complicated than the group-velocity descrip-

tion, that is a small price to pay for a correct description of this important

problem.12

In chapter 6 we consider the group-velocity versus energy-velocity issue in more detail.

For now, we simply point out that there has not been a uniform opinion on the usefulness

of the concept of group velocity.

The quotes presented above relate primarily to propagation in an absorbing medium.

There have also been discussions about the proper way to describe propagation in am-

plifying media. For instance, Chiao initially explained how superluminal propagation

occurs in an amplifying medium as follows:

The inverted medium can temporarily loan part of its stored energy to the

forward tail of the wave packet, in a pulse-reshaping process which moves

the peak of the wave packet forward in time. One can think of this pulse-

reshaping process as the virtual amplification of the forward tail of the wave

packet, followed by the virtual absorption of the peak, resulting in an ad-

vancement of the wave packet.13
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However, Wang specifically denies that the reshaping process described by Chiao could

have caused the effect. In his article reporting the observation of the Chiao effect Wang

states:

The probe pulse . . . contains essentially no spectral components that are res-

onant with the Raman gain lines to be amplified. Therefore, the argument

that the probe pulse is advanced by amplification of its front edge does not

apply. The superluminal light propagation observed here is the result only

of the anomalous dispersion region. . . It can be understood by the classical

theory of wave propagation in an anomalous dispersion region where in-

terference between different frequency components produces this rather

counterintuitive effect.9

Again, the above statements indicate that there is not a general consensus on which

descriptive technique is the ‘best’ for explaining the superluminal phenomena.

In light of the above excerpts, it is interesting to recall a statement made by Galileo

after detailing his attempt to measure propagation velocity.

But in what seas are we inadvertently engulfing ourselves, bit by bit? Among

voids, infinities, indivisibles, and instantaneous movements, shall we ever be

able to reach harbor even after a thousand discussions?2

When reading this statement, one might almost believe that Galileo foresaw the recent

proliferation of discussions addressing the theoretical description of pulse propagation.

Even with the many carefully thought-out discussions on the subject, there are still issues

related to the topic of pulse propagation where our understanding is not what it needs to

be. While the present work will certainly not be the last word in this discussion, hopefully

it is a step towards the final harbor mentioned by Galileo.
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1.3 Overview

We address two main issues related to pulse propagation in this work. First, we introduce

a new context for the group delay function (group delay is inversely proportional to

group velocity). In chapter 2 we review the solutions to Maxwell’s equations and how

the concept of group delay is traditionally obtained from these solutions. We show why

traditional group velocity often fails, and then derive the new context for group delay. This

new context does not rely on expansion techniques, so it retains validity for a pulse of any

bandwidth propagating in a medium with arbitrarily complicated resonance structures.

In addition, this new context retains validity for any propagation distance.

In chapter 3 we illustrate how our new context for group delay may be applied to

gain insight into the behavior of the solutions of Maxwell’s equations. We explain the

effect of pulse bandwidth on the delay time between pulse arrival at one point versus

another. We describe how delay times depend on propagation distance, and also point

out that superluminal behavior inevitably becomes subluminal as propagation distance

is increased. We also discuss how the new context may be applied to determine delay

times in angularly dispersive systems and in precursor fields.

The second major issue addressed in this work is the flow of energy as a pulse propa-

gates in a dielectric medium. In chapter 4 we review how Poynting’s theorem is obtained

and how the concept of energy transport velocity is defined. We show how the velocity

of the centroid of total energy (i.e., the average spatial position of total energy) is strictly

bounded by c. We then demonstrate that the centroid of field energy can move with

any velocity, even though the rate at which field energy is transported from one point

to another is strictly bounded by c. To explain this seeming paradox, we derive an ex-

pression for the energy exchanged between the pulse field and the medium. This new

expression shows how the medium treats the leading and trailing portions of the pulse
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differently. The asymmetric exchange of energy between the field and the medium during

various parts of a pulse is a key to understanding how the locus of field energy can move

superluminally while no energy is transported faster than c.

Chapter 5 discusses energy exchange and transport for several specific examples

and illustrates the concepts introduced in chapter 4. We discuss energy exchange for

superluminal propagation in single resonance absorbing and amplifying media. We also

discuss media composed of more complicated resonance structures. In addition, we

address situations in which pulses are observed to propagate at highly subluminal speeds.

In chapter 6 we summarize the results presented in the preceding chapters. We then use

these results to discuss the implausibility of using superluminal effects mentioned in this

work for a practical purpose.



Chapter 2

Group Delay

In this chapter we discuss the meaning of group velocity. We begin with a review of the

solutions to the Maxwell equations, and show how the traditional concept of group delay

(inverse of group velocity) is obtained using these solutions. This traditional context of

group velocity fails when the bandwidth of the pulse encompasses a resonance structure.

We replace the old context with a new one wherein the group delay function always

retains meaning for electromagnetic pulses propagating in linear homogeneous media.

This includes broadband pulses with arbitrarily complicated temporal structure and

with spectra in regions of anomalous dispersion. The new context reduces to the result

obtained in traditional pedagogy4, 14, 15 in the narrowband limit.

2.1 Maxwell’s Equations

The basic laws governing electromagnetic phenomena are contained in the Maxwell

equations. In this work we consider only neutral, nonconducting, nonmagnetic media.

In this situation, the Maxwell equations can be written as

∇· [ε0E (r, t )+P (r, t )] = 0 (2.1)

10
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∇·B (r, t ) = 0 (2.2)

∇×E (r, t ) =−∂B (r, t )

∂t
(2.3)

1

µ0
∇×B (r, t ) = ∂

∂t
[ε0E (r, t )+P (r, t )] , (2.4)

where E is the electric field, P is the electric polarization of the medium, and B is the

magnetic induction (r denotes the spatial coordinate and t denotes time). In order to

solve Maxwell’s equations for the fields within a medium, it is necessary to specify the

relationship between E and P (i.e. the constitutive relation which defines the material

response to the electric field). In the time domain, this relationship is usually complicated.

However, in the frequency domain it is often possible to write a simple linear relation

between the electric field and polarization. In an isotropic, homogeneous medium, this

constitutive relation is given by

P (r,ω) = ε0χ (ω)E (r,ω) , (2.5)

where χ (ω) is the susceptibility.

Because the constitutive relation (2.5) can be written in this simple form in the fre-

quency domain, the solutions to Maxwell’s equations are usually found in a frequency

context. The frequency domain representation of the electric field E at a point r is related

to the time domain representation by the Fourier transform

E (r,ω) = 1p
2π

∞∫
−∞

e iωt E (r, t ) dt . (2.6)

The time domain representation of the field may be recovered via the inverse Fourier

transform

E (r, t ) = 1p
2π

∞∫
−∞

e−iωt E (r,ω) dω. (2.7)

The time/frequency connections for the electric polarization and magnetic field are
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similarly defined by

P (r,ω) = 1p
2π

∞∫
−∞

e iωt P (r, t ) dt ⇔ P (r, t ) = 1p
2π

∞∫
−∞

e−iωt P (r,ω) dω (2.8)

and

B (r,ω) = 1p
2π

∞∫
−∞

e iωt B (r, t ) dt ⇔ B (r, t ) = 1p
2π

∞∫
−∞

e−iωt B (r,ω) dω. (2.9)

By convention, we take all fields to be real in the time domain. This produces the following

symmetries in the frequency domain:

E (r,−ω) = E∗ (r,ω) , (2.10)

P (r,−ω) = P∗ (r,ω) , (2.11)

B (r,−ω) = B∗ (r,ω) , (2.12)

χ (−ω) =χ∗ (ω) . (2.13)

In the frequency domain, Maxwell’s equations have as a solution

E (r0 +∆r,ω) = E (r0,ω)e i k·∆r, (2.14)

where the initial pulse form E (r0,ω) is chosen at a point r0. The solution (2.14) renders

the pulse form E (r0 +∆r,ω) (in terms of the initial pulse form) at any other point shifted

by the displacement ∆r. Linear superpositions of solutions of the form (2.14) are also

solutions to Maxwell’s equations. The properties of the medium enter this solution

through the wave vector k (ω). Maxwell’s equations combined with the constitutive

relation (2.5) require that the magnitude of the wave vector is given by

k2 (ω) = ω2

c2

[
1+χ (ω)

]
. (2.15)

The direction of k (ω) specifies the direction of propagation for each frequency. In writing

the solution (2.14) we have made the implicit assumption that each frequency is asso-

ciated with a single wave vector, although the wave vectors need not be all in the same
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direction. Thus, diffraction effects associated with narrow beams16 are ignored, but this

approximation is reasonable for many optical systems.

The susceptibility χ (ω) is allowed to take on complex values in order to describe

absorption or amplification. Here we take the traditional vantage point of considering

the frequency ω to be real, whereas the wave vector k (ω) can be complex when the

susceptibility χ (ω) is complex. The magnetic field is obtained through

B (r,ω) = k (ω)×E (r,ω)/ω . (2.16)

The time representation of the fields at the new point are obtained by transforming (2.5),

(2.14), and (2.16) to the time domain via (2.7), (2.8), and (2.9).

2.2 Traditional Group Delay

In the time domain, the solution for the electric field at r ≡ r0 +∆r can be written as

E (r, t ) = 1p
2π

∞∫
−∞

E (r0,ω)e i (k(ω)·∆r−ωt ) dω. (2.17)

The traditional concept of group velocity is obtained by expanding the frequency-dependent

phase delay as

k (ω) ·∆r ≈ [ k|ω̄ ·∆r]+
[
∂k

∂ω

∣∣∣∣
ω̄

·∆r
]

(ω− ω̄)+·· · . (2.18)

If we retain only the first two terms in this expansion then (2.17) becomes

E (r, t ) = e
i
[

k(ω̄)−ω̄ ∂k
∂ω

∣∣∣
ω̄

]
·∆r 1p

2π

∞∫
−∞

E (r0,ω)e
−iω

(
t− ∂k

∂ω

∣∣∣
ω̄
·∆r

)
dω. (2.19)

We now make the approximation that the imaginary part of k is roughly constant over

the range of frequencies present in the original pulse, so that ∂k/∂ω ≈ ∂Rek/∂ω. The

integral in (2.19) is then seen to be the inverse Fourier transform of the original pulse

with a modified time argument, so that we may write:

E (r, t ) = E
(
r0, t − t ′

)
e i[k(ω̄)·∆r−ω̄t ′], (2.20)
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where

t ′ ≡ ∂Rek

∂ω

∣∣∣∣
ω̄

·∆r. (2.21)

Finally, we compute the square magnitude of (2.20) to compare the intensity profile of

the pulse at r with the profile at r0

|E (r, t )|2 = ∣∣E(
r0, t − t ′

)∣∣2 e−2Imk(ω̄)·∆r. (2.22)

In (2.22) we see that (to first order) the delay t ′ given in (2.21) is the time required

for the pulse to traverse the displacement ∆r. The exponential in (2.22) describes the

amplitude of the pulse at the new point, which may have changed during propagation

due to amplification or absorption. The function ∂Rek
/
∂ω ·∆r is known as the group

delay function, and in this traditional context is evaluated at a single ‘carrier’ frequency ω̄.

The traditional group velocity is obtained by dividing the displacement ∆r by the group

delay function evaluated at ω̄. (With more detailed analysis, expansion techniques can

be used to show that higher order terms in the expansion (2.18) describe pulse reshaping

and also influence delay time.)

2.2.1 Failure of Traditional Group Delay

The failings of the expansion (2.18) are well documented.11, 12 In particular, if the band-

width of an electromagnetic pulse encompasses a substantial portion of a resonance

structure, it becomes necessary to retain many terms in the expansion (2.18) to accu-

rately describe the phase delay. Moreover, if the bandwidth of the pulse becomes too

broad, the series fails to converge regardless of how many terms are used. To see why

this expansion fails for broadband pulses, consider the index of refraction in a single

resonance absorbing Lorentz medium:

[n (ω)]2 = 1+ f ωp
2(

ω0
2 −ω2 − iγω

) , (2.23)
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Figure 2.1: Singularities and branch cuts for k (ω) obtained using a single resonance

Lorentz medium. The circle shows the radius of convergence for a Taylor series centered

on the resonance frequency, ω0.

where f , ωp , and γ are positive constants. We construct the wave number using the

standard relation k (ω) = ωn (ω)/c, and write the result in the following form which

makes the singularity structure of k (ω) apparent:

k (ω) = ω

c

[
(ω−ωa) (ω−ωb)

(ω−ωc ) (ω−ωd )

]1/2

. (2.24)

The zeros of k (ω) occur at ω= 0 and at the following frequencies in the complex ω plane

ωa =ω1 − iγ
2 , ωb =−ω1 − iγ

2 , where ω2
1 =ω2

0 + f ω2
p − γ2

4 , (2.25)

and the poles are located at

ωc =ω2 − iγ
2 , ωd =−ω2 − iγ

2 , where ω2
2 =ω2

0 − γ2

4 . (2.26)

Figure 2.1 shows the singularity structure in the complex plane for k (ω).

We now recall a property of the Taylor series expansion which arises from the standard

analysis of functions of complex variables.17 Suppose that we expand a function f (z)
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about some point z0, and that the point z1 represents the nearest singular point of f (z)

in the complex z plane. Our Taylor series expansion of f (z) will then converge only for z

contained in a circle of radius |z1 − z0| centered at z0.

To see how this applies in our case, suppose that we expand the expression (2.24)

around the resonance frequency, ω0. The nearest singular point occurs at ωc . Thus, the

expansion will only converge for frequencies within the circle shown in Fig. 2.1. Since

we consider only real frequencies in (2.24), this means that the expansion (2.18) will

converge for frequencies located between the two intersection points of the circle with

the real ω-axis. If our pulse has spectrum which extends outside of this radius of con-

vergence, the expansion technique leading to traditional group delay cannot accurately

describe its propagation. More realistic models for the index of refraction produce a more

complicated singularity structure in the complex ω-plane (all singularities remain in the

lower half plane for a causal medium). Nevertheless, the singularity structures always

result in the same convergence problem when expanding k (ω) near a resonance.

In addition to the convergence problem detailed above, broadband pulses also pose

another problem for the traditional concept of group delay. Near a resonance the group

delay function varies rapidly. Thus, the traditional group delay can be highly dependent

on which frequency one chooses to expand around. For a broadband pulse there is a

range of frequencies present which could be considered appropriate ‘carrier’ frequencies

around which to expand, and the delay predicted by (2.21) can vary widely depending

on which ω̄ is chosen. Because of these difficulties, textbooks on the subject state that

the traditional concept of group velocity “has no longer any appreciable physical signifi-

cance"14 or “may even lack precise meaning"15 for broadband pulses near resonance. In

the remainder of this chapter we endeavor to supply this precise meaning that has been

absent in the broadband context.

We note that the fact that group velocity can become superluminal and/or negative
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in the vicinity of a resonance structure does not indicate a failure of the expansion

(2.18).1, 5, 8, 13 This type of exotic behavior (well verified experimentally7, 9) occurs in a

narrowband limit where the expansion is valid. In chapter 3 we illustrate several cases

where superluminal behavior occurs, and in chapters 4 and 5 we discuss the energy

exchanged between the field and the medium which makes this behavior possible.

2.3 A New Context for Group Delay

The traditional context of group velocity introduced in the previous section relies on the

assumption that the pulse has a similar shape at the initial and final points (aside from

overall attenuation or amplification), as shown in (2.22). In the general case, this need

not be true. Thus, in order to concretely discuss the time required for a pulse to traverse a

given displacement, we must first define the arrival time of a pulse to a point (say where

a detector is located). This definition need only involve the Poynting vector, since it alone

transports energy. To deal with arbitrary broadband pulses, the arrival time should avoid

presupposing a specific pulse shape, since the pulse may evolve in complicated ways

during propagation. For example, the peak or the midpoint on the rising edge of a pulse

is a poor indicator of arrival time if the pulse contains multiple peaks or has a long and

non-uniform rise time.

For the reasons given, we use a time expectation integral (proposed by Smith18 in

1970) to specify the arrival of the pulse:

〈t〉r ≡
∞∫

−∞
tρ (r, t ) dt , (2.27)

where ρ (r, t ) is a normalized temporal distribution of the Poynting flux at r:

ρ (r, t ) ≡ η̂ ·S (r, t )

/
η̂ ·

∞∫
−∞

S (r, t ) dt . (2.28)



CHAPTER 2. GROUP DELAY 18

The Poynting vector is defined as usual:

S (r, t ) ≡ E (r, t )× B (r, t )

µ0
. (2.29)

As Smith explained, this definition of arrival time “is not restricted to a quasi monochro-

matic pulse or to a situation which one has always only a single pulse. . . . It yields a unique

value regardless of the dispersion present." The unit vector η̂ refers to the direction in

which the energy flow is detected (normal to a detector surface). It has importance for

angularly dispersive systems, such as grating pairs used for pulse compression, where

the result of the integral in the numerator is not necessarily parallel to that in the denom-

inator.

Before proceeding, we make a note of caution. It may be tempting to equate the arrival

time of the temporal center of mass to a point, given by (2.27), with the time at which

the spatial center of mass arrives at the point. Although in many cases these two arrival

times happen to give the same value (e.g., if there is no attenuation or amplification),

they do not measure the same thing. For example, consider a pulse which is chirped such

that the leading portion arrives at the observation point with little attenuation, while the

trailing portion is composed of spectral components that are completely absorbed before

they can be detected. The temporal center of mass arrives some time during the leading

portion of the pulse. However, when the spatial center of mass arrives at the observation

point, the energy in the trailing portion (which will be absorbed before reaching the

detector) may still be affecting its location. This makes the arrival time of the spatial

center of mass later than the arrival time of the temporal center of mass. The temporal

center of mass used in (2.27) is the more relevant arrival time, since it is what a detector

would measure.

With the definition (2.27) of arrival time in hand, we are prepared to discuss the time

required for a pulse to traverse a given distance within the medium. Mathematically, the
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delay between the time when a pulse arrives at a point r0 and when it arrives at a point

r ≡ r0 +∆r is defined by

∆t ≡ 〈t〉r −〈t〉r0 . (2.30)

In section 2.4 we recast the delay time (2.30) into a form that makes clear the connection

between ∆t and the group delay function ∂Rek
/
∂ω ·∆r. Section 2.5 begins with the

result of this derivation, so that section 2.4 may be skipped without a loss of continuity.

2.4 Derivation of the New Context

Motivated by a desire to make connection with the traditional group velocity, we rewrite

the arrival time (2.27) of the pulse in terms of the frequency representations of the fields

involved. The denominator of (2.28) may be transformed immediately via Parseval’s

theorem: ∞∫
−∞

S (r, t ) dt =
∞∫

−∞
S (r,ω) dω, (2.31)

where the frequency representation of the Poynting vector is given by

S (r,ω) ≡ E (r,ω)× B∗ (r,ω)

µ0
. (2.32)

Employing the Fourier relation (2.7) in the numerator of (2.27) (with (2.28) inserted), we

find
∞∫

−∞
tS (r, t ) dt =

∞∫
−∞

t

 1p
2π

∞∫
−∞

E (r,ω)e−iωt dω


×

 1p
2π

∞∫
−∞

B
(
r,ω′)e−iω′t dω′

 dt . (2.33)

By introducing a frequency derivative to account for the factor t , the expression (2.33)

can be recast as
∞∫

−∞
tS (r, t ) dt = i

∞∫
−∞

dωE (r,ω)× ∂

∂ω

 ∞∫
−∞

dω′ B
(
r,ω′)
µ0

1

2π

∞∫
−∞

e−i(ω+ω′)t dt

 . (2.34)
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The final integral is recognized as a delta function, which permits the integration over ω′

to be performed:

∞∫
−∞

tS (r, t ) dt = i

∞∫
−∞

E (r,ω)× ∂

∂ω

B (r,−ω)

µ0
dω

= −i

∞∫
−∞

∂E (r,ω)

∂ω
× B∗ (r,ω)

µ0
dω. (2.35)

Here we have invoked the symmetry relation (2.10). We have also integrated by parts

in order to place (by preference) the derivative on the electric field rather than on the

magnetic field. In doing this, we have assumed a pulse of a finite duration. Equations

(2.31) and (2.35) lead to the frequency domain representation of the arrival time:

〈t〉r = T [E (r,ω)] , (2.36)

where

T [E (r,ω)] ≡−i

η̂ ·
∞∫

−∞
∂E (r,ω)
∂ω

× B∗ (r,ω)
µ0

dω

η̂ ·
∞∫

−∞
S (r,ω) dω

. (2.37)

In (2.37) we have indicated that the function T depends only on the electric field since

the magnetic field can be written in terms of the electric field through (2.16).

The arrival time of the pulse as expressed in (2.37) is not very useful in itself. Its

usefulness is revealed when applied to the difference in arrival times of a pulse to two

different locations, say r0 and r = r0 +∆r. As defined in (2.30), the difference in the arrival

times of the two points is

∆t ≡ 〈t〉r −〈t〉r0 = T [E (r0 +∆r,ω)]−T [E (r0,ω)] . (2.38)

Our goal is to recast (2.38) into a form that makes clear the connection between ∆t and

the group delay function ∂Rek
/
∂ω ·∆r.

To obtain the desired result, we first examine an explicit form for T [E (r0 +∆r,ω)].

With the solution (2.14) we can evaluate the integrand of the numerator of (2.37) at r0+∆r
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as follows:

∂E (r0,ω)e i k·∆r

∂ω
× B∗ (r0,ω)e−i k∗·∆r

µ0
= ∂

∂ω

([
E (r0,ω)e− Imk·∆r

]
e i Rek·∆r

)
×B (r0,ω)

µ0
e− Imk·∆re−i Rek·∆r

= i
∂Rek ·∆r

∂ω
E (r0,ω)×B∗ (r0,ω)e−2Imk·∆r

+∂E (r0,ω)e− Imk·∆r

∂ω
× B∗ (r0,ω)e− Imk·∆r

µ0
.

(2.39)

The integrand of the denominator in (2.37) is also evaluated at r0 +∆r, giving

S (r0 +∆r,ω) = E (r0,ω)e i Rek·∆re− Imk·∆r × B∗ (r0,ω)e−i Rek·∆re− Imk·∆r

µ0

= E (r0,ω)e− Imk·∆r × B∗ (r0,ω)e− Imk∗·∆r

µ0

= S (r0,ω)e−2Imk·∆r. (2.40)

Upon using (2.39) and (2.40) with the arrival time (2.37) we obtain

T [E (r0 +∆r,ω)] =
η̂ ·

∞∫
−∞

S (r,ω)
(
∂Rek
∂ω ·∆r

)
dω

η̂ ·
∞∫

−∞
S (r,ω) dω

−i

η̂ ·
∞∫

−∞
∂E(r0,ω)e− Imk·∆r

∂ω
× B∗(r0,ω)e− Imk∗·∆r

µ0
dω

η̂ ·
∞∫

−∞
e−2Imk·∆rS (r0,ω) dω

. (2.41)

Using the expressions (2.37) and (2.41), we can now write the delay time (2.38) as

∆t =
η̂ ·

∞∫
−∞

S (r,ω)
(
∂Rek
∂ω

·∆r
)

dω

η̂ ·
∞∫

−∞
S (r,ω) dω

+T
[

e− Imk·∆rE (r0,ω)
]
−T [E (r0,ω)] , (2.42)

which is our final result.
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2.5 Discussion of the New Context

Using the result (2.42), we can write the delay time as the sum of two terms with intuitive

interpretations:

∆t =∆tG (r)+∆tR (r0) . (2.43)

The first term in (2.43), the net group delay, is a spectral average of the group delay

function weighted by the spectral intensity that is experienced at the final point r:

∆tG (r) =
∞∫

−∞
ρ (r,ω)

(
∂Rek

∂ω
·∆r

)
dω, (2.44)

where ρ (r,ω) is a normalized spectral distribution of field energy at the final point r after

propagation:

ρ (r,ω) ≡ η̂ ·S (r,ω)

/
η̂ ·

∞∫
−∞

S (r,ω) dω. (2.45)

Note the close resemblance between (2.27) and (2.44). Both are expectation integrals,

the former being executed as a ‘center of mass’ integral in time, the later being executed

in the frequency domain on ∂Rek
/
∂ω ·∆r. In contrast to the traditional group delay

derived in section 2.2, the group delay function evaluated at every frequency present in

the final pulse (rather than at a single carrier frequency) influences the delay time in this

new context. The net group delay depends only on the spectral content of the pulse,

independent of its temporal organization (i.e. the phases of E (r,ω) and B (r,ω) do not

contribute). Only the real part of k plays a direct role in (2.44).

The second term in (2.43) represents a delay which arises solely from a reshaping of

the spectrum through absorption (or amplification) and is given by

∆tR (r0) ≡ T
[

e− Imk·∆rE (r0,ω)
]
−T [E (r0,ω)] , (2.46)

where T is the arrival time given in (2.27), but written as a function of the pulse spectrum

(see (2.37)). This reshaping delay is evaluated at r0, before propagation takes place. The
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reshaping delay is the difference between the pulse arrival time at the initial point r0

evaluated without and with the spectral amplitude that will be lost (or with and without

the spectral amplitude that will be gained) during propagation. Both terms in (2.46)

utilize the phase of the fields at r0. Thus, in contrast to the net group delay, the reshaping

delay is sensitive to how the pulse is organized.

The expression (2.43) gives the delay between the ‘center of mass’ arrival times for any

two points in a medium regardless of how the pulse evolves during transit. Since the form

is obtained without approximation, it is valid for pulses with arbitrary bandwidths. This

formalism does not attempt to define a specific ‘group velocity’ as being representative

of the overall pulse propagation, since propagation velocity need not be constant. Rather

we have demonstrated that the delay between arrival times at two points is related to a

linear superposition of group delays weighted by the pulse’s spectral content, as in (2.44).

(By taking the limit of small separation a local velocity can be defined at each point along

the propagation.18 However, we prefer to consider the difference in arrival times at two

discretely separated points since this is more directly applicable to experiment.)

In chapter 3 we demonstrate how this result may be used to understand several

properties of pulse propagation. Here we examine some of the general properties of this

result.

2.5.1 Reshaping Delay is Often Small

The two terms in (2.43) generally do not make equal contributions to the total delay time.

In particular, the reshaping delay is often negligible, so that the total delay time is given by

∆tG . This is the case if the spectral amplitude of the pulse is unaltered during propagation

(i.e. if the imaginary part of k can be neglected). The reshaping delay is also relatively

unimportant in the narrowband limit even if pulses experience strong absorption (or

amplification). If the pulse is unchirped before propagation the reshaping delay is again
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unimportant. In the specific case that a pulse is initially symmetric in time (indicating

that it must not be chirped) and propagates in one dimension, we can show analytically

that ∆tR vanishes completely.

To demonstrate this, we assume an initially symmetric pulse and choose the time

origin such that E (r0, t ) = E (r0,−t ). The arrival time of the original pulse at r0 is then

T [E (r0,ω)] ≡ 〈t〉r0 = 0. (2.47)

Fourier transform pairs have the property that if either the time or frequency domain

representation is real and even (in t or ω), the corresponding time/frequency representa-

tion will also have these properties. Thus, E (r0,ω) is real and an even function of ω. We

distinguish the spectrum of the modified pulse used in (2.46) from the original pulse with

a tilde, as follows

Ẽ (r0,ω) ≡ e− Imk·∆rE (r0,ω) . (2.48)

Evidently, Ẽ (r,ω) is real since E (r0,ω) is real. For one dimensional propagation (in the ẑ

direction) exponential term in (2.48) may be written as −ω Imn (ω)∆z/c, where n (ω) is

the complex index of refraction. It is fairly elementary to show that Re[n (ω)] is even while

Im[n (ω)] is odd. Using this fact, we see that the product ω Imn (ω) must be even. Thus

Ẽ (r0,ω) is real and even, indicating that Ẽ (r0, t ) will also be real and even. The magnetic

field of the modified pulse is found using (2.16):

B̃ (r0,ω) = ẑ × Ẽ (r0,ω) [Ren (ω)+ i Imn (ω)]/c. (2.49)

Because of the even/odd nature of the real and imaginary parts of n (ω), when the inverse

Fourier transform is carried out only the real part of B̃ (r0,ω) (which is even) contributes,

resulting in an even B̃ (r0, t ). The even Ẽ (r0, t ) and B̃ (r0, t ) combine to make an even

S̃ (r0, t ), so that the expression (2.27) for arrival time shows that

T
[

e− Imk·∆rE (r0,ω)
]
= 0. (2.50)

Hence, the reshaping delay is identically zero for any initially symmetric pulse.
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2.5.2 Narrowband Limit of the New Context

In the narrowband limit the delay time (2.43) reduces to the traditional result presented

in section 2.2. In this limit the reshaping delay tends to zero, as discussed above, so that

the total delay is given by the net group delay. The normalized spectral distribution in

this case becomes a delta function

ρ (r,ω) → δ (ω− ω̄) , (2.51)

where ω̄ is the central frequency of the pulse. The total delay is then calculated from

(2.44) as

∆t =
∞∫

−∞
δ (ω− ω̄)

(
∂Rek

∂ω
·∆r

)
dω (2.52)

= ∂Rek

∂ω

∣∣∣∣
ω̄

·∆r. (2.53)

This is in agreement with the well verified observation1, 5, 7, 8, 13 that a pulse travels at the

group velocity evaluated at ω̄ in the narrowband limit.

2.5.3 Group and Reshaping Delays can be Reversed

Finally, it is interesting to note that in (2.43) the ordering for the evaluation of the net

group delay and reshaping delay can be reversed. In other words, the arguments r and r0

in (2.43) can be interchanged which gives

∆tG (r)+∆tR (r0) =∆tG (r0)+∆tR (r) . (2.54)

This commutative property can dramatically alter the group and reshaping delays taken

individually. Nevertheless, their sum ∆t is unaffected by the ordering. The group delay

computed over the initial spectrum is

∆tG (r0) =
∞∫

−∞
ρ (r0,ω)

(
∂Rek

∂ω
·∆r

)
dω. (2.55)
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When the group delay is computed using the initial spectrum before the propagation,

the reshaping delay is evaluated at the end of propagation without and with the lost

spectral amplitude (speaking as though the medium is absorptive):

∆tR (r) = T [E (r0 +∆r,ω)]−T
[

eImk·∆rE (r0 +∆r,ω)
]

. (2.56)

In this expression, the initial spectral amplitude is restored to the second term. The proof

of (2.54) is straightforward. Directly by substitution into (2.41) we have

T
[

eImk·rE (r0 +∆r,ω)
]

=
η̂ ·

∞∫
−∞

S (r0,ω)
(
∂Rek
∂ω ·∆r

)
dω

η̂ ·
∞∫

−∞
S (r0,ω) dω

−i

η̂ ·
∞∫

−∞
∂E(r0,ω)
∂ω

× B∗(r0,ω)
µ0

dω

η̂ ·
∞∫

−∞
S (r0,ω) dω

(2.57)

When this and (2.41) are used in (2.56), the commutative relationship (2.54) is immedi-

ately verified. Although the two orderings stand on equal footing in a mathematical sense,

we prefer the ordering presented in (2.43) because it has a more obvious interpretation

than the reversed ordering in (2.54).

2.6 Net Group Delay

One of the appealing aspects of the new group delay context developed in this chapter is

the intuitive interpretation that can be given to the expressions. In this section, we discuss

the interpretation of the net group delay, ∆tG . In order to appreciate this interpretation,

we first discuss some of the qualitative aspects of pulse propagation.

We begin with the spectral representation of the Poynting vector. S (r,ω) can be viewed

as a ‘flux per frequency’ density function which indicates how much of the electromag-

netic energy flowing from the point r can be associated with a given spectral range. For
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example, the flux associated with the frequency range dω centered at a frequency ω is

given by S (r,ω)dω. When discussing a pulse in the frequency context, it is tempting to

ask how long it will take the energy associated with a given spectral range at one point to

propagate to a distant point. (In asking this question a definition of arrival time some-

what akin to (2.27) is implied since the flux associated with a spectral range does not

simply ‘arrive’ at an instant, but must be experienced over a length of time.) However, in

a dielectric medium this is a complicated question because of the fact that the medium

can exchange energy with the pulse.

As an example, consider a near-resonance, narrowband pulse as it propagates in an

absorbing medium. A point in the medium must experience a portion of the leading

edge of the pulse before it ‘realizes’ the amount of on-resonance spectrum in the pulse,

whereupon it begins absorbing these components from the subsequent portions of the

pulse. (For a more rigorous discussion of this principle, see section 4.5.) This asymmetric

(in time) absorption of the pulse can lead to the appearance of extremely fast or even

negative propagation velocity when arrival time is reckoned in the center of mass descrip-

tion. This does not indicate that anything was actually transported at the propagation

velocity; the flux that arrives at the second point corresponds only to the early portion of

the flux leaving the original point.

This example illustrates why we must be cautious in associating a velocity with the

rate at which energy in a given spectral range is transported from one point to another. It

is generally not very important to know the speed at which the energy associated with a

certain spectral range is transported from one point to another. In the frequency context,

the more useful question is: If the flux for a given spectral range is observed at some time

at a given point, at what time will the flux for that same spectral range be observed at a

distant point (without necessarily requiring that it be transported from one point to the

other). The answer to this question is that the flux associated with a narrow spectral range
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will be delayed according to its group delay function, ∂Rek
/
∂ω ·∆r. This is seen explicitly

in the net group delay as given in (2.44):

∆tG (r) =
∞∫

−∞
ρ (r,ω)

(
∂Rek

∂ω
·∆r

)
dω.

The distribution ρ (r,ω) is a spectral density function (i.e., it has units of 1/ω) which

describes what fraction of the pulse’s flux may be associated with a given frequency range.

The total delay of the pulse is the average of the group delay function at each frequency,

weighted by the fraction of the final pulse that can be associated with that frequency (i.e.,

ρ (r,ω) dω). The distribution ρ (r,ω) is evaluated at the end of propagation so that only

the spectral components that actually arrive at r contribute to the delay.

2.7 Reshaping Delay

The need for the reshaping delay ∆tR can be illustrated by a simple physical analogy.

Consider two runners as they travel at different (but constant) speeds down a street. The

runners each lose weight as they run (but at different rates) so that their masses, m1 (x)

and m2 (x), are functions of position. We define the arrival time of the two-runner system

to a point x on the street by analogy to (2.27) as

〈t〉x ≡ m1 (x)

m1 (x)+m2 (x)
t1 + m2 (x)

m1 (x)+m2 (x)
t2, (2.58)

where t1 and t2 give the individual arrival times of the two runners at the point x. The

delay function for a runner to traverse a displacement ∆x is given by ∆x/v , where v

is the runner’s velocity. In this analogy, the runners correspond to different spectral

components in a pulse, their normalized masses correspond to ρ (r,ω), and the time

it takes them to run between two points on the street corresponds to the group delay

function. (The runners in this analogy are actually transported according to their delay

time. Recall, however, that the group delay function does not describe energy transport
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but simply the difference in arrival times.) The initial positions of the two runners at t = 0

are given by x1 and x2. We now seek the overall delay between the arrival time of the

two-runner system at point xa and xb = xa +∆x. This is directly found to be

∆t ≡ 〈t〉xb
−〈t〉xa

=
m1 (xb) xb−x1

v1
+m2 (xb) xb−x2

v2

m1 (xb)+m2 (xb)
−

m1 (xa) xa−x1
v1

+m2 (xa) xa−x2
v2

m1 (xa)+m2 (xa)
. (2.59)

We can recast (2.59) in an expression analogous to (2.43) as follows:

∆t =∆tG +∆tR , (2.60)

where the first term is given by

∆tG ≡ m1 (xb)

m1 (xb)+m2 (xb)

∆x

v1
+ m2 (xb)

m1 (xb)+m2 (xb)

∆x

v2
. (2.61)

This expression for∆tG is simply the weighted average (using final weights) of the runner’s

individual delay times, and corresponds to (2.44). The second term in (2.60) is given by

∆tR ≡
m1 (xb) xa−x1

v1
+m2 (xb) xa−x2

v2

m1 (xb)+m2 (xb)
−

m1 (xa) xa−x1
v1

+m2 (xa) xa−x2
v2

m1 (xa)+m2 (xa)
. (2.62)

It gives the difference between the arrival time at the point xa calculated with the original

and with the final masses. With a little algebra, we can cast (2.62) in a more illuminating

form:

∆tR =
(

xa −x1

v1
− xa −x2

v2

)(
m1 (xb)m2 (xa)−m1 (xa)m2 (xb)

[m1 (xa)+m2 (xa)] [m1 (xb)+m2 (xb)]

)
. (2.63)

Once we have specified the mass functions for the two runners (in the case of a pulse,

this corresponds to specifying the initial spectral profile and the absorptive properties of

the medium), the second factor in (2.63) is a constant. The reshaping delay is then seen

to depend only on the initial positions of the two runners, as found in the first factor. In a

physical sense, the first factor in (2.63) measures how much of a head start one runner
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has over the other at the time when the two-runner system arrives at xa . If both runners

start the race at xa at the same time, the reshaping delay is identically zero.

If the runners maintain a constant mass as they run, the center of mass in this system

has the same delay time between two points along the street regardless of whether or

not one of the runners was initially given a head start. (In this case the second factor

in (2.63) is zero.) In contrast, imagine that one of the runners loses mass as he runs

and completely disappears before reaching xb . The arrival time at xa will be between

the individual arrival times of the two runners, while the arrival time at xb will coincide

exactly with the arrival of the non-disappearing runner. In this case, the delay time is

highly dependent on the head start that one runner has over the other at the time when

the system arrives at xa .

From the analogy, we can see that the reshaping delay is required to compensate for

the affect of absorption when a pulse is initially chirped at r0. Note the correspondence

between (2.62) and the reshaping delay (2.46) for an optical pulse:

∆tR (r0) ≡ T
[

e− Imk·∆rE (r0,ω)
]
−T [E (r0,ω)] .

In a chirped pulse, the various spectral components of the flux do not pass the initial point

r0 at the same time (i.e., some spectral components have a ‘head start’ on others). If there

is no amplification or absorption, this presents no problems since the center of mass

is delayed by the same amount regardless of when the different spectral components

occur in the pulse. However, if the spectral amplitudes are modified during propagation,

the delay time of the center of mass will be affected. The reshaping delay measures the

magnitude of this effect.



Chapter 3

Application of the New Group Delay

Context

This chapter illustrates several situations in which the new context for group delay derived

in chapter 2 may be used to study pulse propagation. We begin by discussing the effect of

bandwidth on delay time. Next we discuss the effects of propagation distance on delay

time. We then discuss the effects that angular dispersion can have on delay times. The

angular dispersive case illustrates the effect of sensor orientation when detecting the

incoming pulse. Finally, we illustrate how the new group delay context can be applied to

describe precursors. The material presented in this chapter closely reflects the examples

used in Refs. [19], [20], and [21].

3.1 Pulse Bandwidth and Delay Time

In this section we study how the bandwidth of a pulse affects the delay time as it prop-

agates through a medium. In order to simplify the discussion, we consider an initially

symmetric pulse propagating in one dimension, so that the reshaping delay vanishes.

31
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Equation (2.43) then reduces to:

∆t =
∞∫

−∞
ρ (r,ω)

(
∂Rek

∂ω
·∆r

)
dω, (3.1)

where ρ (r,ω) is the spectral distribution of field energy at the final point r:

ρ (r,ω) ≡ η̂ ·S (r,ω)

/
η̂ ·

∞∫
−∞

S (r,ω) dω. (3.2)

We will first examine the group delay function ∂Rek
/
∂ω ·∆r (which is a property of the

medium only, once ∆r is chosen) and then look at the pulse and its interaction with the

medium (which enters (3.1) via the distribution ρ (r,ω)).

The new context derived in chapter 2 is independent of the model used to describe

the medium. However, for illustration purposes we now employ the Lorentz model with

a single resonance at ω0 and a damping frequency γ. As mentioned in section 2.2, the

complex index of refraction in this model is given by

[n (ω)]2 = 1+ f ωp
2

ω0
2 −ω2 − iγω

, (3.3)

whereωp is the plasma frequency and f is the oscillator strength. The oscillator strength f

is positive for an absorbing media and negative for an amplifying medium.1 We consider

a pulse with a Gaussian electric field at r0, given by

E (r0, t ) = E0 exp
(−t 2 /

τ2 )
cos(ω̄t ) (3.4)

as it propagates through this medium. Notice that this pulse is symmetric about t = 0 as

is required in order to write the delay time as in (3.1).

3.1.1 Absorbing Medium Example

For our first example we choose the model parameters to be ω0 = 100γ and f ωp
2 =

100γ2 (an absorbing medium), and consider propagation through a displacement ∆r =



CHAPTER 3. APPLICATION OF THE NEW GROUP DELAY CONTEXT 33

−5 0 5

0

0.5

1

In
de

x

(ω − ω
o
) / γ

(a)

Re[n]

Im[n]

−5 0 5

−8

−6

−4

−2

0

2

γ 
(∂

k 
/ ∂

ω
 ⋅ 

Δr
)

(ω − ω
o
) / γ

(b)

Figure 3.1: (a) Index of refraction for an absorbing medium. (b) Group delay function for

a displacement of ∆r = 0.1
(
c
/
γ

)
ẑ.

0.1
(
c
/
γ

)
ẑ. Figure 3.1(a) plots the real and imaginary parts of the index of refraction for

a medium with these parameters. For simplicity, we consider propagation in only one

dimension (the ẑ direction). The wavevector is obtained from the index of refraction

through k (ω) = ẑωn (ω)/c, allowing calculation of the group delay function ∂k
/
∂ω ·∆r.

Figure 3.1(b) shows the group delay function corresponding to the index plotted in

Fig. 3.1(a). Notice that for the parameters we have chosen, the spectral region near the

resonance frequency ω0 exhibits negative group delay values. While not all group delay

functions exhibit negative values, the general shape of the functions in Fig. 3.1(b) (i.e.,

the delays are shortest near resonance and increase away from resonance) is typical for

single resonance absorbing media.

We first look at a relatively narrowband pulse with initial duration τ = 10
/
γ , and

the spectrum centered on resonance (i.e. ω̄=ω0). Figure 3.2(a) depicts the normalized

spectral distribution function (3.2) for this pulse at r0 before propagation and Fig. 3.2(b)

shows the distribution after propagating through the displacement∆r. Because the initial

pulse spectrum is narrow compared to the resonance, the absorption is roughly constant
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Figure 3.2: (a) ρ (r0,ω), the normalized spectral profile for a narrowband pulse at r0.

(b) ρ (r,ω), the normalized spectral profile for the same pulse at r ≡ r0 +∆r.

over the pulse’s spectrum. Thus the distribution ρ (ω) changes little during propagation,

even though the amplitude of S (ω) decreases significantly due to absorption. The total

delay time is given by the expectation of the group delay function (shown in Fig. 3.1(b))

weighted by the final spectral distribution at r (shown in Fig. 3.2(b)) as prescribed by (3.1).

As the carrier frequency ω̄ is varied, the distribution ρ (r,ω) effectively scans through

the group delay function. Figure 3.3(a) plots the delay time as the pulse’s central frequency

ω̄ is varied relative to the resonance frequency ω0. Since ρ (r,ω) is narrow compared to

the width of the resonance, the total delay closely resembles the group delay function in

Fig. 3.1(b). Notice that for frequencies near resonance, the total delay time is negative.

This indicates that the pulse center of mass at r arrives before the center of mass at

r0 arrives. Figure 3.3(b) plots the ratio of total pulse energy after propagation to that

before propagation as the pulse’s central frequency is varied. Notice that the pulses with

negative delay times also experience strong absorption. The negative delay times are

closely associated with this absorption.

To help visualize how absorption causes negative delay times for the pulse above, we
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Figure 3.3: (a) Total delay ∆t for the narrowband pulse in an absorbing medium as the

carrier frequency ω̄ is varied. (b) Overall transmission as the carrier frequency ω̄ is varied.

construct the spatial profile of the pulse at various times using the techniques discussed

in section 2.1. For this illustration we again center the pulse spectrum on the resonance

frequency (i.e. ω̄=ω0). Figure 3.4 shows a sequence of spatial profiles for the pulse at

different times. The vertical line at z = 0 represents an absorbing medium (the parameters

are as above, and the thickness is∆r = 0.1
(
c
/
γ

)
ẑ) with vacuum on either side. The dotted

lines represent the original pulse as it would have propagated in vacuum (i.e., as if the

absorbing medium were not there), and the solid line represents the pulse as it propagates

through the absorber. Reflections from the boundaries have been ignored. (In Fig. 3.4

we plot only the envelope of the pulse while ignoring the rapid oscillations which occur

beneath the envelope. Unless otherwise noted, this is the case for all temporal and

spatial profiles plotted in this work.) In this time sequence it is apparent that the medium

absorbs more field energy from the trailing portion of the pulse than from the leading

portion (the frame at γt = 0 illustrates this particularly well). This shifts the center of

mass forward in time, resulting in the negative delay time predicted in Fig. 3.3.

We now examine the behavior of a relatively broadband pulse as it propagates through
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Figure 3.4: Time sequence of the spatial profile of the pulse in Fig. 3.3 with the pulse

centered on resonance (ω̄=ω0). Distances are measured in units of c/γ.
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Figure 3.5: (a) ρ (r0,ω), the normalized spectral profile for a broadband pulse at r0.

(b) ρ (r,ω), the normalized spectral profile for the same pulse at r ≡ r0 +∆r.

the absorbing medium described in relation to Fig. 3.1. The pulse is again Gaussian as

given by (3.4), but the width is now chosen as τ= 1/γ. Fig. 3.5 shows the initial and final

spectral distributions for this pulse with its spectrum centered on-resonance (ω̄=ω0).

In this case, the absorption is not uniform over the spectral components present in

the pulse, and ρ (ω) changes significantly during propagation. Note that it is the near-

resonance spectral components with the short delay times that are removed from the

final distribution. Again, the total delay time is given by the expectation of the group

delay function (Fig. 3.1(b)) weighted by the final spectral distribution at r (Fig. 3.5(b)) as

prescribed by (3.1).

Figure 3.6(a) plots the total delay time as the central frequency ω̄ is varied. Note that

in the broadband case, the negative delay times seen in Fig. 3.3(a) disappear since the

spectral components with short delay times were removed from ρ (r,ω). This illustrates

the general principle that superluminal effects are a narrowband phenomenon which

disappears as bandwidth is increased. Figure 3.6(b) plots the ratio of the total initial pulse

energy to the final energy. Because the spectrum is broad compared to the resonance,
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Figure 3.6: (a) Total delay ∆t for the broadband pulse in an absorbing medium as the

carrier frequency ω̄ is varied. (b) Overall transmission as the carrier frequency ω̄ is varied.

the fraction of the pulse energy that is absorbed by the medium is much smaller than in

the narrowband case.

To illustrate the difference between the narrowband and broadband cases, in Fig. 3.7

we again construct a time sequence of spatial profiles for the narrowband case (with the

pulse spectrum centered at ω̄=ω0). This example illustrates the commonplace situation

in which the exiting pulse is delayed with respect to the entering pulse. Note that the

medium absorbs more field energy from the leading portion of the pulse than from the

trailing portion of the pulse, resulting in the overall delay. (In fact, the figure shows that

during the trailing portion of the pulse the medium actually gives energy to the pulse.

To see this, note that during the trailing portion the transmitted pulse rises above the

vacuum pulse. Thus, while the overall effect of the medium is absorptive, there are times

during the trailing portion when the medium amplifies the pulse by returning some of

the energy taken from the leading portion. We discuss this effect further in the chapters 4

and 5.)
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Figure 3.7: A time sequence of the spatial profile of the pulse in Fig. 3.6 with the pulse

centered on resonance (ω̄=ω0). Distances are measured in units of c/γ.
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Figure 3.8: (a) Index of refraction for an amplifying medium. (b) Group delay function

for a displacement of ∆r = 0.1
(
c
/
γ

)
ẑ.

3.1.2 Amplifying Medium Example

The description of delay time for an amplifying medium is very similar to the absorbing

case. To illustrate, we choose the model parameters to be ω0 = 100γ and f ωp
2 =−100γ2

(i.e., the same parameters as for the absorbing medium just discussed except f is nega-

tive), and consider propagation through a displacement ∆r = 0.1
(
c
/
γ

)
ẑ. Figure 3.8(a)

plots the real and imaginary parts of the index of refraction for a medium with these

parameters. Figure 3.8(b) plots the group delay function corresponding to this index

of refraction. In the amplifying case we observe that the shortest delay times occur at

frequencies just away from the resonance frequency and the longest delay times occur

right on resonance. For the parameters chosen here, the group delay function takes on

negative values at its minima, although this need not be the case in general.

To observe the difference between broadband and narrowband pulses in an am-

plifying medium, we consider the same two initial pulses discussed in relation to the

absorbing medium as they propagate through this amplifying medium. Figure 3.9(a)
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Figure 3.9: (a) Normalized spectral profile for a narrowband pulse at r0 (dotted line) and

r ≡ r0 +∆r (solid line). (b) Total delay ∆t for this pulse in an amplifying medium as the

carrier frequency ω̄ is varied.

plots the initial and final spectral distributions for the narrowband pulse (τ= 10/γ) in the

case where its spectrum is centered on-resonance. As with the narrowband pulse in the

absorbing medium, the initial and final distributions are very similar since amplification

is roughly constant over the pulse’s spectrum. Figure 3.9(b) plots the total delay of the

pulse as its central frequency ω̄ is varied relative to the resonance frequency. In this

amplifying case we see that negative delay times are possible for a pulse whose spectrum

is located just off-resonance.

As with the absorbing case, it is informative to view the spatial profile of the pulse as it

propagates through the amplifying medium. For this illustration we center the spectrum

just above resonance at ω̄=ω0 +γ, where the pulse exhibits the largest negative delay

time in Fig. 3.9(b). Figure 3.10 shows the spatial profile of this narrowband pulse as it

traverses the medium. Notice that the leading edge is amplified to a greater extent than

the trailing edge. This asymmetric amplification shifts the center of the pulse forward in

time, leading to the negative delay time.
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Figure 3.10: Time sequence of the spatial profile of the pulse in Fig. 3.9 with the pulse

centered above resonance at ω̄=ω0 +γ. Distances are measured in units of c/γ.
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Figure 3.11: (a) Normalized spectral profile for a broadband pulse at r0 (dotted line) and

r ≡ r0 +∆r (solid line). (b) Total delay ∆t for this pulse in an amplifying medium as the

carrier frequency ω̄ is varied.

Figure 3.11(a) plots the initial and final spectral distributions for the broadband

pulse (τ= 1/γ) centered on-resonance. Here we see that the distribution becomes much

more sharply peaked around the resonance frequency after propagation. This places

more weight on the slow on-resonance delay times when the expectation (3.1) is taken.

Figure 3.11(b) plots the total delay of the broadband pulse as its central frequency is

varied relative to the resonance. Because the longer delay times receive more weight in

the expectation integral, the negative delay times disappear.

Figure 3.12 shows a time sequence for the broadband pulse as it propagates in the

amplifying medium (with ω̄ = ω0 +γ). In this case the trailing edge is amplified more

than the leading edge, and the outgoing pulse is significantly delayed with respect to

the incoming pulse. This is the more common situation for pulses propagating in an

amplifying medium.
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Figure 3.12: Time sequence of the spatial profile of the pulse in Fig. 3.10 with the pulse

centered above resonance at ω̄=ω0 +γ. Distances are measured in units of c/γ.
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Figure 3.13: Delay time as a function of pulse duration (bandwidth) for a pulse with

carrier frequency ω̄=ω0 +γ propagating in an amplifying medium.

3.1.3 Continuous Variation of Bandwidth Example

The two preceding examples illustrate how the delay times change when two discrete

pulses with different bandwidths are considered. It is also interesting to examine how the

delay time changes as we vary the pulse bandwidth continuously. For this example we

use the amplifying medium described in subsection 3.1.2 and center the bandwidth of

the pulse at ω̄=ω0 +γ (i.e. where the narrowband pulse exibited the most negative delay

time). Figure 3.13 plots the delay time as the pulse duration τ (and hence the bandwidth)

is varied. As expected, the pulses with narrow bandwidths (large τ) exhibit superluminal

effects. The behavior becomes subluminal as the bandwidth increases (τ decreases).

This is easily understood in terms of (3.1). As the bandwidth increases, ρ (r,ω) includes

more and more of the ‘slow’ spectral components near ω0. When the expectation (2.44)

is taken, these ‘slow’ spectral components outweigh the effect of the frequencies with a

negative group delay function resulting in a subluminal delay time.

As the pulse duration goes to zero in Fig. 3.13, the total delay time decreases and



CHAPTER 3. APPLICATION OF THE NEW GROUP DELAY CONTEXT 46

approaches an exactly luminal delay time. This is a general phenomenon which can be

clearly understood in terms of the broadband context developed in chapter 2. In the

limit where the duration of the pulse goes to zero, becoming a delta function in time,

the spectral content of the pulse extends uniformly over all frequencies. By comparison,

any resonance structure encompasses a finite bandwidth, and the reshaping delay tends

to zero. For simplicity, we consider all wave vectors to be parallel, with k (ω) = k (ω) k̂.

Then we have from (2.44) that ∆t →∆tG ≈ Rek/ω|∞ ·∆r = k̂ ·∆r/c , assuming a refractive

index which approaches unity at high frequency. This demonstrates (without lengthy

analyses or numerical simulations) the well-known fact that the velocity for a sharply

defined signal is exactly c . Thus, the Sommerfeld-Brillouin result4 of luminality for pulses

of definite support is consistent with and even implied by the new group delay context.

3.2 Propagation Distance and Delay Time

Although we have demonstrated that superluminal behavior is most pronounced for

narrowband pulses, if ∆r is small enough it is possible to observe superluminal effects

for broadband pulses also. This was demonstrated recently by Talukder and coworkers22

when they performed a superluminal propagation experiment in an absorbing medium

under relatively broadband conditions (where the traditional narrowband expansion

of group velocity fails). Although their on-resonance femtosecond laser pulses initially

propagated superluminally through a dye cell, as the effective length of the propagation

medium was increased, they observed a transition to subluminal behavior. The formalism

developed in chapter 2 may be used to explain why this transition inevitably occurs as

an initially superluminal pulse is allowed to propagate longer distances in an absorbing

medium.

If a pulse is initially unchirped, the reshaping delay is negligable, and the total delay is
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given by ∆tG (r). When the pulse spectrum is centered on-resonance, the initial spectral

profile ρ (r0,ω) will primarily include the ‘fast’ spectral components near ω0. (Remember

that in an absorbing medium, frequencies near ω0 have the shortest group delay func-

tion.) However, as it propagates the fast spectral components near ω0 are absorbed from

the pulse spectrum. Eventually only spectral components away from the resonance (i.e.

frequencies where the group delay function gives a luminal delay) are left in the spectrum.

Since it is the final distribution ρ (r,ω) that is used to calculate the net group delay (2.44),

the delay time inevitably becomes subluminal.

The situation in an amplifying medium is similar. In this case, it is the off-resonance

frequency components that have the superluminal group delays. As the pulse propagates,

the amplifying medium adds the slow near-resonance frequencies to the pulse spectrum.

Thus, an initially superluminal pulse whose spectrum is centered off-resonance will

eventually have a luminal delay time as ρ (r,ω) changes to include more and more near-

resonance frequencies.

3.2.1 Superluminal Delays and Propagation Distance

The preceding arguments imply that any finite pulse that initially exhibits superluminal

delay times will eventually have luminal delay times as ∆r is increased. To illustrate this

transition, Fig. 3.14(a) plots delay time as a function of displacement in an amplifying

medium. The medium parameters are the same as in Fig. 3.8 except for the variable

displacement. The initial pulse is chosen to be a narrowband gaussian as in Fig. 3.9, with

τ = 10
/
γ and ω̄ = ω0 +γ. The delay time is scaled by c /∆r so that propagation at the

speed of light has a scaled delay time of 1. Figure 3.14(b) shows the group delay function,

also scaled by c /∆r for comparison . For small displacements, the delay time matches

the group delay function evaluated at ω̄. As the pulse propagates and acquires more

on-resonance spectral intensity, the delay time shifts to the on-resonance value of the
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Figure 3.14: (a) Total delay, scaled by c /∆r , as a function of displacement. (b) Group

delay function divided by displacement.

group delay function.

This example illustrates the principle that superluminal effects in amplifying media

will be observed over the longest distances when the pulse’s spectrum has little spectral

content on the resonance. In absorbing media, as mentioned above, superluminal effects

persist longest for pulses with the least spectral content away from resonance. (This is

why narrowband pulses are generally used in both amplifying and absorbing experiments

designed to observe these effects.)

3.2.2 Increasing Superluminal Propagation Distance

Bolda et. al.1 proposed a technique to achieve the longest possible superluminal propaga-

tion distances in amplifying media. They proposed to initially send the pulse through an

absorbing medium to remove the near-resonance components from the pulse spectrum.

This modified pulse is then sent through an amplifier with the same resonance frequency

as the absorber. Since the slow near-resonance spectral components were attenuated in
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the absorber, a relatively large propagation distance is required before the on-resonance

frequency components enter into the expectation (2.44). (Of course there is no free lunch

here: the extra long delay time in the absorber counterbalances the short delay time in

the amplifier.)

Figure 3.15 reproduces a time sequence of spatial the distribution of field energy

which appeared in the article describing the experiment proposed by Bolda. Again, a

dashed pulse is shown which propagates at exactly c (i.e. as if the absorber and amplifier

were not there). The Lorentz model is used for the two media with ω0 = 2×107γ, ωp =
100γ, and ∆r = 0.5c

/
γ . The oscillator strength is f = 1 for the absorbing medium and

f =−1 for the amplifier. The pulse is chosen to be gaussian as in (3.4) with τ= 0.264
/p

2γ

and ω̄=ω0 +ωp /3.

Figure 3.16(a) plots the spectral distribution of the pulse at different points in the

medium. Figure 3.16(b) shows the group delay function for the amplifying medium. As

usual, the delay time is predicted by the expectation of the group delay function weighted

by the spectral distribution. (In the amplifying medium the reshaping delay ∆tR also

plays a role since the pulse was chirped in the absorber. The reshaping delay is still

small, however, amounting to about a 5% correction to∆tG .) Because the near-resonance

spectral components were removed, the large values of the group delay function near

resonance do not play a role in the expectation integral (2.44). Thus, the pulse passing

through the amplifier can exhibit superluminal behavior over a relatively long distance.

If the full Gaussian is sent through the amplifier without the preparation in the pre-

absorber, superluminal behavior persists over a displacement of only ∆r = 7×10−3c
/
γ

before becoming subluminal (and experiencing extreme amplification). This transition

occurs when the amplitude of the on-resonance peak in ρ (r,ω) has roughly the same

amplitude as the original peak at the carrier frequency ω̄.

In addition to providing an example of how superluminal behavior can be extended
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Figure 3.15: Time sequence of a Gaussian pulse traversing an absorbing medium fol-

lowed by an amplifying medium as proposed by Bolda.1
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Figure 3.16: (a) Spectral distribution before (dashed) and after (solid) traversing the

absorber. The distribution after the amplifier is the same as the initial distribution.

(b) Group delay function for the amplifying medium.

over longer displacements, this example demonstrates the elegance and utility of our

result (2.43). In Ref. [1] the prediction of a negative delay time is made using the traditional

series expansion approach. The analytic motivation for introducing the absorber is simply

that “frequencies very close to resonance are amplified by the gain medium to such an

extent that the power-series expansion breaks down."1 In contrast, our new context

gives clear insight into the physical reasons why the power series approach cannot be

used to describe the pulse in the amplifier without first sending it through the absorber.

If the unabsorbed pulse were sent into the amplifier, as the near-resonance frequency

components were added to the pulse its velocity would change rapidly from superluminal

to highly subluminal (as in Fig. 3.14). Since the expansion terms evaluated at a single

carrier frequency are useful to describe roughly constant velocity, they fail to describe the

situation.
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3.3 Angularly Dispersive Systems

In sections 3.1 and 3.2 we have discussed pulse propagation in only one dimension. It is

also interesting to consider delay times in angularly dispersive optical systems where the

direction of k (ω) depends on frequency. Such systems include grating pairs, prism pairs,

and material slabs which are angularly dispersive (within the material) under oblique

incidence. These systems are routinely employed in short pulse lasers to control the

temporal profile of pulses and to mitigate unwanted dispersion.23–25 In an angularly

dispersive system, the orientation of this energy sensor (specified by η̂) influences arrival

time for the pulse since different frequency components may illuminate the sensor closer

to or farther away from normal incidence.

In many angularly dispersive systems the directional spread of k (ω) is confined to a

plane (say the x-y plane), so that the k (ω) may be represented as

k (ω) = k (ω)
[
cosθ (ω) x̂ + sinθ (ω) ŷ

]
(3.5)

where θ (ω) is the direction of travel for each frequency component referenced to the

x-axis as depicted in Fig. 3.17(a). For a displacement ∆r ≡ x̂∆x + ŷ∆y as depicted in

Fig. 3.17(b), the phase delay is then given by

k (ω) ·∆r = ω

c
n (ω)

[
∆x cosθ (ω)+∆y sinθ (ω)

]
, (3.6)

where we have incorporated the dispersion relation: k (ω) =ωn (ω)/c . Once the direction

of travel, given by θ (ω), is specified we can compute S (r,ω) at any point in the system

in terms of a given input pulse using the methods described in section 2.1. In order

to calculate delay times, we specify the detector angle (given by η̂), then calculate the

distribution ρ (r,ω), and finally determine ∆t using (2.43). (For more details on angularly

dispersive systems see Ref. [21])
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Figure 3.17: (a) Orientation of k (ω) assumed to lie in the x-y plane. (b) Displacement ∆r

between points r0 and r where pulse forms will be examined.

3.3.1 Diffraction Grating Example

To illustrate the effect of angular dispersion on delay time, we consider the specific

example of a pulse diffracting from a grating in vacuum. In this system the dispersion

is due solely to the angular spread of k (ω), with no contribution from a propagation

medium (i.e., n (ω) = 1 in (3.6)). Thus, the reshaping delay plays no part, and the total

delay is given by (3.1). We orient the diffraction grating parallel to the y-axis and choose

our initial reference point r0 on the diffraction grating surface as shown in Fig. 3.18. For

first order diffraction θ (ω) is readily obtained from the well-known diffraction grating

law:

θ (ω) = sin−1
[

2πc

ωd
− sinθi

]
, (3.7)

where θi is the incident angle and d is the grating line spacing. We assume that all

frequencies associated with the initial pulse travel in a single direction before diffracting

from the grating, so that θi is a constant. Once the system parameters have been defined,

we may use (3.7) together with (3.6) to calculate the group delay function ∂Rek
/
∂ω ·∆r.

The spectral components of the electric field in this system can be written in terms of
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Figure 3.18: Geometry for the diffraction grating.

the field amplitude at r0 (after reflection) using the solution (2.14):

E (r,ω) = E (r0,ω)
[−sinθ (ω) x̂ +cosθ (ω) ŷ

]
e i k(ω)·∆r (3.8)

with the magnetic field given by

B (r,ω) = 1

c
E (r,ω) ẑ. (3.9)

Here we have assumed p-polarized light propagating in the x-y plane. The spectral

representation of the Poynting vector from (3.8) and (3.9) becomes

S (r,ω) ≡ E (r,ω)× B∗ (ω,r)

µ0

= ε0c |E (r0,ω)|2 [
cosθ (ω) x̂ + sinθ (ω) ŷ

]
. (3.10)

Note that S (r,ω) is independent of the observation point r since there is no attenuation

or amplification in this system. Thus, the spectral distribution function ρ (r,ω) will not

vary with position, but will vary with the choice of η̂.

We consider a Gaussian pulse defined by (3.4) as it diffracts from a grating surface.

The incoming pulse strikes the grating surface at an angle of θi = 20◦ and the line spacing
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Figure 3.19: (a) Snapshot of the intensity distribution of a Gaussian pulse diffracting

from a grating surface. (b) Angle of the Poynting vector, measured from the horizontal

x-axis, for the pulse illustrated in (a).
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Figure 3.20: (a) Group delay function for a grating. (b) The normalized spectral distribu-

tions ρ (r,ω) when the detector angle is set to 160 (dashed), 220 (solid), and 280 (dotted)

degrees.

is chosen to be d = 1/1200 mm. Figure 3.19(a) shows a two dimensional plot of the

intensity at t = 0 for a pulse with width τ = 5 fs, and ω̄ chosen to correspond with a

vacuum wavelength of 800 nm. The spatial dimensions of the figure are 0.5 mm wide and

1 mm tall. For reference, the incoming pulse is also shown. Arrows show the direction of

the wavevector associated with the center frequency ω̄. Figure 3.19(b) shows the direction

of the Poynting vector at each point of the intensity distribution (points with an intensity

less than 10−4 in Fig. 3.20(a) are set to black inFig. 3.19(b)). As time proceeds, both the

intensity and direction patterns slide vertically downward along the grating surface while

maintaining their forms. Thus, as a given point in the system experiences the pulse, the

direction of the Poynting vector changes in time as the pulse passes. This change in

direction is a general feature of a chirped pulse in an angularly dispersive system and

influences the efficiency of detecting the pulse.

Figure 3.20(a) plots the group delay function for this system at a point displaced

by ∆r = 0.25 mm x̂ from r0. Note that low frequencies have long delay times and high
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Figure 3.21: Pulse delay time from r0 to r as a function of detector orientation, η̂ , for the

system illustrated in Fig. 3.18. Angle is measured from the horizontal x-axis.

frequencies have short delay times. As mentioned before, the normalized spectral distri-

bution depends on the choice of η̂. Figure 3.20(b) plots ρ (r,ω) for the three cases where η̂

is oriented at 160◦ (dashed), 220◦ (solid), and 280◦ (dotted) measured from the positive

x-axis. Notice that the high frequency components are detected more efficiently at low

angles, and low frequency components become more important at high angles. As usual,

the delay time for the pulse is calculated via (3.1). Figure 3.21 plots this delay time as the

sensor is rotated (i.e., η̂ is varied) at r. The delay time increases as the detector rotates

counterclockwise and becomes more sensitive to low frequencies and less sensitive to the

high frequencies. In generating this plot, we have considered the detector to be sensitive

on only one side so that contributions to the integrals in (3.2) with positive dot product

were ignored. This effect is not important when the detector is oriented roughly towards

the grating.

While the sensor angle plays a role in determining the delay time associated with

traversing ∆r, the result is not influenced by the state of the pulse’s chirp. This stems

from the fact that the Poynting vector in (3.2) is insensitive to the phases of the individual
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spectral field components. Therefore, the propagation time for the pulse to traverse

∆r cannot recognize the presence of chirp within the context of (3.1). Whether the

pulse begins relatively compressed and then incurs chirp, begins with a negative chirp

which compresses during propagation, or begins with a positive chirp which becomes

more pronounced during propagation, the delay time is the same. (In our example,

the pulse starts unchirped and incur positive chirp as it propagates.) This indicates

that the direction of the Poynting vector evolves in time in such a way as to counteract

asymmetries in the chirping process so that propagation time as noted by the sensors at

r and r0 is independent of the state of chirp. For this to be true, it is important that the

orientation of the two sensors match since this was assumed in deriving (2.43).

3.3.2 Diffraction Gratings and Group Delay

In addition to providing an example of how detector orientation can affect delay times,

diffraction gratings provide an interesting illustration26 of the superposition principle

discussed in section 2.6. In order to appreciate this illustration, we first present some

background about the parallel grating pair system. In the original work considering the

grating pair system, Treacy27 studied the frequency dependent phase delay experienced

by a pulse as it propagates through the system. He first computed the phase delay as

k ·∆r = ωl (ω)/c, were l (ω) is the length of the path traced by a ray (representing the

frequency ω) as it traverses the system. However, he then showed that the derivative of

the phase delay must be given by ∂k ·∆r (ω)/∂ω= l (ω)/c . Finally, he argued that a phase

matching term should be appended to the original phase delay in order to arrive at the

correct result.

The argument for the phase matching term is subtle and connected with the specific

geometry of the gratings. This prompted Brorson and Haus28 to reexamine the setup in

terms of an energy transport argument. They first showed that the diffraction grating law
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(3.7) is derivable using variational methods. They then stated that since energy transport

must occur at velocity c (assuming vacuum between gratings) along the path predicted

by variational methods, the group delay function ∂k (ω) ·∆r
/
∂ω must be equal to l (ω)/c ,

where l (ω) is the frequency-dependent path length used by Treacy. In this manner

they were able to obtain Treacy’s result without the need for the phase matching term

introduced by Treacy. The argument of Brorson and Haus implies linear superposition

principle for group delays, although this fact was not emphasized in the paper. (It is

appropriate to associate the group delay with energy transport in this situation since

no energy is absorbed in the system.) Equation (2.44) explicitly demonstrates the linear

superposition principle of group delay that is implicit in the Brorson and Haus argument.

3.4 Group Delay and Precursors

One of the failings of the traditional group velocity description is its inability to de-

scribe precursor fields. In simple terms, a precursor field is what is left over after a

near-resonance pulse has propagated a large distance in an absorbing medium. This

type of propagation field was first analyzed by Sommerfeld and Brillouin,4 and their

original analysis has since been refined and extended by others.29 To illustrate the issues

involved in this type of problem, we first consider a typical situation where precursors

are observed. Then we compare and contrast the traditional method used to analyze the

problem with a method suggested by the new group delay context.

3.4.1 Typical Precursor Problem

In this section we illustrate a scenario where precursor fields are observed. The medium in

this example is given by single resonance Lorentz oscillator with parameters ω0 = 50/7γ,

ωp = 25
p

5/7γ, and f = 1. (These parameters are the same as those used by Brillouin, and
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Figure 3.22: Real (solid) and imaginary (dashed) parts of the index of refraction.

are frequently used when analyzing precursors.) Figure 3.22 plots the real and imaginary

parts of the index of refraction for this medium. (Note that the zero on this plot is ω= 0

not the resonance frequency ω0.)

The group delay function is plotted in Fig. 3.23 for a propagation distance of ∆r =
15c/γ ẑ. Notice that the group delay function is not symmetric about ω0, as is roughly

the case in the previous examples that we have discussed. This asymmetry is a general

property of the Lorentz oscillator which becomes less pronounced when ω0 À γ. If we

ignore the frequencies near ω0 (which will be absorbed after propagating a significant

distance), Fig. 3.23 shows that frequency components which are lower (i.e., closer to

ω= 0) have longer delay times than the higher frequency components. This suggests that

after a pulse has propagated for a while, it will be chirped such that the high frequency

components arrive at a point before the low frequency components.

To illustrate, we choose an initially Gaussian pulse, as in (3.4), with τ = 5/γ and

ω̄= 10γ. This results in a pulse whose spectrum is broad compared to the resonance, and

is centered slightly above ω0. In this situation the traditional method of expansion utterly

fails, as discussed in section 2.2. However, the new group delay context is still applicable,
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and can be used to predict the delay time for this pulse. In Fig. 3.24(a) we plot the initial

(dashed) and final (solid) distributions ρ (r0,ω) and ρ (r,ω) for this pulse. Figure 3.24(b)

plots the initial temporal profile of the pulse, and Fig. 3.24(c) plots the final temporal

profile of the pulse. (In contrast to the other examples discussed in this work, we plot the

actual oscillation of the field rather than the envelope over these oscillations. This allows

us to observe the chirp of the final pulse.) Since the initial pulse is symmetric in time, the

overall delay of the pulse is calculated using (3.1) as ∆t = 24.74/γ. Because the spectral

components near ω0 have been removed from the pulse by the time it reaches r, the large

negative delay times for the near-resonance components do not play a role in the overall

delay. Notice that the pulse is chirped so that the high frequency components arrive at r

before the low frequency components, as predicted by the group delay function.

This example clearly illustrates why the traditional group delay derived in section 2.2

fails for a broadband pulse whose spectrum is centered near resonance. The traditional

approach predicts the delay time based on the group delay function evaluated at the

central frequency in the initial pulse. However, in this example none of the energy

associated with spectral components near ω̄ survives propagation to influence the arrival
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at the observation point. This shows why the prediction of propagation delay must be

made using the spectrum that survives propagation, as is done in the new context of

group delay.

3.4.2 Traditional Description of Precursors

The field plotted in Fig. 3.24(c) is a specific example of a precursor field. This type of field

occurs in the ‘mature’ dispersion regime, where pulse dynamics (such as propagation

velocity) settle into a stable situation. Absorption is minimal in this regime since the

spectral components which experience significant attenuation are absorbed before the

pulse reaches the mature region. Notice that for the parameters that we have chosen,

the precursor field separates nicely into an early high frequency bump and a later low

frequency bump. Although we were able to track the center of mass for the propagation

field using group delay, the traditional method of describing precursor fields in the mature

dispersion regime allows the tracking of the two bumps individually.

The traditional method10 of analyzing precursor field begins with the standard integral

solution to Maxwell’s equations, with propagation considered in only one direction (the

ẑ direction). This solution can be written as

E (z, t ) = 1p
2π

∞∫
−∞

E (z = 0,ω)eφ(ω,t ) dω (3.11)

where

φ (ω, t ) = i [k (ω) z −ωt ] . (3.12)

A single resonance Lorentz oscillator is used to obtain an explicit form for k (ω). If one

then assumes that z →∞ (i.e., the mature dispersion regime), it is possible to obtain an

asymptotic solution to (3.11) using the method of steepest descents.17 In this method

the integral is performed using contour integration. In the asymptotic limit where z is

arbitrarily large, the contour integral depends only on the saddle points of φ (ω) (i.e., the
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frequencies in the complex ω plane where dφ/dω= 0). The solution (3.11) can then be

written as

E (z, t ) = ES (z, t )+EB (z, t ) . (3.13)

The term ES is known as the Sommerfeld precursor, and EB is the Brillouin precursor.

Each precursor term is composed of an amplitude function multiplying an oscillatory

function. Both the amplitude and the phase of the oscillation are written as functions of

the various saddle point frequencies of φ (ω, t ). As time progresses the locations of the

saddle points shift, and the time evolution of the pulse is found by tracking the trajectories

of these saddle points in the complex plane. After performing this analysis, it is seen

that the Sommerfeld precursor describes the high frequency portion of the pulse, and

the Brillouin precursor describes the low frequency portion. In the example shown in

Fig. 3.24 these two fields can both be distinctly observed in the final pulse.

The concept of group delay can be used to describe the behavior of the solution

obtained using these methods. Since both precursor fields are known as a function of

time (once the trajectories of the saddle points are known), the delay for each individual

precursor field can be calculated in the same manner as the delay for the total field. Of

course the asymptotic nature of the solutions requires that delay times be calculated

between two points which both have large z.

3.4.3 Alternative Description of Precursor Fields

Although the traditional method for describing precursor fields works quite well if z is

sufficiently large, the process of tracking the location of saddle points can be complicated.

In this section we illustrate a different approach which allows one to track the center of

mass for each of the separate precursor fields individually without having to resort to the

asymptotic solution. While this method does not give all of the detail provided by the
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traditional approach, it provides a much simpler way to predict when the two precursor

fields will arrive at a given point.

Because the Fourier transform is a linear operation, we can separate the spectrum of

a pulse propagating in a single resonance absorber (with resonance frequency ω0) into

two pieces as follows:

E (r,ω) = ES (r,ω)+EB (r,ω) (3.14)

where

EB (r,ω) =

 E (r,ω) , |ω| ≤ω0

0 , |ω| >ω0

(3.15)

ES (r,ω) =

 0 , |ω| ≤ω0

E (r,ω) , |ω| >ω0

. (3.16)

The temporal profile of the pulse then is given by

E (z, t ) = ES (z, t )+EB (z, t ) , (3.17)

where the two terms in (3.17) are the inverse Fourier transforms of (3.15) and (3.16). The

term ES (r, t ) is then the ‘above resonance’ portion of the pulse, and EB (r, t ) is the ‘below

resonance’ portion.

If a pulse’s initial spectrum E (r0,ω) has significant on-resonance amplitude, then

ES (r0,ω) and EB (r0,ω) will have a significant discontinuity at ω0. Because an abrupt

discontinuity in frequency requires a broad temporal profile, ES (r0, t ) and EB (r0, t ) will be

poorly localized. In this case the two terms have little significance individually except that

when added together they produce the temporal profile of the total field. However, as the

pulse propagates the on-resonance amplitude of E (r,ω) decreases and the discontinuity

becomes less important. Eventually the discontinuity becomes insignificant, and ES (r, t )

and EB (r, t ) represent two independent pulses. These pulses can be tracked using the

new group delay context.
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We illustrate this procedure using the pulse and medium in section 3.4.1. Figure 3.25

illustrates the low frequency component EB . We calculate the initial spectrum EB (r0,ω)

at a point displaced by one absorption depth zd from the original reference point (in

section 3.4.1) where the total pulse is Gaussian. (An absorption depth is the distance over

which the on-resonance components are reduced by e−1. In this example zd ≈ 0.2c/γ.)

The final spectrum is calculated at the same point as in Fig. 3.24. Figure 3.25(a) shows

the initial and final distributions, Fig. 3.25(b) plots the initial temporal profile, and

Fig. 3.25(c) plots the final temporal profile. The delay time for EB between these two

points is calculated using (2.43) as∆t = 25.54/γ, and the arrival time at r0 is 〈t〉r0 = 0.82/γ.

Thus, the group delay predicts that the low frequency portion of the pulse arrives to r at

〈t〉r = 26.36/γ, which can be roughly verified by eye in the figure.

Figure 3.26 repeats this process for the high frequency component ES . In this case,

the delay time calculated with (2.43) is ∆t = 19.75/γ and the arrival time at r0 is 〈t〉r0 =
0.37/γ. This predicts that the high frequency portion arrives to r at 〈t〉r = 20.12/γ. The

reshaping delay is small for both the high and low frequency components cases (about a

2% correction to ∆tG in both cases). As with the traditional approach described above,

this alternative approach gets progressively better as r0 and r are moved deeper into the

medium.

In the example considered here, the high and low frequency components separate

into distinct bumps in the final pulse. However, this is not always the case. The arrival

time of each component is easily predicted using the new group delay context when using

the approach illustrated here. In addition to calculating the separation of the precursor

fields, the new group delay context can be used to analyze the chirping of the precursors.

The arrival time of a frequency in the final pulse can be predicted by noting that each

frequency is delayed according to its group delay.



CHAPTER 3. APPLICATION OF THE NEW GROUP DELAY CONTEXT 67

−20 −10     0     10  20

10
−5

10
0

ω
0

−ω
0

D
is

tr
ib

ut
io

n

ω / γ

(a)

−10 −5 0 5 10

−0.05

0

0.05

E
S(t

) 
/ E

0

γ t

(b)

z = z
d

15 20 25 30 35 40

−5

0

5

x 10
−4

E
S(t

) 
/ E

0

γ t

(c)

z = 15 c/γ
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points for EB . (b) Temporal profile at the initial point. (c) Temporal profile at the final

point.
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3.4.4 Comparison of Approaches

The alternative approach described here has some drawbacks when compared to the

traditional asymptotic approach. First, the temporal representation of the fields must

still be found by performing an integral. The asymptotic approach gives an analytic form

for the temporal profile. Second, it is difficult to obtain information about the chirping

of a pulse from the integral representation. In the asymptotic solution, the phase of

oscillation is known as a function of time (i.e., in terms of the saddle point locations),

so that the chirping behavior of a pulse is explicit. In addition to these two drawbacks,

there are some other features of propagation that are more subject to analysis using the

asymptotic solution than with the integral representation.

Despite these drawbacks, there are significant advantages to the alternative approach.

First, this approach is independent of the model used to describe the medium. All that

is required is that the resonance frequency be known. Second, this method is easily

generalizable to describe precursor fields in multiple resonance media. (For example, in a

two resonance medium there are three precursor fields describing different spectral

regions: one below the lower resonance, one above the higher resonance, and one

between the two resonances.) The traditional method can be expanded to describe

multiple resonance Lorentz oscillators, but the extension quickly becomes complex as

more resonances are added.

Perhaps the biggest advantage of the approach used in section 3.4.3 is its conceptual

clarity. In the traditional approach, the solution is buried in so much detail that it is

difficult to see what is being described by a precursor field. In the alternative approach

it is clear that we are simply analyzing and comparing the behavior different spectral

regions of a pulse after it has propagated a large distance.



Chapter 4

Energy Transport in Dispersive Media

In chapter 3 we presented several examples in which the locus of a pulse’s field energy

travels at speeds greater than c. It is important to note that one is tracking the presence

of only the electromagnetic field energy when these superluminal observations are made.

Of course in a dielectric medium, field energy is only part of the energy picture. Energy is

also stored in the medium; the pulse continually exchanges energy with the medium as it

propagates. Thus, the overly rapid appearance of electromagnetic energy at one point

and its simultaneous disappearance at another does not require superluminal transport

of energy, but merely an exchange between energy forms at individual locations.

In this chapter we examine the actual transport of energy and how energy is exchanged

between the pulse field and the medium. We briefly review Poynting’s theorem and show

how it leads to the traditional concept of energy transport velocity. We demonstrate that

the global energy transport velocity (i.e., the average velocity of the total energy) is strictly

bounded by c. We then show that there is no such limit on the velocity tracking the

average position of only the field energy, even though the velocity at which field energy

is transported from one point to another is strictly bounded by c. Finally, we discuss

how energy is exchanged between the field of a pulse and a dielectric medium.30, 31 We

70
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demonstrate that the asymmetric energy exchange which leads to superluminal and

highly subluminal behaviors is a direct and natural consequence of causality, indepen-

dent of any specific model.

4.1 Poynting’s Theorem

Poynting’s theorem is a direct consequence of Maxwell’s equations. To obtain this the-

orem, we take the dot product of (2.4) from Maxwell’s equations with the electric field

vector:

E ·∇×B =µ0E · ∂
∂t

(ε0E+P) . (4.1)

Then we use the vector identity ∇· (E×B) = B · (∇×E)−E · (∇×B) to rewrite (4.1) as

∇· (E×B)−B ·∇×E+µ0E · ∂
∂t

(ε0E+P) = 0. (4.2)

We then substitute (2.3) from Maxwell’s equations into expression (4.2) to obtain

∇· (E×B)+B · ∂B

∂t
+µ0E · ∂

∂t
(ε0E+P) = 0. (4.3)

Finally, we rearrange (4.3) to arrive at

∇·
(

E× B

µ0

)
+ ∂

∂t

B ·B

2µ0
+ε0

E ·E

2
+

t∫
−∞

E · ∂P

∂t
dt

= 0, (4.4)

where we have assumed that the fields are zero at t =−∞.

Equation (4.4) is recognized as the familiar form of Poynting’s theorem:

∇·S (r, t )+ ∂u (r, t )

∂t
= 0, (4.5)

where the Poynting vector is

S (r, t ) ≡ E (r, t )× B (r, t )

µ0
(4.6)
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and the total energy density is given by

u (r, t ) = ufield (r, t )+uexchange (r, t )+u (r,−∞) . (4.7)

This expression for the energy density includes all relevant forms of energy, including

a non-zero integration constant u (r,−∞), which corresponds to energy stored in the

medium before the arrival of any pulse. The electromagnetic field energy density is

ufield (r, t ) ≡ B 2 (r, t )

2µ0
+ ε0E 2 (r, t )

2
. (4.8)

The time-dependent accumulation of energy density transferred into the medium from

the field is given by

uexchange (r, t ) ≡
t∫

−∞
E

(
r, t ′

) · ∂P
(
r, t ′

)
∂t ′

dt ′. (4.9)

As uexchange increases, the energy in the medium increases. Conversely, as uexchange

decreases, the medium surrenders energy to the electromagnetic field. While it is possible

for uexchange to become negative, the combination uexchange +u (−∞) (i.e., the net energy

in the medium) cannot go negative since a material cannot surrender more energy than

it has to begin with. Both ufield and uexchange are zero before the arrival of the pulse (i.e.

at t =−∞). In addition, the field energy density returns to zero after the pulse has passed

(i.e. at t =+∞).

4.2 Energy Transport Velocity

Poynting’s theorem has the form of a continuity equation which, when integrated spatially

over a small volume V , yields∫
A

S (r, t ) ·da =− ∂

∂t

∫
V

u (r, t )d3r , (4.10)

where the left-hand side has been transformed into an area integral representing the

power leaving the volume. Let the volume V be small enough to take S to be uniform
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throughout. The energy transport velocity (directed along S) is then defined to be the

effective speed at which the energy contained in the volume (i.e. the result of the 3-D

integral) would need to travel in order to achieve the power transmitted through one side

of the volume (e.g., the power transmitted through one end of a tiny cylinder aligned with

S). The energy transport velocity as traditionally written4 is then

vE (r, t ) ≡ S (r, t )

u (r, t )
. (4.11)

It is not essential to time-average S and u over rapid oscillations, although this average

is often made.32 (One may choose to add the curl of an arbitrary vector function to S.

However, this possibility should not be injected into (4.11) since it cannot contribute to

the integral in (4.10).)

When the total energy density u is used in computing (4.11), the energy transport

velocity is fictitious in its nature; it is not the actual velocity of the total energy (since the

energy stored in the medium is stationary), but rather the effective velocity necessary to

achieve the same energy transport that the electromagnetic flux alone delivers. There

is no behind the scenes flow of mechanical energy. Moreover, if only ufield is used in

evaluating (4.11), we have

vEfield = 2E×B

ε0µ0E ·E+B ·B

= c
2E× cB

E 2 + (cB)2 . (4.12)

The Cauchy-Schwartz inequality,α2+β2 ≥ 2αβ, then ensures that vEfield is strictly bounded

by the speed of light in vacuum c . Equation (4.12) thus demonstrates that no field energy

is transported between points in the medium at speeds greater than c. We insist that

the total energy density u (r, t ) should be at least as great as the field energy density,

which maintains the strict luminality of vE . In this we differ from previous usage of the

energy transport velocity in connection with amplifying media1, 8, 13 where the constant
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of integration u (−∞) was left at zero (apparently by default), resulting in the viewpoint

of superluminal and negative (opposite to the direction of S) energy transport velocities.

4.3 Average Energy Transport Velocity

Since the point-wise energy transport velocity defined by (4.11) is strictly luminal, it

follows that the global energy transport velocity (the average speed of all relevant energy)

is also bounded by c. This has been discussed for pulses propagating in vacuum.33 The

analysis given here includes also the effects of a linear medium. To obtain the global

properties of energy transport, we begin with a weighted average of the energy transport

velocity at each point in space. A suitable weighting parameter is the energy density at

each position. The global energy transport velocity is then

〈vE 〉 ≡
∫

vE (r, t )u (r, t ) d3r∫
u (r, t ) d3r

=
∫

S (r, t ) d3r∫
u (r, t ) d3r

(4.13)

where we have inserted the definition (4.11), and the integral is taken over all relevant

space. Integration by parts leads to

〈vE 〉 =
∫

r∇·S (r, t ) d3r∫
u (r, t ) d3r

=
∫

r ∂
∂t u (r, t ) d3r∫
u (r, t ) d3r

, (4.14)

where we have assumed that the volume for the integration encloses all energy in the

system and that the field near the edges of this volume is zero. We have also made a

substitution from (4.5).

Because the continuity relation (4.5) is written with no explicit source terms (i.e. zero

on the right-hand side), the total energy in the system is conserved and is equal to the

denominator of (4.14). This allows the time derivative in (4.14) to be brought out in front

of the entire expression, giving

〈vE 〉 = ∂〈r〉
∂t

, (4.15)
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where

〈r〉 ≡
∫

ru (r, t )d3r

/∫
u (r, t )d3r . (4.16)

Equation (4.16) represents the spatial ‘center of mass’ or centroid of the total energy in

the system.30 Because 〈vE 〉 luminal, (4.15) guarantees that the centroid of the total energy

moves at a velocity less than c.

4.4 Group Velocity and Field Energy

The precise relationship (4.15) requires the total energy density u (r, t ). If only the field

energy density ufield is used in defining the energy transport velocity, as in (4.12), the time

derivative could not be brought out in front of the entire expression as in (4.15) since the

integral in the denominator would retain time dependence. Mathematically, we have

〈 S

ufield
〉 6= ∂

∂t

∫
rufield (r, t ) d3r∫
ufield (r, t ) d3r

. (4.17)

While the left-hand side of (4.17) is strictly luminal, the right hand side can easily exceed

c as the medium exchanges energy with the field. In this section, we demonstrate that

the right-hand side of (4.17) is connected to an average over group velocities rather than

an average energy transport velocity.

In chapter 2 we considered the time difference between the arrival of pulse energy at

two points in space in order to make the connection between the presence of field energy

and the concept of group delay. In the present context, it is enlightening to examine the

converse scenario, namely the displacement of the field energy’s spatial centroid at two

points in time. We use the centroid of field energy appearing in the right-hand side of

(4.17) to define the pulse’s position (according to an ‘observer’ who sees only field energy):

〈rfield〉t ≡
∫

rufield (r, t ) d3r

/∫
ufield (r, t ) d3r . (4.18)
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As a pulse evolves from an initial time t0 to time t0 +∆t , the difference in the average

position of the field energy is given by

∆r ≡ 〈rfield〉t0+∆t −〈rfield〉t0
. (4.19)

In Appendix A we show how (4.19) can be rewritten (using techniques similar to those

presented in section 2.4) as the sum of two terms with intuitive interpretations:

∆r =∆rG +∆rR . (4.20)

Note the similarity between (4.20) and (2.43).

In most situation, the net group displacement ∆rG is the dominant contributor to the

total displacement. It is defined by

∆rG ≡∆t
∫

[∇k Reω (k)]ρ (k, t ) d3k, (4.21)

where ρ (k, t ) is a normalized k-space distribution of field energy density (see (A.11)) at

the final time t ≡ t0 +∆t :

ρ (k, t ) ≡ ufield (k, t )

/∫
ufield (k, t ) d3k . (4.22)

Equation (4.21) explicitly demonstrates how the group velocity function ∇k Reω (k) is

connected to the presence of field energy. The velocity of the centroid of field energy is

predicted by an average of the group velocity function weighted by the k-space distribu-

tion of field energy in the final pulse (i.e. the pulse at t = t0 +∆t ). The distribution ρ (k, t )

defines the fraction of the pulse’s field energy that can be associated with a given range of

wave vectors, and the group velocity function gives the velocity at which energy associ-

ated with a given wave vector appears downstream. (Again, the fact that energy appears

downstream does not necessarily require that the energy was transported downstream.)

Since the group velocity function can be superluminal or negative, the displacement per

time ∆rG /∆t can take on virtually any value.
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The term∆rR in (4.20) represents a displacement which arises solely from a reshaping

of the pulse through absorption or amplification (without considering the dispersion

introduced by propagation). This reshaping displacement is the difference between the

pulse position at the initial time t0 evaluated without and with the spatial frequency

amplitude that is lost during propagation (speaking as though the medium is absorptive).

For the explicit form for ∆rR , see (A.14). The reshaping displacement is zero if the pulse

does not experience absorption or amplification. The reshaping displacement is also

negligible if the pulse is unchirped before propagation. In addition, it goes to zero in the

narrowband limit even if pulses experience strong absorption or amplification. (In the

narrowband limit, ∆rG reduces to ∇k Reω
(
k̄
)
, where k̄ is the central wave-vector in the

pulse. This recovers the standard group velocity obtained using expansion techniques.)

Because∆rR is usually small, the presence of field energy is generally tracked by group

velocity, as shown in (4.21). Thus, while the velocity of the centroid of total energy is

strictly bounded by c (as demonstrated in (4.15)), the centroid of field energy can move

with any speed. This is not very mysterious when one recalls that we have made no

mention of where the field energy comes from when deriving (4.20). For example, in an

amplifying medium that exhibits superluminal behavior the rapid appearance of a pulse

downstream is merely an artifact of not recognizing the energy already present in the

medium until it converts to the form of field energy.1, 13

Note that in (4.21) we use real wave-vectors associated with complex frequencies.

Also, in writing (4.21) we made the restrictive assumption that ω (k) is single-valued.

Although this assumption is quite limiting, it is not uncommon to use it. (For instance,

see Ref. [15] pp. 324–325.) The group delay context discussed in chapter 2 avoids this

issue altogether. For details on these issues, see appendix A.
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4.5 Exchange of Energy in Dielectrics

In this section, we turn our attention to the exchange of energy between the field and

the medium, which is responsible for the seemingly exotic behavior of superluminal and

highly subluminal pulses. For this purpose it is enlightening to consider uexhchange given

in (4.9) within a frequency context. Here we return to the convention of real frequenciesω

as used in (2.6) and (2.7). We assume a linear, isotropic (but not necessarily homogeneous)

medium so that the polarization is connected to the electric field in the frequency domain

via

P (r,ω) = ε0χ (r,ω)E (r,ω) . (4.23)

The susceptibility χ (r,−ω) retains the symmetry

χ (r,−ω) = χ∗ (r,ω) (4.24)

as in the homogeneous case (2.13).

We can immediately rewrite the exchange energy density (4.9) as

uexchange (r, t ) =
∫ t

−∞

[
1p
2π

∫ ∞

−∞
E

(
r,ω′)e−iω′t ′ dω′

]
·
[−iε0p

2π

∫ ∞

−∞
ωχ (r,ω)E (r,ω)e−iωt ′ dω

]
dt ′ (4.25)

using the Fourier transform (2.6). With a rearrangement of integration order, the expres-

sion (4.25) becomes

uexchange (r, t ) =−iε0

∫ ∞

−∞
dωωχ (r,ω)E (r,ω)·

∫ ∞

−∞
dω′E (r,ω)

1

2π

∫ t

−∞
e−i(ω+ω′)t ′dt ′. (4.26)

The final integral in (4.26) becomes the delta function when t goes to +∞. In this case,

the middle integral can also be performed. Therefore, after the point r has experienced

the entire pulse, the total amount of energy density that the medium has exchanged with

the field is

uexchange (r,+∞) =−iε0

∫ ∞

−∞
ωχ (r,ω)E (r,ω) ·E (r,−ω)dω. (4.27)
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Finally, we use the symmetries (2.10) and (4.24) to obtain

uexchange (r,+∞) = ε0

∫ ∞

−∞
ω Imχ (r,ω) |E (r,ω)|2 dω. (4.28)

Equation (4.28) is well known and appears in a textbook by Landau and Lifshitz.34

It describes the net exchange of energy density after all interaction between the pulse

and the medium has ceased at the point r. We can modify this formula in a simple and

intuitive way so that it describes the exchange energy density for any time during the

pulse. This requires no approximations; the slowly-varying envelope approximation

need not be made. The principle of causality guides us in considering how the medium

perceives the electric field for any time.

Since the medium is unable to anticipate the spectrum of the entire pulse before

experiencing it, the material must respond to the pulse according to the history of the

field up to each instant. In particular, the material at all times must be prepared for the

possibility of an abrupt cessation of the pulse, in which case all exchange of energy with

the medium ceases. If the pulse were in fact to abruptly terminate at a given moment,

then obviously (4.28) would immediately apply since the pulse would be over; it would

not be necessary to integrate the Fourier transform (2.6) beyond the termination time t

for which all contributions are zero. Causality requires that the medium be indifferent to

whether the pulse actually ceases at a given instant before that instant arrives. Therefore,

(4.28) in fact applies at all times where the spectrum (2.6) is evaluated over that portion

of the field previously experienced by the medium.

The following is then an exact representation for the exchange energy density defined

in (4.9):

uexchange (r, t ) = ε0

∫ ∞

−∞
ω Imχ (r,ω) |Et (r,ω)|2 dω, (4.29)

where

Et (r,ω) ≡ 1p
2π

∫ t

−∞
E

(
r, t ′

)
e iωt ′ dt ′. (4.30)
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The time dependence enters only through |Et (r,ω)|2, the instantaneous power spectrum,

which has been used to describe the response of driven electronic circuits,35 the acousti-

cal response of materials to sound waves,36 and the behavior of photon counters.37

The causality argument presented above comprises a sufficient proof of (4.29) and

(4.30). It is essentially the same argument as that used to justify that the susceptibility

χ (r,ω) has no poles in upper half of the complex ω plane, which leads to the Kramers-

Kronig relations.15 However, in section 4.6 we provide a formal proof starting from the

more familiar Kramers-Kronig relations.30, 31 This section may be skipped without a loss

of continuity.

4.6 Derivation of the Instantaneous Spectrum

The goal in this section is to obtain the form (4.29) from (4.9). This theorem was first

derived by S. Glasgow.30 Using (2.6), (2.7), and (4.23), the polarization at a point in the

medium can be written as

P (t ) =
∞∫

−∞
E

(
t ′

)
G

(
t − t ′

)
dt ′, (4.31)

where

G (t ) ≡ ε0

2π

∞∫
−∞

χ (ω)e−iωt dω. (4.32)

The Green’s function G (t ) can be written as the sum of two parts, the first being associated

with the real part of the susceptibility and the second being associated with the imaginary

part:

G (t ) =GRe (t )+GIm (t ) (4.33)

where

GRe (t ) ≡ ε0

2π

∞∫
−∞

Re
[
χ (ω)

]
e−iωt dω (4.34)
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and

GIm (t ) ≡ i
ε0

2π

∞∫
−∞

Im
[
χ (ω)

]
e−iωt dω. (4.35)

We now show that GRe and GIm are equal for t > 0 and equal but opposite for t < 0. To

do this we invoke the Kramers-Kronig relation15

Reχ (ω) = 1

π
P

∞∫
−∞

Imχ
(
ω′)

ω′−ω dω′. (4.36)

(The letter P in front of the integral indicates the principle part.) Substitution of this

relation, which embodies the principle of causality, into the expression for GRe (t ) yields

GRe (t ) = ε0

2π2

∞∫
−∞

dω′ Imχ
(
ω′)P

∞∫
−∞

e−iωt

ω′−ω dω (4.37)

where the ordering of integration has been reversed. The final integral in (4.37) can be

performed analytically,17 and it yields

P

∞∫
−∞

e−iωt

ω−ω′ dω=

 iπe−iω′t , t > 0

−iπe−iω′t , t < 0
. (4.38)

Equation (4.37) then becomes

GRe (t ) =

 GIm (t ) , t > 0

−GIm (t ) , t < 0
. (4.39)

We are now able to express the polarization P (t ) in terms of the electric field and only

the imaginary part of χ (ω). Then (4.31) becomes

P (t ) =
∞∫

−∞
E

(
t ′

)
2GIm

(
t − t ′

)
dt ′

= iε0

π

∞∫
−∞

dω Im
[
χ (ω)

]
e−iωt

t∫
−∞

dt ′E
(
t ′

)
e iωt ′ , (4.40)

where again we have changed the order of integration. Note that the upper limit of

integration has also been changed to t since (4.32) is zero for negative time arguments.
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To evaluate (4.9) we require the time derivative of (4.40):

∂P (t )

∂t
= ε0

π

∞∫
−∞

dωω Im
[
χ (ω)

]
e−iωt

t∫
−∞

dt ′E
(
t ′

)
e iωt ′ + ε0E (t )

π

∞∫
−∞

dω Imχ (ω). (4.41)

The final term vanishes since Imχ (ω) is an odd function of frequency (given that E (t ) and

P (t ) are both real). In addition, the truncated Fourier transform in (4.41) can be replaced

by the definition (4.30). Then the exchange energy density given by (4.9) becomes

uexchange (t ) = 2ε0

∞∫
−∞

dωω Imχ (ω)

t∫
−∞

1p
2π

e−iωt ′E
(
t ′

) ·Et ′ (ω)dt ′, (4.42)

where the order of integration was again changed.

While noting that e−iωt E (t )
/p

2π is the time derivative of the complex conjugate of

(4.30), the exchange energy density can be re-written as

uexchange (t ) = 2ε0

∞∫
−∞

dωω Imχ (ω)

t∫
−∞

∂E∗
t ′

∂t ′
·Et ′ (ω)dt ′ (4.43)

Since uexchange is a real quantity, it costs nothing to add its complex conjugate and divide

by 2. The exchange energy density then becomes

uexchange (t ) = ε0

∞∫
−∞

dωω Imχ (ω)

t∫
−∞

[
∂E∗

t ′

∂t ′
·Et ′ (ω)+ ∂Et ′

∂t ′
·E∗

t ′ (ω)

]
dt ′

= ε0

∞∫
−∞

dωω Imχ (ω)

t∫
−∞

∂ |Et ′ (ω)|2
∂t ′

dt ′

= ε0

∞∫
−∞

ω Imχ (ω) |Et (ω)|2 dω (4.44)

and (4.29) is verified.

4.7 Discussion of the Instantaneous Spectrum

The expression (4.29) reveals physical insights into the manner in which causal dielectric

materials exchange energy with different parts of an electromagnetic pulse. In chapter 5
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we discuss several specific examples where the instantaneous spectrum can be used to

understand the behavior of a pulse. Here we discuss some of the general properties of

(4.29).

4.7.1 Interaction with Resonances not in a Pulse’s Spectrum

The instantaneous spectrum formulation of uexchange provides an analytical description

of how pulses interact with near-by resonances in linear causal media even when the

spectral content of the pulse seems insufficient to permit the interaction. This provides

analytical support for the qualitative arguments made by Chiao and coworkers regarding

superluminal pulse propagation in an amplifying medium. Their simulations and analysis

of the Lorentz model showed that the leading portion of a pulse can ‘borrow’ energy from

an amplifying medium which is then returned to the medium from the later portions of

the pulse.1, 8, 13 Thus, the superluminal behavior is understood to be a pulse reshaping

effect caused by an exchange of energy with the medium.

To see how this interaction is possible, note that the magnitude of uexchange in (4.29)

is controlled by the amount of overlap that the instantaneous spectrum has with the

resonances in the medium (described by Imχ (r,ω)). Since the function Et (r,ω) is the

Fourier transform of the pulse truncated at the current time and set to zero thereafter, it

can include frequency components that are not present in the pulse taken in its entirety.

Thus a pulse may interact with resonances at frequencies that are not present in the

spectrum of the entire pulse. This also explains why the medium responds differently

to the front of a pulse versus the back. The instantaneous spectrum perceived by the

medium during early portions of the pulse is generally wider than the spectrum of the

entire pulse, and can momentarily overlap nearby resonances. The medium cannot

anticipate the future of the pulse, and so it amplifies or attenuates according to this

perceived spectrum. During the trailing portion of the pulse, the instantaneous spectrum
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generally narrows and the medium adjusts accordingly. In doing this, the material is

always prepared for the possibility of an abrupt termination of the field, in which case

there is no further exchange of energy.

4.7.2 All Media can both Amplify and Absorb

The actual value of uexchange is usually not as interesting as how the value changes in time.

As discussed in section 4.1, when uexchange increases the medium absorbs energy from

the pulse and when uexchange decreases the medium surrenders energy to the pulse (i.e., it

amplifies the pulse). The value of uexchange does not increase (or decrease) monotonically,

but depends upon the history of the pulse up until the current time t . This time depen-

dence enters only through the square magnitude of Et (ω). If, for example, the amount

of overlap between Et (ω) and an absorbing resonance is increasing during the leading

portion of a pulse then uexchange will increase during this portion of the pulse (i.e., the

leading edge experiences absorption). If the instantaneous spectrum later withdraws

from this absorbing resonance, the medium returns energy to the trailing portion of the

pulse. Thus a point in the medium may absorb energy from the pulse at one instant while

amplifying it at another, depending on the behavior of the instantaneous spectrum. This

gives a physical explanation for the phenomenon of pulse reshaping.

The explanation of the asymmetric absorption using the instantaneous spectrum

is consistent with the explanation given by Crisp.6 He explained this effect in terms of

the time dependence of the polarization in the Lorentz model, and described a kind of

delayed response by the oscillator to the stimulus of the pulse field.
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4.7.3 Model Independence

The expression (4.29) is independent of the model used to describe pulse/medium in-

teraction. We may apply it to any medium where the linear constitutive relation (4.23)

applies and where the function χ (ω) obeys the Kramers-Kronig relations.15 Only the

imaginary part of χ (ω) is needed since it directly controls absorption and is therefore re-

sponsible for the energy exchange. (Although the real part of χ (ω) is not formally present

in (4.29), it is of course connected to the imaginary part via the Kramers-Kronig relations.)

For a strictly absorptive medium we have ω Imχ (ω) ≥ 0, since fields are taken to be real

in the time domain. Thus uexchange is seen to be positive-definite in this case, so that the

total energy density is always greater than ufield (with u (−∞) appropriately set to zero).

In an active medium we have ω Imχ (ω) ≤ 0, and the integrand in (4.29) goes negative as

energy is pulled from the medium and given to the field. In this case, u (−∞) is chosen

sufficiently large to avoid removing (even if momentarily) energy from the medium that

is not there to begin with. In either case, strict luminality of the energy transport velocity

is maintained with u (r, t ) ≥ ufield (r, t ).

4.7.4 Sommerfeld-Brillouin Result

Finally, we note that the expressions (4.29) and (4.30) manifestly contain the Sommerfeld-

Brillouin result14, 32 that a sharply defined signal edge cannot propagate faster than c.

If a signal edge begins abruptly at time t0, the instantaneous spectrum Et (ω) clearly

remains identically zero until that time. In other words, no energy may be exchanged

with a material until the field energy from the pulse arrives. Since, as was pointed out in

connection with (4.11), the Cauchy-Schwartz inequality prevents the field energy from

traveling faster than c, at no point in the medium can a sharp signal front exceed c.



Chapter 5

Energy Exchange and Pulse Propagation

The instantaneous spectrum description of the exchange energy derived in the chapter 4

provides analytical insight into the behavior of optical pulse in dielectric media. The

explanations for many of the superluminal or highly subluminal propagation effects

have previously been understood in qualitative and model-dependent contexts. The

instantaneous spectrum description gives a model independent, analytic explanation for

these superluminal effects. In this chapter we explore several examples illustrating how

the instantaneous spectrum can be used to understand both superluminal and highly

subluminal behavior.

5.1 Energy Exchange in an Absorbing Medium

In this sections we explore two situations where pulses propagate in a single resonance

absorbing medium. As usual, we employ the Lorentz model to describe the medium,

even though the the theory we are illustrating is independent of the model. The linear

susceptibility in this model is given by

χ (ω) = f ωp
2

ω0
2 −ω2 − iγω

. (5.1)

86
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The medium parameters for these two examples are: ω0 = 100γ, f ωp
2 = 100γ (i.e., the

same absorbing medium discussed in section 3.1). The pulses are Gaussian as in (3.4).

5.1.1 Subluminal Propagation in an Absorber

For our first example, we consider the common situation where a pulse propagates at a

subluminal speed in this medium. Figure 5.1(a) plots the imaginary part of χ (ω) for the

medium described above. The pulse parameters are chosen as follows: ω̄=ω0 −10γ and

τ= 1/γ. Figure 5.1(b) plots the temporal profile of this pulse. The overall spectrum of this

pulse is broad compared to the resonance, and is centered slightly below the resonance

frequency.

The subluminal behavior exhibited by this type of pulse is easily understood in terms

of the instantaneous spectrum description. Figure 5.1(c) plots the instantaneous spec-

trum at various times during the pulse. The line style of each instantaneous spectrum

corresponds to the times at which it is evaluated. These times are indicated by the vertical

lines of the same style in Fig. 5.1(b). During the early portion of the pulse, the instan-

taneous spectrum is broad, and its overlap with the absorbing resonance is increasing.

Thus the material absorbs energy from the field during this portion of the pulse. During

the trailing portion of the pulse, the overlap decreases, whereupon the medium surren-

ders stored energy to the pulse. The overall effect is that the pulse is slowed down by this

reshaping.

In Fig. 5.1(d), uexchange is plotted as a function of time. The decrease in uexchange at the

end of the pulse indicates that the medium returns energy to the field in the latter portion

of the pulse as the instantaneous spectrum withdraws from the resonance. The gray

curve in Fig. 5.1(d) depicts the rapid oscillations of uexchange (approximately 100—not

resolved in the figure), while the black curve is time-averaged.
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Figure 5.1: (a) Imaginary part of χ (ω) for an absorbing medium. (b) Initial pulse tem-

poral profile. (c) Instantaneous spectrum at the times indicated in (b) with vertical lines.

(d) Exchange energy density as a function of time.
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5.1.2 Superluminal Propagation in and Absorber

For our second example, we illustrate a situation where the pulse exhibits superluminal

behavior. As noted before in connection with group delay, this behavior occurs when the

pulse spectrum has a narrow bandwidth and is centered on the absorption resonance. To

illustrate this effect, we consider a pulse with the following parameters: τ= 10
/
γ and

ω̄=ω0. Thus, the pulse bandwidth is narrow compared to the resonance and centered

on the resonance frequency. Figure 5.2(b) shows the temporal profile of this pulse.

Figure 5.2(c) plots the instantaneous power spectrum evaluated at various times dur-

ing the pulse, with the line style again corresponding to the times at which it is evaluated.

In this case, the instantaneous spectrum during the early portions of the pulse extends

away from the absorption peak, and the on-resonance peak of the instantaneous spec-

trum grows slowly. During the trailing portion of the pulse, its instantaneous spectrum

narrows and the on-resonance peak grows quickly.

Figure 5.2(d) shows uexchange as a function of time. The dot in the center of Fig. 5.2(d)

corresponds to the exchange energy at time t = 0 (i.e. the midpoint in time of the Gaussian

field profile). The plot shows that significantly less than half of the final exchanged energy

has been absorbed by this time. Thus the early part of the field envelope is less attenuated

than the rear portion (recall Fig. 3.4). The net result is an advancement of the pulse

center of mass at a speed greater than c. This provides a theoretical explanation for

the asymmetric absorption of the pulse which results in the superluminal effect seen in

section 3.1.

5.2 Energy Exchange in an Amplifying Medium

The description of energy exchange in amplifying media is similar to that given above

for absorbing media. In an amplifying medium, an increase in the overlap between
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Figure 5.2: (a) Imaginary part of χ (ω) for an absorbing medium. (b) Initial pulse tem-

poral profile. (c) Instantaneous spectrum at the times indicated in (b) with vertical lines.

(d) Exchange energy density as a function of time.
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Et (ω) and resonance frequency corresponds to amplification and a decrease in overlap

corresponds to absorption. In this section we consider two examples where pulses

propagate superluminally in an amplifier. We then demonstrate how the instantaneous

spectrum description can be used to give an estimate of how much a pulse will be

advanced.

5.2.1 Superluminal Propagation in an Amplifier, Example 1

As a first illustration we choose the medium parameters with the same values as given

in section 5.1 except we change the oscillator strength to f = −1 so that we have an

amplifying medium. The pulse is the same as the pulse in Fig. 5.1 with τ = 1/γ and

the carrier frequency centered below resonance at ω̄=ω0 −10γ. Figure 5.3 repeats the

figures of section 5.1 for this case. During the early part of the pulse, the overlap of the

instantaneous spectrum with the resonance peak increases, and the leading portion

is amplified (i.e., uexchange decreases). During the trailing portion, the instantaneous

spectrum withdraws from the peak and the medium absorbs energy from the field of this

portion of the pulse. The net effect moves the pulse peak forward faster than c . This effect

is not only consistent with the principle of causality (as has been previously demonstrated

via the Lorentz model1, 8, 13), but it is in fact a direct and general consequence of causality

as demonstrated by (4.29) and (4.30).

The prediction that this relatively broadband pulse will travel faster than c is a little

surprising when we recall the discussion of section 3.1. The explanation for this apparent

difference lies in the fact that we have examined the instantaneous spectrum for this pulse

at only the initial point in the medium without considering propagation. At this point,

the instantaneous spectrum withdraws from the resonance for large t . However, at points

farther in the medium (after the pulse has experienced modification), the spectrum of

the pulse taken in its entirety is quite different. As the pulse is amplified, it acquires
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Figure 5.3: (a) Imaginary part ofχ (ω). (b) Initial pulse temporal profile. (c) Instantaneous

spectrum at the times indicated in (b) with vertical lines. (d) Exchange energy density as a

function of time.
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Figure 5.4: (a) Imaginary part of χ (ω). (b) Initial pulse spectrum.

significant on-resonance spectral components, which manifest themselves primarily

in the trailing portion of the pulse. Because the overlap of the instantaneous spectrum

with the resonance increases during the trailing portion of the downstream pulse, the

trailing portion of the pulse tends to be amplified to a greater extent than the leading

portion. This provides another explanation (in addition to the arguments of section 3.2)

for why superluminal propagation does not occur over indefinite lengths in an amplifying

medium.

5.2.2 Superluminal Propagation in an Amplifier, Example 2

The superluminal effect in section 5.2.1 is relatively modest and will not persist as propa-

gation distance is increased. To see a more dramatic example, we choose the medium

parameter values as follows: ω0 = 1×105γ, f ωp
2 =−100γ. Figure 5.4(a) shows the imagi-

nary parts of χ (ω) for these parameters. The electric field of the initial pulse is Gaussian

with the following parameters: τ = 2
/
γ and ω̄ =ω0 +10γ. Thus, the carrier frequency

is a modest distance above the resonance structure, and there is little spectral overlap



CHAPTER 5. ENERGY EXCHANGE AND PULSE PROPAGATION 94

between the spectrum of the entire pulse and the resonance structure. Figure 5.4(b)

shows the total spectrum of the initial pulse.

It is informative to consider a spatial plot of the various energy densities in (4.7) as

this pulse propagates. The left column in Fig. 5.5 shows a time sequence of the energy

densities associated with the pulse as it propagates through the medium. The rectangle in

the middle represents the medium of thickness 1.9c
/
γ , with vacuum on either side. The

solid line indicates the field energy density. The dashed line in the medium represents the

combination uexchange +u (−∞) (the energy density in the medium). We have assigned

u (−∞) to be the same value at each point in the medium, chosen such that the energy

density in the medium never becomes negative at any point. For reference, the dotted

line represents the field energy density of a pulse that propagates exactly at c (i.e. as if

the medium were not there). The actual pulse exiting the medium is ahead of this pulse,

indicating that the centroid of field energy moved superluminally through the medium.

The right column in Fig. 5.5 shows the instantaneous spectrum for the first point in

the medium. As in the previous example, during leading portion of the pulse the amount

of overlap of the instantaneous spectrum with the resonance (at ω0) increases and the

medium surrenders energy to the leading portion of the pulse. As this point experiences

the entire pulse, the instantaneous spectrum withdraws from the resonance, and energy

is returned to the medium from the trailing portion of the pulse (notice that the energy in

the medium rebounds slightly at the end of the pulse).

5.2.3 Energy Exchange Description of Pulse Advancement

Superluminal propagation in an amplifying medium was realized experimentally by

Wang.9 In his experiment the pulse spectrum is centered between two amplifying peaks,

so that the broad instantaneous spectrum in the early portion of the pulse accesses the

resonances on both sides and then withdraws in the later portions. In their report of this
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experiment the authors specifically deny that the superluminal effect was associated with

amplification of the front edge of the pulse since the pulse taken in its entirety contained

essentially no spectral components resonant with the nearby gain lines. However, the

instantaneous spectrum reveals how the leading portion of the pulse may be amplified

even in this circumstance. In this section we illustrate how the instantaneous spectrum

description can be used to predict the results obtained by Wang.

In the Wang experiment, the time required for a 4µs pulse to traverse a ∆r = 6cm

amplifying medium was ∆t ≈−63ns. This means that the pulse moved forward in time

by about 1% of its width. The strength of the wings in the instantaneous spectrum can be

approximated as Et (ω) ∼ E (t )/(ω− ω̄) , where ω̄ represents a carrier frequency and E (t )

is the strength of the field at the moment the pulse is truncated. The imaginary part of

the susceptibility in a low-density vapor is approximately Imχ (ω) ≈ cg /ω , where g is the

frequency dependent gain coefficient (in the Wang experiment, g ≈ 0.1cm−1 at a spectral

shift of δω≡ω− ω̄≈ 2π (2MHz)). A crude approximation to the integral (4.29) renders

uexchange = ε0E 2 (t )cg
/
δω . This suggests that in the case of the Wang experiment the

front of the pulse extracts an energy density of about 250×ε0E 2 (t ) from the medium (i.e.

250 times the energy density in the electromagnetic field of the pulse). This energy density

(extracted from the 6cm vapor cell) is distributed over about a kilometer, corresponding

to the duration of the front half of the pulse. Thus, the electromagnetic field energy on

the forward part of the pulse is enhanced by several percent and similarly the field energy

diminishes on the trailing edge. This is consistent with the data presented in the paper.

Although this analysis properly describes the experimental result, the group delay

analysis is a more convenient way to predict the transit time of the pulse. The utility of

(4.29) lies in its interpretation of how the pulse and the medium interact. Neither analysis

substitutes for the full solution to Maxwell’s equations, but rather indicates some features

of the solution.
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5.3 Highly Subluminal Propagation

Subluminal propagation is the most common behavior for pulses in dielectric media, and

occurs in both amplifying and absorbing media. Recently, research groups38 have tried

to enhance this effect to the point where delay times correspond to highly subluminal

propagation speed (e.g., walking speed). In most situation, subluminal propagation is

accompanied by an overall absorption or amplification of the pulse. When studying

highly subluminal propagation, it is more fashionable to create a situation in which the

overall pulse is neither amplified nor attenuated so that the entering and exiting pulses

may be more easily compared. In this section we illustrate how this may be done, and

show how the instantaneous spectrum description explains the subluminal behavior.

We employ a double resonance Lorentz oscillator to model the medium in this section,

so that the linear susceptibility is

χ (ω) = f1ωp
2

ω0
2 −ω2 − iγ1ω

+ f2ωp
2

ω0
2 −ω2 − iγ2ω

. (5.2)

One of the resonances is amplifying, while the other is absorbing. Both resonances

are centered at ω0 = 100γ1, and the other parameters are given by: γ2 = 4.14γ1, f1ω
2
p =

−400γ2
1, and f2ω

2
p = 100γ2

1. The structure of the imaginary part of χ (ω) is plotted in

Fig. 5.6(a). Figs. 5.6(b) and 5.6(d) show the field envelope and the exchange energy for a

pulse with duration τ= 10/γ1 which has a narrow spectrum centered at ω̄=ω0.

The combined effect of the amplifying and absorbing resonances is such that there

is no net energy exchange after the passage of the entire pulse. Thus, the exiting pulse

does not experience overall attenuation or amplification. Nevertheless, as is evident

in Fig. 5.6(d), there is a strong transfer of energy from the early portion of the pulse to

the medium which is offset nearly completely as the energy returns to the rear of the

pulse. The effect is pronounced since the instantaneous spectrum accesses the absorptive

spectral regions on both sides of center and finally narrows to the region of transmission38
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Figure 5.6: (a) Imaginary part of χ (ω). (b) Initial pulse temporal profile. (c) Instan-

taneous spectrum at the times indicated in (b) with vertical lines. (d) Exchange

energy density as a function of time.
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where the absorption and amplifying resonances offset each other. Although this example

corresponds to strongly subluminal propagation, the experiments demonstrating this

effect depend on much narrower resonance structures than those used in this example.

5.4 Superluminal Propagation and Causality

In this section we illustrate the Sommerfeld-Brillouin result that a sharp signal edge

travels exactly at c. For this example, we construct the medium with a narrow absorbing

resonance superimposed on a wide amplifying resonance (both still centered at the same

frequency). This is basically the inverse of the medium constructed in section 5.3. As with

the medium in section 5.3, a relatively narrowband pulse whose spectrum is centered

on-resonance can be sent through this medium with relatively little spectral modification.

However, there is a strong transfer of energy to the pulse in the early portion, which is

offset be a transfer of energy back to the medium in the trailing portion. This results in

highly superluminal propagation of the pulse peak.

We choose the medium parameter values as follows: ω0 = 1 × 105γ1, ωp = 10γ1,

f1 = 0.02, f2 =−0.1, and γ2 = 5γ1. Figure 5.7(a) illustrates the imaginary part of χ (ω) for

these parameters. The pulse is Gaussian as before, with parameters as follows: τ= 70
/
γ1

and ω̄=ω0. Figure 5.7(b) shows the spectrum of the initial pulse taken in its entirety.

Figure 5.8 is a time sequence of the energy densities associated with this pulse as it

traverses a medium of thickness 30c
/
γ1 . Again, the solid line represents the field energy

density, the dashed line in the medium represents the combination uexchange +u (−∞),

and the dotted line represents the pulse as it would have propagated in vacuum. In this

case, the enhancement of the leading portion and the absorption of the trailing portion

causes the exiting pulse to emerge from the medium before the incoming pulse enters.
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Figure 5.7: (a) Imaginary part of χ (ω). (b) Initial pulse spectrum.

5.4.1 Sharp Signal Edge

When a Gaussian pulse is used to study superluminal effects, the wings of the temporal

profile extend infinitely in both directions. Thus, the peak of the pulse exiting a medium

may be shifted arbitrarily far into the leading edge without violating causality. However,

if the leading edge is set to zero for times before the pulse is ‘switched on’ this is not the

case; no pulse energy can be shifted beyond the signal edge propagated forward at c.

Explanations for this effect are given in terms of the group delay context in section 3.1.3

and in terms of the instantaneous spectrum description in section 4.7.4.

Figure 5.9 illustrates this principle for a pulse whose leading edge has been set to zero,

with the trailing edge given by the same Gaussian as in Fig. 5.8. Figure 5.10) repeats Fig. 5.9

on a logarithmic scale. The dashed pulse represents the behavior of the full Gaussian,

as shown in Fig. 5.8, and the star indicates the truncation point propagated forward at

exactly c . The pulse experiences extreme amplification since its entire spectrum overlaps

the amplification peaks. However, none of this energy moves beyond the truncation

point propagated forward at c.
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5.4.2 Leading Portion of a Pulse

There has been some discussion about whether the pulse exiting the medium in superlu-

minal situations arises solely from the leading portion of the incoming pulse. This issue

is clear in light of expression (4.29). Since the energy exchanged between the pulse and

the medium can only depend on the portion of the pulse that a given point has already

experienced, later portions of the pulse can have no influence on forward portion.

To illustrate this effect, in Fig. 5.11 we repeat the time sequence of Fig. 5.8 for a pulse

whose leading edge is identical to the original pulse and is truncated at the peak of the

Gaussian profile. (Figure 5.12 plots the this time sequence on a logarithmic scale). The

field energy density of the truncated pulse is plotted with a solid line. The dashed line

shows the untruncated pulse of Fig. 5.8. Because the truncated pulse taken in its entirety

contains a large amount overlap with the amplification resonance it experiences a great

deal of amplification in the trailing portion. It is clear from the plots that the leading

portions of both pulses are identical as causality demands. The entering peak and the

exiting peak are not causally connected.39 The Gaussian appearance of the exiting peak is

connected only to the Gaussian leading edge, and not with the shape of the latter portion

of the incoming pulse.
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Chapter 6

Conclusion

In this chapter we briefly summarize the results obtained in this work. We then use

the perspective gained from these results to compare and contrast the new group delay

context with an energy velocity description that is often used. Finally, we discuss the

superluminal effects illustrated in the work, and show why it is improbable that they will

have practical uses in communication.

6.1 Summary

In this work we have discussed several techniques which are used to describe the behavior

of the solutions of Maxwell’s equations. We began by introducing the concept of group

delay. We illustrated why the traditional formulation of the concept fails for a broadband

pulse with its spectrum near resonance. We then introduced a new context for group delay

wherein the group delay function always retains meaning in a uniform linear medium.

The results apply to pulses of arbitrary bandwidth and temporal complexity, even in the

presence of anomalous dispersion where the pulse shape can evolve dramatically during

propagation.

107
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The formalism distinguishes the roles of group velocity and spectral reshaping in

determining total delay time. The net group delay is averaged over the final spectrum

after the propagation takes place. The reshaping delay measures the effect of eliminating

from (or adding to) the original pulse the spectral amplitude that is lost (or gained) during

propagation when the pulse is initially chirped. This formalism does not attempt to

identify a specific velocity as being representative of the overall pulse propagation as can

be done for narrowband pulses. Rather it shows that a linear superposition of the group

delays is necessary to determine total delay time. Since the formalism tracks the temporal

‘center of mass’ of the arrival of a pulse’s electromagnetic field energy only, superluminal

delay times do not represent a problem for causality.

We have also discussed energy transport in dielectric media. We examined the cen-

troid of total energy and found that its velocity of transport is strictly luminal. We also

pointed out that the velocity at which field energy transported from one point to another

is strictly bound by c . However, the average location of the field energy density can move

at any speed, as predicted by group velocity. The overly rapid motion of the centroid of

field energy occurs when the medium exchanges energy asymmetrically with the leading

and trailing portions of the pulse. The principle of causality requires this asymmetric

energy exchange as governed by the instantaneous power spectrum used in (4.29). The

instantaneous spectrum description of energy exchange provides an intuitive under-

standing of superluminal and highly subluminal phenomena in the vicinity of absorbing

and amplifying resonances. This intuition is distinct from but complementary to the

perspective gained through an understanding of group delay.
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6.2 Energy Velocity Versus Group Velocity

In section 1.2 we mentioned that there has not been a clear consensus on the usefulness

of group velocity. In large measure this was because of the failings of the group velocity

description when applied to broadband pulses near resonance. The new context detailed

in this work demonstrates how the concept of group delay can always be applied to

propagation, regardless of a pulse’s bandwidth and the proximity of resonance structures

in the medium. We also mentioned in the introduction that Oughstun had observed11

that traditional group velocity becomes less accurate with greater propagation distance,

while the energy velocity description becomes more accurate with increasing propaga-

tion distance. At this point we are prepared to discuss and compare the two different

descriptions in terms of the material presented in this work.

The decreasing accuracy of the traditional group velocity description for large prop-

agation distances is due to the fact that in the expansion context velocity is predicted

using the initial spectrum. Since components of the initial spectrum may be absorbed

(or amplified) before they arrive at the observation point this can lead to erroneous

predictions. It is therefore essential that the delay time be predicted using the spectral

components that survive propagation, as is done in the new context. When this is done,

the group delay description is equally valid for all propagation distances.

Since the group delay description is valid for all displacements, it is interesting to in-

vestigate how it relates to the energy velocity description, which becomes valid after large

propagation distances. In order to compare the two descriptions, we briefly summarize

the approach to energy velocity used by Oughstun,29 which is slightly different from the

description presented in chapter 4. In this approach, one considers a monochromatic

wave with frequencyω. The energy transport velocity for this frequency is then defined as

vE (ω) ≡ 〈|S (ω)|〉
〈utot (ω)〉 , (6.1)
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where the brackets indicate the time average of the quantity enclosed. S (ω) is the time

representation of the Poynting vector for the frequency ω, not the frequency domain

representation constructed from the fourier transforms of the fields. The energy density

〈utot (ω)〉 is defined by

〈utot (ω)〉 ≡ 〈u f i eld (ω)〉+〈uosc (ω)〉 . (6.2)

The field energy density u f i eld is the same as in (4.8), and uosc is the energy density stored

in the oscillations of the medium. (In order to calculate uosc a model must be assumed for

the medium. The usual choice is a Lorentz medium.) Again, the argument ω reminds us

that we are looking at a harmonic wave. In the limit where absorption becomes negligible,

(6.1) can be shown to reduce to the classical group velocity, evaluated at the frequency ω.

The connection between (6.1) and pulse propagation comes when considering the

asymptotic solution to Maxwell’s equations. (The method used to obtain this solution

is sketched in section 3.4.2.) This solution is valid after a pulse has propagated a large

distance in an absorbing medium. The asymptotic solution is comprised of an amplitude

function which multiplies an oscillatory function. The frequency of the oscillation varies

in time, so that it is possible to define an instantaneous frequency of oscillation for

the pulse. Sherman and Oughstun stated the connection between this instantaneous

frequency of the pulse and the energy propagation velocity defined in (6.1) as follows:

The field is dominated by a single real frequency at each space-time point.

That frequency . . . is the frequcny of the time-harmonic wave with the least

attenuation that has energy velocity equal to z/t.40

This description of how the energy velocity predicts pulse behavior sounds very

similar to the group delay description developed in this work. In the group delay context,

we can state the meaning of the mathematical expression (2.43) in words as follows:
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The electromagnetic flux associated with a given frequency will be delayed

according to the group delay function. When a pulse has been chirped by

propagated a large distance, the field at a point r will be dominated by the

frequency component with the least attenuation that has a group delay equal

to t (assuming that the initial pulse was unchirped and arrived at r0 at t = 0).

Since the energy velocity (6.1) and the group velocity are known to predict different values

for delay times in many cases, it may not be clear at first how both the Sherman statement

and the group delay statement can be correct.

The resolution to this situation comes by recalling that the energy velocity (6.1) re-

duces to the group velocity when absorption is small. The only spectral components

that survive to the ‘mature’ dispersion regime are those that do not experience much

absorption. Thus, the qualification that the observed frequency component is the one

which experiences “the least attenuation" assures that the two descriptions will agree in

the limit of large propagation distances.

If we are only interested in predicting when different frequency components would

appear after long propagation distances, we can get the correct answer using either energy

velocity or group velocity. However, since the group delay description (as introduced

in this work) is valid for all propagation distances, while the energy velocity description

given by (6.1) is valid only for large distances, we see no advantage to using the energy

velocity.

6.3 Can Superluminal Effects be Useful?

In many of the example in this work we have studied situations where the field energy

of a pulse has superluminal delay times between various points in the system. It is

abundantly clear that no information can ever be transmitted faster than c. However,
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in most situations where we use light to transmit information (e.g., fiber optics) the

transmission rate is well below the speed of light. Some have wondered if superluminal

effects could somehow be employed to bring the speed of information transfer closer to

c. In this section we use the perspective gained in this work to discuss the implausibility

of using the current class of superluminal effects to achieve this goal.

6.3.1 Geometric Superluminal Effects

There are many situations in which superluminal delay times are observed simply due

to geometry. For example, if a spotlight is scanned across a mountain side, the spot on

the mountain can move arbitrarily fast depending on the rate at which the light source

turns and its distance from the mountainside. However, the delay between the arrival

of the spot at various points on the mountain side does not indicate that anything was

transmitted between the points. We define a geometric superluminal effect as one in

which the energy arriving at one point is unaffiliated with the energy arriving at another

(i.e., the ‘signal’ could still reach the second point even if you prevent the energy from

arriving at the first point). While the geometric nature of the superluminal delay times is

obvious for the spotlight example, there are other situations where it is more subtle (for

instance, the effect in Ref. [41] is purely geometric although the authors never discuss

this). All geometric superluminal effects are useless for information transfer.

6.3.2 Superluminal Delays in Absorbers

We have noted several times in this work that the peak of an on-resonance narrowband

pulse moves faster than c in an absorbing medium. Since we often associate the peak

of the pulse with a signal, one might consider using this effect to ‘hurry up’ information

transfer. However, there is really nothing to be gained by shifting the peak forward in this
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manner. The exiting peak is always below the envelope of the original pulse propagated

forward at c. Any detector sensitive enough to ‘click’ at the peak of the absorbed pulse

would click earlier simply by letting the full pulse through and triggering at the lower

intensity on the rising edge of the full pulse. In addition, this setup absorbs signal while

leaving noise, and requires signals that are long in (i.e., narrow bandwidth). Neither of

these qualities is desirable when trying to enhance the speed of information transfer.

Thus, there seems to be no advantage to using this type of setup.

6.3.3 Superluminal Delays in Amplifiers.

Superluminal effects in amplifying media present the only situation where a signal might

be better off for having travelled through the system. In these systems, the leading edge of

the signal is amplified while the trailing edge is attenuated. Thus, the exiting signal could

be detected sooner than would be the case if the original signal were simply allowed to

propagate through vacuum. However, as the pulse is advanced in this manner it acquires

on-resonance frequency components. These components manifest themselves in the

trailing edge of the pulse (very far behind the signal pulse). If propagation distance in the

medium becomes too great, these components become the dominant signal, and cause

the peak to emerge with a very slow velocity. (This problem can be alleviated somewhat

by using more complicated resonance structures than those discussed in this work.)

In addition to the trailing edge problem, it is also clear that the advancement of a

pulse cannot affect the rate of information transfer. Information is generally sent as

a series of pulses. While the first peak in a pulse train can get through the amplifier

quickly, the inter-peak distance remains the same. Thus, once the first peak arrives at the

detector, the rate of information transfer is unaffected by the advancement. Since the

phenomenon requires extremely narrowband pulses, a train of the pulses must be spaced

far apart in order to maintain distinct peaks. This reduces information transfer rates.
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Since information transfer rates cannot be affected by the advancement of a pulse, one

might try using this system to advance a single signal pulse. However, the requirement

that the advanced pulse be narrowband makes this unattractive. To see why this is so,

imagine that we decide to send a signal at some instant of time. At that instant, we begin

to send the long leading edge (which is required for a narrowband pulse) of the signal

through the amplifier. Eventually the peak arrives at the amplifier, and is advanced by

some fraction of the pulse width. If we instead began a broadband pulse at the instant

when we decide to send a signal, its peak would be somewhere in the rising edge of the

narrowband signal. Even if this broadband pulse travels slower than c, it can usually be

arranged for the broadband peak to arrive at a detector before the peak of the advanced

narrowband pulse. Thus, there is little advantage to be gained by the advancement of a

narrowband pulse.

In summary, we see no probability that the current class of superluminal effects

will be able to enhance communication speed. These effects are of interest primarily

because of the insights which they give to the study of light propagation and the nature

of pulse/medium interaction, and not because they hold great promise for enhancing

information transfer.
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Appendix A

The Spatial Centroid of Field Energy

In this appendix we sketch the derivation of expression (4.20) which connects group

velocity with the presence of field energy. To accomplish this, we solve Maxwell’s equa-

tions by selecting an instant in time and considering the spatial distribution of the pulse

at that instant. This is in contrast to the more common method in which one chooses

a point in space and considers the time behavior of the fields at that point. Since the

spatial method of obtaining solutions is less common (owing to the fact that the material

polarization P enters into Maxwell’s equations through a time derivative as opposed to a

spatial derivative) we take a moment to review how the solutions are obtained.

The k-space and spatial distributions of the electric field at an instant t are related by

E (k, t ) = 1

(2π)3/2

∫
e−i k·rE (r, t ) d3r , (A.1)

E (r, t ) = 1

(2π)3/2

∫
e i k·rE (k, t ) d3k. (A.2)

Analogous expressions for B and P give the k-space representation for the magnetic and

polarization fields. We take E (r, t ), B (r, t ), and P (r, t ) to be real functions, so that the

following symmetry holds for their k-space representations:

E (−k, t ) = E∗ (k, t ) (A.3)
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with analogous expressions for B (k, t ), and P (k, t ). In a homogeneous, isotropic medium,

Maxwell’s equations have as a solution

E (k, t0 +∆t ) =
∑
m

Em (k, t0)e−iωm (k)∆t . (A.4)

The initial pulse form E (k, t0) is chosen at the instant t0 for each frequency associated

with the wave number k. The solution renders the pulse form E (k, t0 +∆t ) (in terms of

the initial pulse form) after an arbitrary time interval ∆t . The magnetic field is connected

to the electric field via

B (k, t ) =
∑
m

k×Em (k, t )
/
ωm (k) , (A.5)

and the spatial profile of the pulse at the later time is obtained using (A.2).

The connection between the frequency ωm and wave number k is:

ω2
m

c2

[
1+χ (ωm)

]= k2. (A.6)

We choose real values for k and solve Eq. (A.6) for ωm . The subscript m and the summa-

tions in (A.4) and (A.5) reflect the fact that the solution to (A.6) is in general multi-valued.

We take this degeneracy to be countable and therefore use a summation rather than

an integral. (For example, a single Lorentz oscillator is four-fold degenerate with two

distinct frequencies for a given k which can each propagate forwards or backwards.)

This degeneracy reflects the physical reality that in the presence of a complex linear

susceptibility χ (ω), different frequencies can correspond to the same wavelength. As

mentioned in the text, we make the simplifying assumption that only a single frequency

ω is associated with each k, so that we can write the solution to Maxwell’s equations as:

E (k, t0 +∆t ) = E0 (k, t0)e−iω(k)∆t . (A.7)

If this assumption is not made one can still derive expressions with the same interpre-

tation as those obtained here. However, the sums involved make the expressions more

complicated.
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The viewpoint of real k leads to the use of complex frequencies ω. The meaning of

complex frequencies is clear. The susceptibility of a complex frequency is determined by

the medium’s response to an oscillatory field whose amplitude either decays or builds

exponentially in time. If the susceptibility χ (ω) is known (measured) only for real values

of ω, its behavior for complex frequencies can be inferred through a Fourier transform

followed by an inverse Fourier transform with complex frequency arguments. Given the

real k vectors, the complex frequencies correspond to uniform plane waves that decay or

build everywhere in space as a function of time. (This is in contrast with the time picture

where the pulse is comprised of waves that are steady in time but which decayed or build

as a function of position.)

We now consider the average position of field energy at an instant and consider the

displacement at a later time. As mentioned in the text, we use the centroid of field energy

to define the pulse’s position (see (4.18)):

〈rfield〉t ≡
∫

rufield (r, t ) d3r

/∫
ufield (r, t ) d3r . (A.8)

Motivated by a desire to make a connection with group velocity, we rewrite (A.8) in terms

of the k-space representation of the fields:

〈rfield〉t = R [E (k, t )] , (A.9)

where

R [E (k, t )] ≡ i

∫
d3k

∑
j=x,y,z

[
ε0
2 E∗

j (k, t ) ·∇k E j (k, t )+ 1
2µ0

B∗
j (k, t ) ·∇k B j (k, t )

]
∫

ufield (r, t ) d3r
. (A.10)

The k-space representation of the energy density is

ufield (k, t ) = ε0E (k, t ) ·E∗ (k, t )

2
+ B (k, t ) ·B∗ (k, t )

2µ0
. (A.11)

We have included only the electric field in the argument of the displacement R since the

magnetic field can be obtained through (A.5).
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The expression (A.10) is not very useful in itself. Its usefulness comes when applied to

the difference in the pulse’s average position at two different instants in time. Consider a

pulse as it evolves from an initial time t0 to time t0 +∆t . The difference in the average

position at these two times is

∆r ≡ 〈rfield〉t0+∆t −〈rfield〉t0
= R [E (k, t0 +∆t )]−R [E (k, t0)] (A.12)

Using the solution (A.7), the displacement can be written as the sum of two intuitive

terms (see (4.20)):

∆r =∆rG (t )+∆rR (t0) . (A.13)

The first term in (A.13), the net group displacement, is given in (4.21) and discussed in

the text. The second term in (4.20), the reshaping displacement, is given by

∆rR (t0) ≡ R
[

eImω(k)∆t E (k, t0)
]
−R [E (k, t0)] . (A.14)

The reshaping displacement is the difference between the pulse position at the initial

time t0 evaluated without and with the spatial frequency amplitude that is lost during

propagation. Dispersion effects due to propagation are not included since E (k, t0) is used

in both terms of (A.14).


