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ABSTRACT

BLACK SPAGHETTI: A NUMERICAL MODEL OF

GRAVITATIONAL COLLAPSE IN

4 + 1 SPACETIME

Michael P. Christenson

Department of Physics and Astronomy

Master of Science

We investigate spherically-symmetric gravitational collapse in the presence of a

single “large” extra dimension through the use of analytical and numerical techniques.

This has bearing on higher-dimensional ideas concerning hypothetical objects

called “black strings,” or black holes extending into an extra circular dimension,

which dimension we herein label ζ. These putative objects were first seriously con-

sidered as elements of string theory but have relevance in simpler, higher-dimensional

generalization of Einstein’s general relativity.

We assume a universe of topology M2×S2×S1 (where M2 is a two-dimensional

Lorentzian manifold; S2 is the sphere; and S1 is the circle). We model the formation

of a uniform black string via two modes—the collapse of a massless scalar field, and of

pure gravitational waves consisting of (gaussian) distortions in the extra dimension.



We report on and discuss two aspects of the nonlinear dynamics, viz., that in five

dimensions larger-amplitude fields appear to collapse more slowly than their lower-

amplitude cousins; and that ζ-wave collapse exhibits signs of self-similarity at the

threshold between black string formation and dispersal of the collapsing fields.
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Chapter 1

Preliminaries

1.1 Background and Introduction

The possibility of higher-dimensional spacetimes becomes an interesting idea from

the moment one first learns, from special relativity, that time is a “fourth dimension.”

Questions such as “What would a higher-dimensional universe look like? Would

gravity behave differently there?” and “Can we tell if there are more dimensions? If

so, how?” rise unbidden from these näıve ponderances.

It turns out that in this case childlike naiveté might just be intuition in disguise.

For, from Kaluza and Klein’s five-dimensional attempt at unifying electrodynamics

with the spacetime metric [1] to string theorists’ ten-fold universe, to recent sensitive

experiments in search of deviations from Newton’s inverse-square law [2,3], physicists

have not shied away from entertaining hyperdimensional theories in their quest for a

comprehensive understanding of fundamental forces.

1.1.1 Hyperdimensional Theories Through the Ages

The present era’s study of spacetimes with more dimensions than the 3+1 universe

of “normal” general relativity formally began in the 1920’s—not too long after GR’s

original publication by Einstein, and its stunning confirmation in the solar eclipse of

1919—when Kaluza and Klein (KK) proposed a five-dimensional model to unify grav-

ity and electrodynamics [1]. Their idea, tempting in its simplicity but disappointing
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in its reality, was to expand the 4-dimensional metric of gravity to a 5-dimensional

metric that included the usual four-dimensional metric as a sub-matrix. In addi-

tion, one could interpret the larger manifold as including the four-vector potential

Aµ =
(
V/c ; ~A

)
which describes electromagnetism, and an additional scalar field, χ.

Schematically it would take the form:

Mab =


gµν δ

µν
ab Aµ δ

µ
a

Aν δ
ν
b χ

 (1.1)

The beauty of this approach is that it describes both gravity and one of the other

fundamental forces as purely geometrical effects; for, if Mab is used as the metric in

making the corresponding five-dimensional Ricci tensor, one miraculously produces

the Einstein equations with the correct electromagnetic stress tensor, as well as the

Maxwell equations. Such beauty is hard to dismiss as mere coincidence.

The great question that emerges from this consideration is, What is this extra

or fifth dimension above and beyond the 3 + 1 to which we are accustomed, whose

geometrical distortion is responsible for electrodynamics? In the original KK idea,

this extra dimension was—somewhat arbitrarily—chosen to have the topology of a

circle, i.e., to be a compact dimension. There is, however, no apparent physical basis

for making this choice.

Unfortunately, this combination of the spacetime metric with the electromagnetic

four-potential, as well as other generalizations of the KK idea, have at least one

significant failure in that they introduce complications and scalar fields that have not

been observed experimentally. This is manifest in (1.1) with the introduction of the

mysterious field, M55 = χ, a massless scalar field, often called the dilaton. In the full

KK equations, χ appears alongside the gravitational and electromagnetic fields and is
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nontrivially coupled with them. Thus, notwithstanding the allure of the Kaluza-Klein

hypothesis, it does not satisfy Einstein’s hope for a grand unification as neatly as one

might hope.

Since the original innovation of KK, there have been various attempts to incor-

porate or resurrect their idea of geometrizing fundamental interactions in Einstein’s

as-yet ill-fated quest. This is particularly true in recent years with the rise and vari-

ous resurgences of string theory. Some of these models allow for higher-dimensional

spacetimes with many more dimensions than the four that we perceive. For example,

some models require as many as 10 or 11 dimensions. An unresolved issue in string

theory is why we cannot sense any dimensions beyond the four with which we are

familiar. One idea to account for our inability to measure them is that, as in the

KK idea, those dimensions are “compactified” to some very small scale, perhaps on

the order of the Planck length (LP ≡
√
Gh̄/c3 ∼ 10−35 m). The energies required

to probe such tiny spaces stretch far beyond our current technological capacity and

taxpayer patience.

1.1.2 Randall and Sundrum’s Braneworld Universe

In 1999, Randall and Sundrum (RS) imported aspects of string theory into the

cosmological arena [4,5]. They proposed that theories with extra dimensions were not

restricted to being compactified (as by then had become the common assumption) and

so could, in principle, feature dimensions of macroscopic size. Although the hypothesis

that higher-dimensional theories could have non-compactified extra dimensions had

been toyed with before [e.g. 6,7], RS proposed the first apparently internally self-

consistent model. Most intriguingly, their proposal posited the idea that our visible

universe was confined to a “brane,” or a codimension-one submanifold, within a larger

manifold which has since come to be known as the “bulk.”
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One may visualize such a universe as a piece of tissue paper (representing the

brane) embedded in a vat of gelatin (bulk), as shown in Figure 1.1.
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Figure 1.1 — The braneworld scenario: all matter and nongravitational bosons live at
ζ = 0, i.e., on the brane. Gravity, being geometrical in nature, affects the bulk—which
then produces nontraditional effects on the brane.

In the brane-universe the three interactions of the standard model are supposed to

take place on the brane (corresponding to the tissue in our metaphor); whereas gravity,

still considered as the effect of a warped spacetime, is under no such restriction and

therefore acts in the full bulk (gelatin) or larger spacetime manifold—with interesting

nontraditional effects on the brane.

Mathematically speaking, one assumes that the Einstein equations hold just as

well in five dimensions as they do in four—indeed, that it is from the vantage-point

of the five-dimensional observer that the pure “curvature equals stuff” theory holds

true, whereas from the perspective of the lower dimensions (the braneworld) there are

extra terms that enter the equations. For brane theory the relevant equations were

obtained by Shiromizu, et al., [8]. These equations include two “exotic” extra pieces:

a term quadratic in the four-dimensional stress tensor, and a tensor that represents
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the back-reaction of gravitational action in the bulk onto the brane.

The physical interpretation of the Shiromizu-Einstein equations is as follows.

Gravity on the brane would depend upon the matter and energy on the brane it-

self in the usual way at low-energy states. In addition, gravity would be especially

sensitive to extreme conditions, such as a black hole, which the quadratic term would

emphasize. Furthermore, it would be modified by distortions in the bulk. The latter

point is especially well-illustrated in our mental image of tissue paper in gelatin.

In the flurry of research following this bold proposal, the majority of the work

done has been to obtain static or cosmological solutions to the Shiromizu-Einstein

equations or variations thereof, and investigations of linear perturbations of known

4-D metrics in the presence of the bulk [e.g. 9,10].

Some important questions with regard to these “braneworld” models touch on

their time-dependent, evolutionary properties. For example, are the known static

brane-solutions stable? Do cosmological perturbations remain small? What does

gravitational collapse in braneworlds look like, and how is it influenced by the bulk?

Can stable objects, i.e. stars and black holes, be formed on the brane? How far to

black holes and other gravitating object extend into the bulk? Our original intent

had been to address questions such as these.

Since the analytical aspects of the problem would involve solving a complicated

set of second-order nonlinear coupled PDEs in three dimensions, we thought to apply

numerical techniques to evolve the dynamics of local black hole formation on the

brane. However, as we pondered how to coax brane-friendly boundary conditions

from W. Israel’s treatment of dust shells [11], Hirschmann and Wang [12] showed

that there existed a strong possibility that braneworlds must be either static or spa-

tially uniform—respectively dooming the dynamic creation or the existence of black

holes, as well as all other spatially or temporally local variations in the universe (e.g.,
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galaxies, stars, planets, us).

1.1.3 Black Strings and Black Pearl Necklaces

This negative result made it difficult to proceed with any confidence of finding

a viable solution to the question of braneworld black hole dynamics. An alterna-

tive (which we had previously considered) was to abandon the brane and consider

the dynamics of a generic five-dimensional gravitational theory. While no longer an

outgrowth of the RS model, this still considers ideas coming from KK or string-like

theories.

One variant on these latter theories is the existence of higher-dimensional “black

objects.” The simplest specimen is the four-dimensional Schwarzschild black hole

topologically crossed with S1 (the circle). The object thus formed could therefore

be described as a “black string,” which shall henceforth be our terminology. This

geometry, which possesses a regular event horizon, satisfies the five-dimensional vac-

uum Einstein equations. This simple solution has generalizations in various string

theories; understanding its dynamics might help in understanding various aspects of

string theory. Likewise, although this solution is not specifically a braneworld solu-

tion, one might imagine (despite the above negative result) that in more complicated

braneworld scenarios one might also find analogous extended black objects. Therefore

much of what has been done in RS brane theory could have1 carried over into black

strings, since the brane was to assert itself mainly in the imposition of boundary

conditions.

With this motivation, coming from both string theory and braneworlds, it is worth-

while trying to gain a more complete understanding of black strings. For instance, one

question that persists from brane-land concerns stability properties. In the 1960’s and

1 I say “could have” because using the braneworld equations was not the approach we ultimately
took.
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70’s considerable work was done to prove that the classical 3 + 1 Schwarzschild and

Kerr solutions in four-dimensional general relativity were in fact stable with respect to

small perturbations. This meant that such objects—which at the time did not enjoy

the widespread acceptance in the physics community we now take for granted—could

in fact be the end-state of gravitational collapse. It is natural, therefore, to apply

a similar analysis to the question of black string stability. This question was first

addressed perturbatively by Gregory and Laflamme [13,14].

They showed that for a simple black string (which is, by reminder, just the

Schwarzschild black hole × S1 in five dimensions) with a length in the extra (ζ)

direction larger than the black hole’s spherical radius, one could expect the black

string (which they more deliciously referred to as a “black doughnut”) to be unsta-

ble: their calculation revealed an exponentially growing mode that would render the

static, translationally (in ζ) invariant solution unstable.

Although this was a perturbative calculation, and therefore unable to say exactly

what the end-state of this instability would be, the authors conjectured in [13] that

the initially smooth black string would “bead up” into what we’d call a “black pearl

necklace”—that the horizon, which initially possesses translational invariance, would

in fact pinch off in regular intervals, and one would be left with a series of 5-D

black holes in the ζ direction. Some results in string theory actually depend upon

this conjectured dynamical instability [15-18], and so there is some importance to

establishing it definitively.

Adding to the consternation, however, Horowitz and Maeda in [19] present an

argument that, while the instability drives the initially smooth black string away

from a translationally-invariant (in ζ) state, the pinch-off never actually occurs. Using

global techniques and the Raychaudhuri equation (adapted to five dimensions) they

were able to show that the horizon cannot bifurcate in finite affine parameter (or
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“time”). This is a provocative result, given the earlier conjecture and the various

results that seem to depend upon the occurance of pinch-offs.

Then again, as recently as this past April (2005), Marolf [20] suggested that

Horowitz and Maeda [19] were mistaken; that indeed “pinch-off at a finite advanced

time is in fact a natural expectation of the bounds derived by Horowitz and Maeda.”

Nor has this investigation been the sole province of analytical theorists. As had

been suggested early on by Horowitz [21], the general nonlinear evolution of the black

string should be as amenable to numerical techniques as are the linear perturbative

calculations. Indeed, if one considers possible spatial dependence in the radial and

ζ-directions only, the problem amounts to writing a 2 + 1 evolution code that solves

Einstein’s equations in cylindrical-like coordinates.

This was done with partial success by Choptuik, et al. [22], who wrote an evolution

code using a simple black string as its initial data. Calculating geometric quantities

such as the ratios of large and small circumferences, they were able to confirm the

instability’s existence and in fact measure its rate of growth. However, their code

was not sufficiently robust to determine the final end-state of the black string. While

they saw indications of continued growth in the ratio of the largest to the smallest

circumferences around the black string, they were unable to determine definitively

whether that growth lead to the pinch-off of the horizon. Thus the larger question,

pertaining to the end-state of a black string, remains unanswered. (As a result, both

sides claim vindication of their ideas.)

1.1.4 Critical phenomena

As computational relativity came into its own it was found [23], and replicated

many times over in every conceivable construct [24], that black hole formation follows

a rule that is at once intuitive and completely unexpected. Intuitively, if one has a lot
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of “stuff” (typically a scalar field)—meaning, if any one of the scalar field amplitude

φ0, the width δφ, or the mean radius ρ0 in an initial gaussian scalar-field profile

φ = φ0 exp [−(ρ− ρ0)
2/δφ

2] is sufficiently large—a black hole of a certain mass is the

end result. The greater the initial parameter in question (which is commonly given

the generic label p), the greater the mass of the resulting black hole. It is likewise

intuitive that if these quantities are sufficiently small, no black hole is formed.

Naturally one begins to wonder where in initial-field-phase-space the black-hole-

ness “turns on,” and whether the mass-dependence of the black hole continues all the

way down to zero. The answer, which by now has attained almost to the stature of

common knowledge (at least, within the numerical relativity community), is some-

thing that seems to defy intuition: black hole mass scales according to the rule

mBH ∝ (p− p?)γ (1.2)

where γ ≈ 0.374 is an apparently universal constant, as it is the same for any one-

parameter family of scalar field, and does not depend on which parameter (φ0, δφ, ρ0)

is used; p? > 0 is the critical value of the initial parameter. This means that the mass

of the resulting black hole (a) does not increase linearly with p but is asymptotically

unbounded; and (b) is continuous with the no-black-hole state at p = p?,mBH = 0,

although it comes in at infinite slope (which implies that the formation of a black hole

will be extremely sensitive to small variations in p near p?). At criticality, therefore,

massless black holes become a possibility.

Even more remarkably, for p very close to the critical point, p = (1 ± ε) p?, the

fields exhibit self-similarity. Further work [24] shows that this self-echoing structure

can be either continuous or discrete, and that it is no numerical mirage, but can be

obtained analytically with prudent coordinate choices.
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1.1.5 The Work We Herein Present

The work that will be discussed herein is in some sense a reconsideration and

simplification of the black-string end-state problem. While solving the full problem

is compelling, and something which we’d like to eventually do, we here limit our

discussion to an attempt to solve a simpler 1 + 1 dimensional black string evolution

problem.

While disappointing from the perspective of looking for the final state of the

instability, our motivation is to learn something about five-dimensional gravity on

a fundamental level: the effect that the mere existence of an extra spatial dimen-

sion might have upon the evolution and final product of gravitational collapse. The

problem remains dynamic, albeit not in the ζ direction; in fact, the extra dimension

allows for not only scalar field collapse, but also the collapse of pure gravitational

waves which replicate, in five dimensions, the fascinating “critical phenomena” found

in 3 + 1 spacetime gravitational collapse.

Our hope, then, would be that once we have a better understanding of the dy-

namics in this simplified model problem, we might be able to extend our approach to

the more involved 2 + 1 case. Along these lines, it is interesting to note [25] that the

Choptuik group was unable to successfully model gravitational collapse of a scalar

field to a black string.

Solving Einstein’s second order coupled nonlinear partial differential equations

is never a walk in the park, even under the best of circumstances. General, exact,

closed-form solutions have eluded physicists since the equations were first published

in 1915. Our approach, then, will be as follows. We will assume spherical and ζ-

translation symmetry, and our only coordinate dependence will be on a conformally

defined radial coordinate and a time coordinate. We will of course need the equa-

tions of motion for the matter, in addition to the Einstein equations. To perform a
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time evolution we will make the standard splitting of space and time of Arnowitt,

Deser, and Misner (ADM) [26]. One route to this separation includes dividing out

the spherical symmetry already present and viewing the system as KK-like reduced

fields on some submanifold of the full spacetime. While attractive conceptually (and

still useful in some ways), we discovered that there are implementation issues on the

numerical side. The ADM method, then, will be augmented by a careful study of reg-

ularity conditions. We believe that careful treatment of, for example, the symmetry

axis, permits us to build a stable evolution—a crucial requirement of any numerical

code. Indeed, we feel we have an important technical result regarding regularity and

coordinate conditions which should play a role in the more general 2 + 1 case as well.

In subsequent sections of this thesis we will discuss in detail the meaning of our as-

sumed symmetries, the equations that we solve, regularity conditions, and the results

of our simulations.

1.2 Notes on Notation

In dealing with equations pertaining to manifolds of diverse dimensionality, it

becomes most helpful to assign specific meaning to the letters to be used as tensor

component indices and to use different symbols for the various metrics and their

corresponding covariant differential operators. Therefore, in what follows we will

rigorously enforce the rules summarized in Table 1.

Manifold Coordinates Metric Indices Operator

Universe (t, ρ, ζ, θ, ϕ) gµν α, β, γ, ... ∇µ

2 + 1 spacetime (t, ρ, ζ) g̃ab a, b, c, ... Da

Unit sphere (θ, ϕ) σmn l,m, n, ... −
4 + 0 spatial slice (ρ, ζ, θ, ϕ) γAB A,B,C, ... ∆A

Trapped surface (ζ, θ, ϕ) ĝAB A,B, C,... −

Table 1
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Other notations may be introduced as needed. As per established customs, com-

mas denote partial differentiation (f,µ = ∂µf = ∂f
∂xµ ), the determinant of a metric

is denoted by its alphabetic name without any indices (g = det[gµν ]), and the sum-

mation convention is in force throughout (all pairwise repeated indices are summed:

aµbµ =
∑
µ a

µbµ). Also, at a later point we will find it convenient to use primes and

overdots to denote derivatives with respect to ρ and t, respectively.
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Chapter 2

Setting the Stage

2.1 A Review of Basic General Relativity

2.1.1 The Mathematics: Tensors and Coordinate Systems

General relativity is, as the name suggests, a generalization of the special relativity

introduced by Einstein in 1905. In mathematical parlance this requires that the theory

be “generally covariant,” or in other words, that it be formulated in terms of tensors.

A tensor is an organized collection of quantities (if they are functions, the object is

said to be a tensor field) whose components obey a particularly simple transformation

law between coordinate systems:

T̄αβ...µν... =
∂xξ

∂x̄µ
∂xη

∂x̄ν
· · · ∂x̄

α

∂xγ
∂x̄β

∂xδ
· · · T γδ...ξη... . (2.1)

This may look complicated, and hardly a way to “define” something as exotic as a

tensor. Put simply, though, this definition simply tells us that a tensor is a sum of

tensors in much the same way that “a vector is a sum of vectors” (v = vk ~e
k) [27]. The

number of indices, or the number of matrices required for a coordinate transformation,

is called the tensor’s rank. A vector is also a tensor, of rank unity; scalars are rank-0

tensors (also called “invariants” because, aside from having to express their functional

dependence in terms of the new coordinates, they remain unchanged under coordinate

transformations). Most of general relativity concerns itself with rank-two tensors.
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The components of a tensor are indexed according to their corresponding coor-

dinates, and according to the type of basis used to build the coordinate system in

which they are expressed. A component is said to be “contravariant” if the basis is

defined as the direction of increasing xµ, ~eµ ∼ ∂µ (Fig. 2.1a). On the other hand, a

component is called “covariant” if the basis used is tangential to the coordinate axis,

~e ν ∼ dxν (Fig. 2.2a). Contra- and covariant components are denoted by super- and

subscripted indices, respectively, to wit: T = ~e ν · · ·~eµ · · ·T µ...ν... .
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Figure 2.1 — Illustration showing the contravariant basis vectors and components of a
displacement vector in oblique axes. Figure 2.1a shows lines of constant xk to which the
respective contravariant basis vectors ~ek are perpendicular. Figure 2.1b illustrates that
contravariant components of the vector x are the coefficients in that linear combination
xk~ek which reproduces the vector itself.

The distinction between covariant and contravariant components is clearly unim-

portant in rectilinear coordinate systems (wherein ~eµ = ~eµ = {̂i, ĵ, k̂}), which is why
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its discussion is usually limited to a non-Euclidean context—although it could be an

important consideration when a problem lends itself to oblique axes, as illustrated in

Figures 2.1 and 2.2. Position, for instance, in a such a coordinate system could be

measured with equal validity parallel to the axes (dxµ), or perpendicular (∂µ).
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Figure 2.2 — Illustration showing the covariant basis vectors and components of a dis-
placement vector in oblique axes. Figure 2.2a shows how the covariant basis vectors ~ek are
parallel to the coordinate axes. Figure 2.2b illustrates that covariant components of the
vector x are the coefficients in that linear combination xk~ek which reproduces the vector
itself.
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2.1.2 The Physics: Matter Determines Geometry

Most of the tensors that play important roles in general relativity are of second

rank. For example, the invariant interval between two infinitesimally separated point-

events is given by

ds2 = gµν dx
µdxν , (2.2)

in which the rank-two tensor gµν is called the metric. The goal in general relativity is

to use the Einstein equations to discover the functional form of the metric, given a cer-

tain mass-energy distribution.1 It is akin to solving the Poisson equation, ∇2φ = 4πρ,

for the gravitational potential φ, given a mass distribution ρ. In that sense, the erst-

while purely geometrical components of gµν are endowed with a physical meaning as

a set of gravitational potentials.

The metric tells us important things about the structure of spacetime, from the

presence of singularities and event horizons in extreme (black hole) situations, to the

more pedestrian gravitational “force” exhibited in the geodesic or covariant free-fall

equation,

uν∇νu
µ =

d2xµ

ds2
+ Γµνλ

dxν

ds

dxλ

ds
= 0, (2.3)

where uµ = dxµ

ds
is the proper four-velocity. Here we have rather glibly made use of

covariant differentiation,

∇αT
µ...
ν... ≡ ∂αT

µ...
ν... + ΓµαβT

β...
ν... . . .− ΓβανT

µ...
β... . . . . (2.4)

The Γµνλ are the metric connections or Christoffel symbols of the second kind, and are

defined as a particular combination of partial derivatives of the metric:

Γσµν =
1

2
gσλ (gµλ,ν + gλν,µ − gµν,λ) .

1 Interestingly, originally it was thought better to use Einstein’s field equations in reverse, that
is, to propose a metric, and find the matter field that would give such a spacetime—which may be
why it fell to a young Karl Schwarzschild to find the first nontrivial solution. See [28].
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The Christoffel symbols are an example of an indexed quantity that is not a tensor;

Γµνλ does not follow the transformation law (2.1).

The Einstein equations themselves may be obtained by making a careful transla-

tion of Newtonian tidal effects into covariant language, but it is more straightforward

to apply an action principle and a tensorial version of the calculus of variations.

The action we will thus consider consists of a (5-D) gravitational piece and a piece

representing the matter. In the case of a massless scalar field φ, the action will be:

S =
∫

(LG + κLM) d5x

=
∫ (

(5)R− κ ∂µφ ∂
µφ
)√

−g d5x. (2.5)

(We could have included a cosmological term, but despite what cosmologists now tell

us [29], the cosmological constant will remain equal to zero for the duration of our

investigation.)

When varied with respect to the metric, the action S yields the famous Einstein

equations:

Gµν = κTµν (2.6)

where Gµν ≡ Rµν − 1
2
gµνR is the Einstein tensor. It is a linear combination of the

Ricci curvature tensor and scalar, which in turn are nonlinear, tensorial compositions

of the Christoffel symbols and their derivatives:

Rµν = Γσµν,σ − Γσµσ,ν + ΓσµνΓ
λ
σλ − ΓσµλΓ

λ
νσ

R = gµνRµν .

On the other side of the Einstein equations (2.6) is the matter tensor, the exact

form and composition of which generally depends upon what is present—be it dust,
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fluid, electromagnetic fields, scalar fields, vacuum, etc. Since we are using a massless

scalar field, the stress-energy tensor—found by varying the matter Lagrangian with

respect to the metric—is:

Tµν =
δLM
δgµν

1√
−g

= ∂µφ ∂νφ−
1

2
gµν ∂σφ ∂

σφ. (2.7)

The matter tensor is multiplied in the equations by κ = 8πG5

c4
, G5 being the five-

dimensional version of Newton’s constant and c, of course, being the speed of light.

Well might one ask how we are to know the strength of the gravitational coupling

in five dimensions. Fortunately, the “actual” (SI) values of natural constants are of

little concern in relativity, so we are free to conveniently adopt units wherein they

are identically equal to unity—at the head-scratching cost of measuring mass, length,

and time (and electric charge, were it to make an appearance) the same way. Thus

we will use κ = 8π from henceforth.

A priori, the scalar field and all components of the metric tensor are assumed to

be functions of all the coordinates (t, ρ, θ, ϕ, ζ), although we will shortly assert some

helpful symmetries.

The equations may be manipulated into what will prove to be a more useful and

convenient form by contracting both sides with the metric,2 solving for R in terms of

the contracted matter tensor T and inserting that result into the original:

Rµν = 8π
(
Tµν −

1

3
gµνT

)
. (2.8)

If we insert the matter tensor (2.7) into these equations (2.8), they condense to

2 This is done by a double inner-product with the metric; e.g., the Ricci tensor Rµν = gλσRλµσν

is the contraction of the Riemann tensor.
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the remarkably simple form,

Rµν = 8π ∂µφ ∂νφ. (2.9)

The equation of motion for the matter is found by setting equal to zero the vari-

ation of L with respect to the scalar field, δL
δφ

= 0. Not too surprisingly, it turns

out that the matter field itself extremizes the action by obeying the covariant wave

equation,

∇µ∇µφ = 0. (2.10)

2.2 Spherical and Other Symmetries

Even with the aid of a sophisticated computer, the Einstein equations are very

unwieldy when dealt with in full. To help simplify matters, symmetries are often

sought and introduced to the system. Formally, the mathematical device used to

accomplish this is the Killing vector, which is not so lethal as it sounds.

Suppose we were to make an infinitesimal (or “point”) transformation, in a process

reminiscent of the Taylor expansion: xµ 7→ x̄µ(xν) = xµ + ε ξµ(xν) + O(ε2). This

represents the mapping of each point xµ to a neighboring new point x̄µ along the

direction determined by the vector field ξµ. Applying this transformation in the

usual way (2.1) to the metric tensor (albeit in the infinitesimal limit) gives:

gµν(x̄) = x̄α,µ x̄
β
,ν gαβ(x̄)

=
(
δαµ + ε ξα,µ

) (
δβν + ε ξβ,ν

)
gαβ (xµ + ε ξµ(xν)) +O(ε2)

=
(
δαµ + ε ξα,µ

) (
δβν + ε ξβ,ν

) (
gαβ(x) + ε ξλgαβ,λ

)
+O(ε2)

.˙. gµν(x̄) = gµν(x) + ε
(
gαν ξ

α
,µ + gµβ ξ

β
,ν + gµν,λ ξ

λ
)

+O(ε2). (2.11)

If the spacetime is to be symmetric with respect to ξµ, then this transformation

should leave the metric unchanged, such that gµν(x̄) = gµν(x). Therefore, the old
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metric appears on both sides of (2.11) and cancels; the remainder must be made to

equal zero (to first order). This requires that the first-order quantity in (2.11), which

happens to equal the Lie derivative of the metric with respect to ξµ, be made to

vanish. The resulting equation for our transformation vector ξµ is called “Killing’s

equation”:

Lξ gµν ≡ ξσ∂σgµν + gµσ∂νξ
σ + gσν∂µξ

σ = 0. (2.12)

Or equivalently, ∇µξν + ∇νξµ = 0, by the miraculous properties of the metric and

covariant differentiation (Eq. 2.4).

Killing’s equation (2.12) can be used either to explore the symmetry of a given

metric by teasing out its Killing vectors, or to restrict a metric to having specific

symmetries by using known Killing vectors. In our case we desire spherical symmetry,

and we know from our studies of group theory and infinitesimal displacements that

the Killing vectors which represent this symmetry are (in Cartesian coordinates) the

three angular momentum generators, [ξi, ξj] = εijk ξk, where

εijk ≡


1 , for even permutations of 123
−1 , for odd permutations of 123

0 , otherwise

is the Levi-Civita antisymmetric tensor. Let it be made clear that the bold Roman

indices i, j,k label the Killing vectors themselves, not their individual components; for

their components we will retain the usage of Greek letters as outlined in Table 1. (This

is why we are not particular about “balancing” the superscripts and subscripts in the

implied sum in the commutator equation above, as we usually are when covariant

and contravariant components are afoot.) Using the angular momentum generators

as Killing vectors, then, will tell us what our metric should look like, as well as its

functional dependence.

Written using differential operators as the basis, and following a transformation to
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coordinates befitting our ansatz (i.e., coordinates on the sphere: {θ, ϕ}), the Killing

vectors take the more familiar form of partial derivatives with respect to the angular

coordinates, because that happens to be exactly what they are! One of the three

Killing vectors is rendered particularly simple: ξ = ξσ∂σ = ∂ϕ. Written as bare

components in this representation, ξσ = (0, 0, 0, 0, 1). We shall examine this one in

more depth.

We return, for a moment, to Cartesian coordinates, so that we can construct an

intelligent ansatz-metric. In Cartesian coordinates, this azimuthal Killing vector ∂ϕ

takes the familiar form ξ = −y ∂x + x ∂y. (The reason for doing this will become

clear when we discuss regularity issues in (§ 3.1.1).) For any symmetric second-rank

covariant tensor Qµν the equation for the Lie derivative of this tensor along this vector

is given (2.12) as

ξλQµν,λ + ξλ,µQλν + ξλ,ν Qλµ = 0.

Written out in full, this becomes fifteen(!) equations, to wit:

y Qxx,x − xQxx,y = 2Qxy

y Qyy,x − xQyy,y = −2Qxy

y Qxy,x − xQxy,y = Qyy −Qxx

y Qzz,x − xQzz,y = 0
y Qzx,x − xQzx,y = Qzy

y Qzy,x − xQzy,y = −Qzx

y Qtt,x − xQtt,y = 0
y Qtx,x − xQtx,y = Qty

y Qty,x − xQty,y = −Qtx

y Qtz,x − xQtz,y = 0
y Qζt,x − xQζt,y = 0
y Qζx,x − xQζx,y = Qζy

y Qζy,x − xQζy,y = −Qζx

y Qζz,x − xQζz,y = 0
y Qζζ,x − xQζζ,y = 0

The solution to these equations can be found in terms of fifteen independent regular

functions:

Qzx = xf1 − yf2

Qzy = yf1 + xf2

Qtx = xf3 − yf4

Qty = yf3 + xf4

Qζx = xf5 − yf6

Qζy = yf5 + xf6

Qxx = f7 − 2xyf8 + y2f9

Qyy = f7 + 2xyf8 + x2f9

Qxy = (x2 − y2) f8 − xyf9

Qtt = f10

Qζζ = f11

Qzz = f12

Qzt = f13

Qζt = f14

Qζz = f15
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where the fi = fi(t, x
2 + y2, z, ζ) ∀ i ∈ {1 . . . 15}.

We now want to transform closer to the coordinates we would like to use. The

azimuthal Killing vector has told us that the natural thing to do is to make a coordi-

nate transformation from the rectilinear coordinates (t, x, y, z, ζ) to quasi-cylindrical

coordinates (t, %, ϕ, z, ζ). This coordinate transformation can be written as:

t = t; x = % cosϕ; y = % sinϕ; z = z; ζ = ζ;

so that the transformation matrix (2.1) is

∂xµrect.
∂xαcyl.

=


1 0 0 0 0
0 cosϕ −% sinϕ 0 0
0 sinϕ % cosϕ 0 0
0 0 0 1 0
0 0 0 0 1

 (2.13)

Thus transforming the Cartesian components to cylindrical coordinates, and specif-

ically equating this erstwhile generic tensor with the metric, Qµν = gµν , allows us to

determine the structure and functional behavior of the full 5-metric. The transfor-

mation (2.10) tells us, somewhat miraculously, that

g%% = f7 ,
gz% = %f1 ,
gzϕ = %2f2 ,
g%ϕ = %3f8 ,
gzz = f12 ,

gϕϕ = %2f7 + %4f9 ,
gtt = f10 ,
gtz = f13 ,
gt% = %f3 ,
gtϕ = %2f4 ,

gζζ = f11

gζt = f14

gζz = f15

gζ% = %f5

gζϕ = %2f6

We reiterate that the functions fi are dependent on t, %2 ≡ x2 + y2, z, and ζ. If

we subsequently consider the other two Killing vectors in the set ~x× ~∇, and likewise

transform to spherical coordinates, we find our toy-universe is even more simplified.

In particular, it may be shown that all metric functions (gϕϕ being the only, and

expected, exception), as well as all matter functions (if the generic Qµν is equated

to the matter tensor Tµν) depend only upon the timelike coordinate, t, the spherical-
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radial coordinate squared, ρ2 = %2 + z2 = x2 + y2 + z2, and the orthogonal spacelike

coordinate, ζ.

Simplified as this scenario is, we should also like, at this early stage, to keep the

system invariant with respect to the extra coordinate, ζ. In this we depart from

expecting any black strings to “bead up” into some hyperdimensional black pearl

necklace as conjectured by Gregory and Laflamme [13]; rather they will appear to

the hyperobserver more like black spaghetti. Nevertheless it is hoped that even with

this enormous simplification interesting phenomenological effects of an inactive extra

dimension might be observed in numerical simulation.

Mathematically, we implement our simplification by assuming, as an analytical

fiat, the Killing vector ξ = ξα∂α = ∂ζ . Which is to say, in English: Henceforth let ζ

have no effect, only insofar as its presence necessitates the introduction of an extra

term to the invariant interval.

Significantly, when this Killing vector is applied together with the complete set

of SO(3) generators and a transformation is made to spherical coordinates, one may

show in like manner to the preceding work that the functional dependence found in

cylindrical coordinates persists, and even grows stronger:

gρρ = F1 ,
gρθ = 0 ,
gρϕ = 0 ,
gρζ = ρF4 ,
gρt = ρF6 ,

gθθ = ρ2F1 + ρ4F2 ,
gϕϕ = gθθ sin2 θ ,
gθϕ = 0 ,
gtθ = 0 ,
gtϕ = 0 ,

gζζ = F3

gζt = 0
gtt = F5

gζ% = 0
gζϕ = 0

Here the Fi are the spherical analogues of the cylindrical fi, i.e., Fi = Fi(t, ρ
2). Notice

how the extra demands of spherical symmetry have reduced many components to

zero. Furthermore, later on in our investigation the functional form of the remaining

components becomes key to considerations of regularity at the origin.

To summarize the preceding, we have assumed symmetries with respect to all

possible rotations, as well as translations in the extra dimension. These assumed
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symmetries, put into force via Killing vectors, have revealed the structure of the

metric and the functional form of its several components. We are left with sufficient

coordinate freedom to make one of two possible gauge choices, as will be explored in

the following chapter.
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Chapter 3

Plan of Attack

3.1 Roads Not Taken

It is now necessary to carefully choose our plan of attack, as not all approaches to

our problem are equally suited to the task. Our first order of business is to find the

equations of motion using our symmetry assumptions and a set of coordinates which

will give us a set of equations which are stable under finite differencing.

• Schwarzschild method

As an example, we could take our Killing-constructed, reasonable form for the 5-

metric gµν , and “plug-’n’-chug” to get the Einstein equations in the hopes that they

would be analytically or numerically solvable.

This approach works perfectly in obtaining the static, spherically symmetric so-

lutions of Schwarzschild and Reisser-Nördstrom. A clever coordinate maneuver can

then introduce angular momentum a là Kerr.

However, blindly charging ahead in a dynamical relativity problem—even with

a good, informed guess for the metric—yields a morass of PDEs in which the time

derivatives (which are obviously essential to evolving the system) are irretrievably,

nonlinearly mingled with other quantities. The reader is cordially invited to see for

him- or herself how ugly it gets, or may just take our word for it.

• S-wave method

Because the direct frontal assault doesn’t pan out, we need something more clever.
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Recall that when Killing’s equation was used with spherical Killing vectors in

Cartesian coordinates, and the results subsequently transformed to spherical-like co-

ordinates, we came to believe that the metric components’ functional form was

gρρ = F1(t, ρ
2) , gθθ = ρ2 (F1(t, ρ

2) + ρ2F2(t, ρ
2)) ,

gζζ = F3(t, ρ
2) , gζρ = ρF4(t, ρ

2),

among other things. One possibility this form suggests is that we take F4 = 0; F3 = F1

(so that the (ρ, ζ) plane is conformally flat); and that we combine gθθ into one squared

function of ρ2, gθθ = s2 = ρ2 (F1(t, ρ
2) + ρ2F2(t, ρ

2)). So doing allows us to “divide

out” the spherical symmetry by separating the metric, cleaving it into two block-

diagonal parts:

gµν = g̃µν + s2σµν = g̃ab δ
ab
µν + s2σmn δ

mn
µν ,

enforcing our alphabetical convention (Table 1) with compound Kronecker deltas

wherein each vertical pair of indices represents a separate identity matrix. The two-

dimensional tensor σmn = diag
(
1, sin2(θ)

)
is the metric of the unit two-sphere and

g̃ab is the metric of the remaining 2 + 1 spacetime. The unknown function s2 essen-

tially measures gravitational distortion in “radial” distances; it could be interpreted

geometrically as being related to the area of surfaces with constant t, ρ, and ζ, or of

the spherical cross-sections of our black string.

From this metric the Christoffel symbols and Ricci curvature components can be

generated (and those Kronecker deltas are a real lifesaver in that regard!). Upon

doing so, one finds that

(5)Rµν =


(3)R̃ab − 2

s
DaDbs 03×2

02×3
(2)Rmn − σmnDa(sD

as)

 . (3.1)

In keeping with the notation set forth in Table 1, the Ricci curvature corresponding
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to, and generated from, the reduced 3-metric g̃ab has been labeled as (3)R̃ab. Likewise

the Ricci curvature of the unit sphere with metric σmn is called (2)Rmn; of note, σmn

happens to be one of a small collection of “eigentensors” for the “Ricci-operator,” in

the sense that (2)Rmn = R(σ) ∝ σmn. In this case the proportionality constant is

simply unity, so that

(2)Rmn = σmn. (3.2)

Our manipulated Einstein equations (2.8) inform us that this Ricci tensor, (5)Rµν ,

is proportional to the stress-energy tensor built from our scalar field; therefore,

(3)R̃ab −
2

s
DaDbs = 8π ∂aφ ∂bφ (3.3)

(2)Rmn − σmnDa(sD
as) = 8π ∂mφ ∂nφ. (3.4)

Because ∂mφ = 0 (owing to our Killing vectors’ elimination of angular depen-

dencies), the right-hand side of the second equation (3.4) must vanish. In addition,

because of the relationship (3.2) between the angular Ricci components and the met-

ric of S2, the left hand side may be factored as a scalar quantity multiplying the

two-metric. Since this must be true for all coordinate and field values, the scalar

factor must also be equal to zero. After making these adjustments and algebraically

re-arranging, the Einstein field equations take the form

(3)R̃ab −
2

s
DaDbs = 8π ∂aφ ∂bφ (3.5)

Da(sD
as) = 1 (3.6)

When coupled with the equations of motion for the scalar field φ, these constitute

the set of equations we should like to solve. This set of equations, as written, has

an appealing interpretation, wherein s can be thought of as a scalar field unto itself,
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propagating along with φ in the 2 + 1 spacetime. With respect to the original 4 + 1

manifold, s can be interpreted as a radiating gravitational degree of freedom.

There is a dire problem, however, with this formulation. As is well-known, any

set of differential equations must be augmented by appropriate boundary conditions.

Attractive as the s-wave interpretation is, the equation which s satisfies, due to

regularity conditions on gθθ = s2, must either (1) satisfy a very strange boundary

condition for the putative wave, or else (2) be transformed into an equation bearing

coordinate singularities that cannot be removed numerically (in any simple way).

This latter problem is related to the fact that our nonlinear wave equation is not

only inhomogeneous but has a constant source (3.6)—its solution, we found, is an

endlessly-growing parabola. This fascinating but physically implausible situation will

be discussed at greater length in (§ 3.2.2).

The larger problem with this formulation touches on our ultimate coordinate

choices and the vital role regularity plays in numerical relativity. We shall complete

our coordinate construction in the next chapter. However, having tried this false start

gave us an opportunity to explore and better understand the regularity issues, which

we will now present.

3.1.1 Regularity Issues

The s-wave equation (3.6) has something to teach us about the importance of

regularity which is worth looking at in some detail. The equation, despite its ap-

pearance, fails to be the kind of wave equation with which we are familiar, because

of boundary conditions which trace back to regularity. We would naturally expect

that far from the scene of the collapsing scalar field φ, our system’s spacetime would

asymptotically approach flat, or Minkowski spacetime. Therefore, the radiating field

s should resemble the radial coordinate ρ for ρ � 0, but we are hard-pressed to
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consider as real a wave that grows in unbounded linearity at spatial infinity.

This behavior forces us to pause and consider the importance of regularity in tensor

equations under the assumption of symmetries beyond mere translational. Clearly,

we would prefer to model fields that exhibit regular behavior in the vicinity of fixed

points of the symmetry (origin, axis, etc.). A simple manifestation of the potential

problem is found in the cyndrically-symmetric Laplace equation in 2-D when written

in polar coordinates (%, ϑ). This equation, for a generic scalar field ψ, is

0 = ∇2ψ =
1

%

∂

∂%

(
%
∂ψ

∂%

)
+

1

%2

∂2ψ

∂ϑ2

=
∂2ψ

∂%2
+

1

%

∂ψ

∂%
+

1

%2

∂2ψ

∂ϑ2
(3.7)

For anyone accustomed to PDEs it is almost beyond mundane to notice that the

radial part of this equation includes a factor of 1/%, suggesting a singularity at % = 0.

While completely unsurprising, this is a consequence of the choice of coordinates

and not of any true, physical singularity. Indeed, when considered in the context of

Einstein’s relativity, we might consider this a central tenet, namely, that the physics

of any situation is well-defined and therefore impervious to the coordinates used to

describe it. The statement “physics is well-defined” at % = 0 finds mathematical

expression in the observation that the relevant term in the Laplacian is well-behaved

as % approaches zero despite the appearance of its inverse.

Therefore, the troublesome factor of 1/% in our Laplacian above may be traced

back to the fact that the Jacobian of the transformation from Cartesian to polar

coordinates is singular at the origin, the polar coordinate system itself being ill-defined

at % = 0. It is a singularity in the analytical geometry, not in the physics itself: writing

Laplace’s equation in, say, Cartesian coordinates shows that the problem goes away.

The reason for our interest in this perhaps arcane distinction is that computers
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don’t know or care about whether a singularity is physical or mathematical, let alone

how to deal with it.

In the Laplace equation, as % = 0 is approached, the prefactor on the first-order

derivative blows up; therefore, to maintain regularity the derivative must in fact

vanish: ψ,%|%=0 = 0. Thus the quantity lim
%→0

1
%
∂ψ
∂%

is finite.

At the continuum level this is perfectly reasonable and we accept it without further

argument. However, the % → 0 limit implies that a delicately orchestrated cancella-

tion of approximated quantities must occur in a discretized version of this equation.

Numerically this can be exceedingly difficult to implement, but one is aided by a clear

understanding of the behavior of various functions i.e., tensor components, as these

problem points in the coordinate system are approached (% = 0 being the canonical

example).

We saw hints of this in the discussion on Killing vectors, symmetry, and the

functional dependence of quantities in our problem. To make progress with our

code, we will use that understanding from symmetry as well as a variety of tricks in

differencing terms such as that shown in the above Laplacian. The basic approach

can be illustrated by how we might treat the above term. First, exactly as previously

stated, we know from the continuum limit, that the derivative of ψ with respect to

% must vanish. As a result we know it vanishes and the total term must be finite at

% = 0. As a consequence, we can view ψ as an even function of % (in the vicinity of

% = 0). With that in mind it becomes natural to difference this term with respect to

%2 instead of %. Doing this allows us to write

1

%

∂ψ

∂%
= 2

∂ψ

∂(%2)
(3.8)

by simple application of the chain rule. When differenced in this way, this term has
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no obvious singular problems:

(
1

%

∂ψ

∂%

)
n

≈ 2
ψn+1 − ψn−1

(%n+1)2 − (%n−1)2

This should be contrasted with a more näıve discretization such as

(
1

%

∂ψ

∂%

)
n

≈ 1

ρn

ψn+1 − ψn−1

%n+1 − %n−1

.

In this second discretization, a problem arises in that the difference in ψ at two

points as ρ approaches the origin must decrease like ρ so as to cancel the ρ in the

denominator. While certainly possible, experience has shown that this is usually

a delicate cancellation which is difficult to enforce. On the other hand, the first

discretization requires no such cancellation, but rather exploits the known functional

dependence (even-ness in ρ) found in the continuum limit.

Our hope is to make similar observations for more complicated tensor equations

such as Einstein’s, in which terms such as this persist after abandoning the s-wave

approach.

Our approach now is to discover the functional behavior of tensor components in

the vicinity of the origin when we assume spherical symmetry in our 5-D spacetime.

Our assumption of regularity, then, will be as follows: we will assume that all ten-

sor components, when written in a Cartesian basis, are regular functions of all the

coordinates. Specifically, all these Cartesian tensor components are expandable in

five-dimensional Taylor series everywhere regular. Once we have a functional form of

the tensor components in a Cartesian basis, we will transform to coordinates better

suited to our assumed symmetries. Naturally, the tensor transformation law (2.1),

which we use to go from one coordinate system to another, mixes up various tensor

31



components in order to define the tensor components in this new basis:

T̄ab =
∂xc

∂x̄a
∂xd

∂x̄b
Tcd (2.1′)

We can get the form of the tensor components in a Cartesian basis using our

symmetries. Of course, we have already done this in (§ 2.2). There we saw the func-

tional dependence of the components of Q on (t, x, y, z, ζ). Already in that section we

transformed to a more convenient set of coordinates and found the behavior of those

tensor components (now to be considered metric components) in the vicinity of the

fixed point of our S2. We saw in our previous exploration of Killing-enforced symme-

tries, for instance, that the component gρρ is an even function of ρ and independent

of ζ and the angular coordinates. Similarly, the component gtρ was determined to

be an odd function of ρ. Our intent is to exploit this understanding of the behavior

of these components as ρ goes to zero, anticipating that there will be terms in our

equations which involve quantities such as 1
ρ
∂ρgρρ.

3.2 Sliced Spacetime: The Best Thing Since Sliced Bread

Whether or not we divide out the spherical symmetry, it is still imperative to

sacrifice the equal footing which Einstein gave to temporal and spatial coordinates:

for the sake of performing a dynamical evolution we must draw a distinction between

time and space. As noted previously, blindly charging ahead, even with a sensible

metric, comes at the cost of yielding horrendous equations that take a nontrivial

number of pages just to write down.

To this end comes the technique developed by Arnowitt, Deser, and Misner (ADM)

in 1962 [23]. In the discarded s-wave approach, we also eventually implemented this

technique; the difference—and the genius—is in using the ADM decomposition on

the full 5-dimensional problem rather than on a 3-D submanifold, with its manifest
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s-related irregularities.

Conceptually this requires us to imagine spacetime foliated into myriad spatial

“slices.” Each slice will represent the system at a particular moment in “time”—

although what “time” means here will not necessarily be the same as what we usually

think of as time. Spatial components on each slice will be indexed with Latin capitals

per the specifications in Table 1.

Mathematically the ADM approach involves segregating the Einstein equations

into two camps: those that govern the system’s evolution, and those that provide

constraints that must be satisfied on each individual slice.

Math meets concept when one considers the relationship of a pair of points (P,Q),

one on each of two consecutive four-dimensional spatial slices. Let the point Q on the

latter slice correspond to point P on the earlier slice. Presumably, in evolving into

Q, point P may have “moved,” perhaps due to changes in the local curvature, or due

to a coordinate change between slices.

We define the lapse function (α) as the change in proper time between two corre-

sponding points in the two slices, and the shift vector field (βA) measures their spatial

displacement.

Furthermore, since we are in a sense removing ourselves to an outside perspective

on all these slices, viewing them as being embedded in a larger space, we may define

a unit normal, nµ, to the spatial slices. Naturally a normal to spatial slices would be

timelike, so nµnµ = −1. One would expect, since it maps points from one slice to

their respective futures, that nµ will be composed of the lapse and shift:

nµ = (−α, 0, 0, 0, 0); (3.9)

nµ =

(
1

α
,−β

ρ

α
,
βθ

α
,
βϕ

α
,
βζ

α

)
. (3.10)

(Note that these are different components of the selfsame unit normal timelike vector
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n; the important role of basis-vectors as illustrated in Figs. 2.1, 2.2 now becomes

much more real.) Our assumed symmetries cause all but one of the normal’s spacelike

components, namely the radial shift βρ, to be zero, such that nµ =
(

1
α
,−βρ

α
, 0, 0, 0

)
.

Note also that we have made the shift explicitly negative, in anticipation of the

expected collapse-behavior: point P should be shifted radially inward to become Q.

As in the s-wave approach, the metric of the 4 + 1 spacetime is again broken into

two parts. Unlike g̃µν + s2σµν , however, this partitioning of the metric is actually

useful:

gµν = γµν − nµnν . (3.11)

Strictly speaking, the spatial slice metric γµν can and does have a nonzero tt-

component. Accordingly, we will use γAB, with Latin uppercase indices, to denote

the metric of the slices (see Table 1). The invariant interval, therefore, in a sliced-

spacetime scheme, is given as

ds2 = −α2dt2 + γAB(dxA + βAdt)(dxB + βBdt)

= (−α2 + γABβ
AβB)dt2 + 2 βAγAB dt dx

B + γABdx
A dxB. (3.12)

Rearranging (Eq. 3.11), we obtain the projection operator: γνµ = δνµ + nµn
ν ; that

is, γνµ projects 5-D quantities onto the purely spatial slices.

Since the spatial slices are manifestly submanifolds embedded in our complete

spacetime, we would do well to consider the slices’ geometry from the perspective of

the full 5-D universe. Each embedded slice is or can be bent and distorted; the most

straightforward means of describing the distortion would be the “outer derivative” of

the normal, projected onto the slice itself. Therefore, we define the extrinsic curvature

as

KAB = − ⊥ ∇AnB, (3.13)
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in which “⊥” is shorthand for “the projection operator (⊥µ
B≡ γµB) has been applied

to every free index.” The extrinsic curvature is symmetric (KAB = KBA) and is

orthogonal to nµ with respect to either index. Hence it is a spatial quantity that lives

wholly in the hypersurface, or slice. The extrinsic curvature thus defined will become

an important variable in the equations that govern the behavior of our system.

3.2.1 The ADM Strategy

The ADM equations, which express the Einstein equations in terms of time deriv-

atives of the metric and the extrinsic curvature of the spatial slices, are given as

follows:

∂tγAB = ∆AβB + ∆BβA − 2αKAB; (3.14)

∂tKAB = βC∆CKAB +KAC∆Bβ
C +KBC∆Aβ

C − 2αKACK
C
B

−∆A∆Bα+ α
(
KKAB + (4)RAB − ⊥ (5)RAB

)
. (3.15)

These hyperbolic equations are supplemented by elliptical constraint equations de-

rived from purely geometrical relations which are true for any N − 1 dimensional

spacelike foliation of any N -dimensional manifold.

To obtain these equations one begins by projecting the full N -dimensional Rie-

mann tensor onto the slice (⊥RABCD) and contracting it with an arbitrary vector vA

tangent to the slice. After some indicial manipulations, and recognizing the Riemann

tensor as the commutator of covariant differential operators, we have

vA ⊥RABCD =⊥ (∇D∇CvB −∇C∇CvB) . (3.16)

Applying the projection operator to each index, as described in §3.2, and following

more clever maneuvers, we arrive at the first of the famous Gauss-Codazzi (GC)

relations:

⊥RABCD = RABCD +KDBKCA −KCBKDA. (3.17)
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For generality’s sake I have declined here to label the R’s with presuperscripts denot-

ing dimension in order to emphasize the geometric generality. The calligraphic R is

the Riemann curvature of the generic N − 1 slice, and K is its extrinsic curvature, as

defined previously (3.12).

Upon contracting both sides with the full metric in the pairs {BD} and {AC},

we get the so-called “Hamiltonian” or energy constraint:

(4)R−KB
AK

A
B +K2 = (5)R + 2 (5)Rn̂n̂

= (5)R + 2 (5)Rµν n
µnν . (3.18)

Here at last we specify dimensions pertinent to our problem for future clarity. The

reason it is called the energy constraint is the crucial role the timelike normal nµ plays

on the right hand side. Recall that we said that nµ maps points on each slice to their

respective future selves; i.e., nµ is like a generator of displacements in time—and so

has at least an heuristic association with the Hamiltonian in quantum mechanics and

in the Poisson formulation of classical mechanics.

Similar analysis, using an arbitrary normal nµ (it keeps its full-manifold index as

it is not confined to the slice) in place of the tangential vector used in the foregoing,

gives the second GC relation,

⊥RABCn̂ ≡ ⊥RABCµn
µ = ∆BKAC −∆AKBC , (3.19)

which becomes, by similar metric contraction, another constraint:

∆AK
A
B −∆BK = − ⊥ (5)RBn̂

= −(5)Rµν γ
µ
B n

ν . (3.20)

We can also see in this equation a similar hint as to why it is sometimes called the

“momentum” constraint: the projection operator γµB can be seen as telling us how far
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things move along the slice, so is associated with a generator of translation—hence

the connection with momentum.

The appearance of terms relating to the five-dimensional Ricci curvature on the

right-hand side of the ADM and constraint equations suggests that we use the rel-

ativistic relation between curvature and matter to replace the (5)R terms with their

scalar field equivalent, courtesy of Einstein’s equations.

With our symmetries in place and the ADM equations waiting in the wings, we

are left with the relatively simple matter of making a final coordinate choice for the

slice itself—one that will know only physical singularities and not cause problems

at any coordinate singularities that may arise (such as an event horizon)—and from

thence building the pieces that go into these equations.

3.2.2 Isotropic Coordinates and a Conformal Slice

Recall that the basic Schwarzschild solution, in standard 4-D spherical (or “Schwarz-

schild”) coordinates, is

ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2).

It contains a coordinate singularity at the so-called event horizon, r = 2m, as well as

the physical singularity at the origin. While this gives rise to fascinating investigations

into black hole event horizons, ‘tis hardly conducive to computer simulations, where

any singularity is a bad singularity—particularly one beyond which space and time

seemingly switch roles.

It is therefore sometimes useful to consider a change to “isotropic” coordinates

such that our t = constant slices will be “as close as we can get them to Euclidean

3-space” [30] which has no particular issue with the sphere r = 2m.

The transformation desired turns out to be r = ρ
(
1 + m

2ρ

)2
, in which case the
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Schwarzschild metric takes the isotropic form

ds2 = −

1− m
2ρ

1 + m
2ρ

2

dt2 +

(
1 +

m

2ρ

)4 (
dρ2 + ρ2(dθ2 + sin2 θ dϕ2)

)
; (3.21)

note that the erstwhile coordinate singularity at r = 2m, which corresponds to ρ =

m/2, has disappeared in the new coordinates, as desired. The function multiplying

the spatial terms is called the conformal factor, because angles and ratios of length

(within the spatial slice) are preserved regardless of its value.

This example shows the pattern we can follow in setting up a five-dimensional

metric for our problem

So, in compiling our metric we would like to use (1) a conformal factor, (2) the

lapse and shift of ADM, and (3) our understanding of regularity conditions from (§

3.1.1). In particular, we can see from our discussion of regularity that in general

before making a spatial coordinate choice the spatial metric must take the form

d`2 = dρ2F1 + 2 ρ dρ dζ F4 + dζ2F3 + (ρ2F1 + ρ4F2)(dθ
2 + sin2 θdϕ2)

where all the Fi are functions of t and ρ2 only. Choosing spatial coordinates boils

down to finding relationships between these arbitrary1 functions Fi. As we have seen,

one possible choice is F4 = 0, F1 = F3, which creates the aforementioned “scalar

field” s2 = ρ2(F1 + ρ2F2). This elaborates on our earlier point, that s has to go like

ρ. With this formulation, one can see that doing the decomposition suggested earlier

leaves us with a quantity satisfying a constant-sourced wave equation (3.6) but having

boundary conditions that diverge at infinity.

To see what we mean about this nasty boundary condition, consider what the

Fi have to do at infinity in order for the metric to “match up” to flat space, or

1 Not entirely arbitrary; the Fi must, of course, satisfy the Einstein equations.
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d`2 = dρ2 + ρ2(dθ2 +sin2 θdϕ2)+ dζ2. F2 must vanish, and F1 must go to unity (or at

least to some positive constant that may be rescaled to unity). However, this forces s

to literally go as ρ all the way to infinity. From the perspective of the wave equation,

this is a recipe for disaster.

An alternative is to divide out the divergent behavior of s by setting s = ρ eς , thus

placing the expected divergent behavior in the factor of ρ and making ς the scalar

field one watches evolve (in hopes that ς will prove itself well-behaved). To that end,

we would like to get the s-wave equation (3.6) into the classic wave-equation form for

γ itself, 22ς = H(ρ, ς).

Upon substituting s = ρ eς , our pesky wave equation, Da(sD
as) = 1 becomes

DaD
a(ρ eς) =

1−Da(ρ e
ς)Da(ρ eς)

ρeς

The simple exercise of expanding the derivatives of ρ eς will be left to the interested

reader. Upon those expansions and some algebraic rearrangement, the metric-wave

equation becomes

∂a∂
aς =

e−2ς − g̃ρρ

ρ2
− 4 ∂ρς

ρ
− 2 ∂aς ∂

aς (3.22)

The big problem with equation (3.22) is the first term. The numerator must go as

ρ2, to avoid ugly behavior at infinity and at the origin. This is fine and dandy in the

continuum limit, but there are no tricks to enforce it numerically, or to make it go

away (as absorbing unwanted factors of ρ into a derivative operator).

Therefore, try as we might, we could not get a stable evolution out of this setup.

Suffice it to say, taking this tack leads the unwary investigator down a long, dark,

and loathsome path, until he is hopelessly bogged down in a swamp of intractable

singularities and equations that bear not the slightest resemblance to the sexy Einstein

equations they once were.
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The alternative, which we danced around until stumbling upon it, was a different

gauge choice, namely to set F4 = F2 = 0. This leaves the ρ-θ-ϕ sector of the metric

conformally flat, with a conformal factor of F1, which henceforth shall be called ψ4.

Meanwhile, F3 may, without loss of generality, be set equal to F1F̄3 = ψ4e2σ.

Under this construction, our invariant interval (3.13) will take the explicit form

ds2 =
(
−α2 + ψ4βρ2

)
dt2 + 2ψ4βρdρ dt+ ψ4

(
dρ2 + ρ2dΩ2 + e2σdζ2

)
(3.23)

= −α2dt2 + ψ4
[
(dρ+ βρdt)2 + ρ2(dθ2 + sin2 θ dϕ2) + e2σdζ2

]
. (3.24)

Here we see the recently introduced functions: e2σ is the metric component unique

to ζ which we ever so briefly called F̄3, and ψ is our yet-to-be-determined conformal

factor. The presence of a σ 6= −∞ keeps our coordinate system from being strictly

isotropic, but that cannot and should not be helped, since we would like to see some

dynamical effect from the extra dimension. Note also that, owing to our chosen

Killing vectors (∂ζ and the angular momentum generators ξi), the shift vector βA has

but one nonzero component (βρ).

A comment or two on the metric as presented above may help one’s intuitive

understanding of, and appreciation for, what it tells us.

The first casting (3.23) highlights the fact that we have chosen a conformal spatial

slice and separates out the terms relating to the measure of time. In the second casting

(3.24), the roles of α and β are more explicit: α as a kind of temporal scaling that

depends on where and when you are; β looks very much the “shift” vector as it calls

to mind the momentum vector ~k in the argument ωt+ ~k · ~r for an infalling wave.

Notice also that rotating black hole solutions are often cast in a form similar

in spirit to (3.24), with (A dφ + B dt)2’s showing up to emphasize the fact that

time is intimately tied up with azimuthal angle, time itself being dragged along with
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the rotation, especially within the ergosphere. So the form we see makes sense:

we’d expect, in a spherically symmetric collapse, to see time being dragged into the

prospective black hole in the radial direction.
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Chapter 4

Molding the Equations Like Wet

Clay

4.1 Non-zero Components of the Slice’s Ricci Curvature

Utilizing MAPLE 9.5’s built-in tensor package, it is short work to obtain the

following components of (4)RAB (after some decidedly non-MAPLE-ish aesthetic re-

arrangement):

(4)Rρρ = −
[
σ′′ + σ′ 2 +

2ψ′

ψ

(
σ′ +

2

ρ

)
+ 6

(
ψ′

ψ

)′ ]
; (4.1)

(4)Rθθ = −ρ2

[
8 (ρψ′)′

ρψ
+ σ′

(
2ρψ′ + ψ

ρψ

)
+ 6

(
ψ′

ψ

)′ ]
; (4.2)

(4)Rϕϕ = (4)Rθθ sin2 θ ; (4.3)

(4)Rζζ = −e2σ
[
σ′′ +

2σ′

ρ
+ σ′ 2 +

2(ρ2ψ′)′

ρ2ψ
+

6ψ′

ψ

(
σ′ +

ψ′

ψ

)]
. (4.4)

(Primes denote partial differentiation with respect to ρ ; we shall also be using

overdots to denote partial time derivatives. Also, by way of full disclosure I should

note that MAPLE contracts on a different pair of Riemann indices in producing

the Ricci tensor, necessitating the forced introduction of a negative sign in order to

have agreement with work done by hand, including the derivation of crucial ADM

equations.)

42



As the Hamiltonian constraint requires the 4-D Ricci scalar, we must also calculate

it;

(4)R = γAB (4)RAB = − 2

ψ4

[
σ′′ +

2σ′

ρ
+ σ′ 2

]
− 12

ψ5

[
ψ′′ + ψ′

(
(ρψ)′

ρψ
+
ρσ′ + 1

ρ

)]
.

(4.5)

4.2 Constraints on α, K̃ρ
ρ , and ψ

We first consider the equations of constraint, which must be satisfied on every

time-slice of the evolution. In the process of so doing, we shall introduce new coordi-

nate assumptions and new fields.

4.2.1 The Maximal Slicing Condition and a Constraint on α

General relativity’s coordinate invariance proves a mixed blessing—it introduces

some strange ancillary fields, but also provides freedom to choose and change coordi-

nate systems that avoid serious problems encountered along the way.1

One such thing we shall do is rescale all components of KB
A by the conformal

factor, to wit: ψ2KB
A = K̃B

A . This we do in anticipation that a conformal extrinsic

curvature will make certain equations (namely, the Hamiltonian), more easily dealt

with.

Secondly, as our spacetime collapses into a black hole (as we hope it does), we may

exploit the coordinate freedom of general relativity to select our spatial slices in such

a way that they—and therefore neither the computer doing the calculation—never

actually see the black hole’s singularity. Rather, the slices “pile up” and wrap forward

as the singularity is approached. Intuitively this makes good sense, as we expect time

to slow to a crawl near the black hole, but to march on as usual at points spatially

1 One of the items on the tongue-in-cheek “Physicists’ Bill of Rights” is the right to bring
coordinate systems and frames of reference into existence at will.
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far removed from the scene of the collapse.

The spatial slices that do this can be shown to be those of the greatest volume;

hence the method employing them is often called “maximal slicing .” Mathematically

maximal slicing translates to setting the trace of the extrinsic curvature to zero:

(4)K = Kρ
ρ +Kζ

ζ +Kθ
θ +Kϕ

ϕ = 0. This is of course also true of (4)K̃.

The maximal slicing condition will allow us to simplify our equations, and indeed,

to create a constraint that one would not expect to find: strange as it seems, the

ADM equation describing how the extrinsic curvature evolves in time can actually be

massaged into a static constraint equation.

First, we will need to raise one index of the evolving KAB using the slice metric.

Unfortunately this involves getting the metric through the time-differential operator,

so it comes at the cost of picking up an extra term from the product rule:

∂tK
B
A = ∂t(γ

BCKAC) = ∂tγ
BC KAC + γBC ∂tKAC .

Now, a time derivative of the covariant slice metric, we could handle. The ADM

equations, however, tell us naught about the contravariant slice metric. Fortunately

it can be easily shown that γ̇BC = −γBEγCF γ̇EF .

.˙. ∂tK
B
A = −γBEγCF∂tγEF KAC + γBC ∂tKAC .

Into this we substitute our standard ADM evolution equations (3.14, 3.15) and con-

tract on A and B. When the dust settles on that operation, we are left with the

sublimely elegant statement,

∆A∆Aα = α
(

(4)R− (5)R∗
)
, (4.6)

wherein our maximal slicing condition has permitted us to eliminate the derivative

of KA
A = K and where the asterisk on the (5)R reminds us that it is the contraction

of the projected 5-D Ricci curvature.
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Upon substituting the ∂±Γ expansion of the covariant derivatives and the appro-

priate Ricci scalars (slice for the first, matter for the second) into this equation and

simplifying, we obtain

α′′ +

(
σ′ +

2

ρ
+

4ψ′

ψ

)
α′

+2

[
σ′′ +

2σ′

ρ
+ σ′ 2 + 12

(
ψ′′

ψ
+
ψ′

ψ

(
σ′ +

2

ρ
+
ψ′

ψ

))
+ 4πΦ2

]
α = 0; (4.7)

we have here introduced Φ = ∂ρφ = φ′.

It is a never-ending source of wonder to us that the evolution equation for KAB

should lead to the constraint equation for α. Such is the miracle of maximal slicing.

(One may wonder why we choose to treat this as “α’s” equation instead of, say, that

of ψ or σ. The reason is simply that this equation, for all its apparent ugliness, is at

least linear in one of its functions—α—thus lending itself to an eventual “tri-diag”

numerical solution for α. Also, we will encounter other equations that can take care

of ψ and σ.)

4.2.2 Introducing Ω, and a Constraint on K̃ρ
ρ

The Killing vectors we chose are far-reaching in their effects. Recall that we

derived the structure and functional form for any second rank, symmetric tensor

Qµν—those rules apply as well to the extrinsic curvature tensor as to the metric and

stress-energy tensors. In particular, this means that we require (after raising one of

the indices in the usual way)

K̃ρ
ρ = h1(t, ρ

2); K̃θ
θ = K̃ϕ

ϕ = h1(t, ρ
2) + ρ2h2(t, ρ

2); K̃ζ
ζ = h3(t, ρ

2);

The gauge choice dismissed previously (s) had a field we called χ, which happened

to be equal to the angular extrinsic curvature components. In that case K̃ρ
ρ + K̃ζ

ζ =
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h1 + h3 was compressed into the single unknown K, with h2 = 0 and h1 = χ.

The maximal slicing condition then eliminated remaining ambiguity in saying that

2χ+K = 0. However, as we have seen, this is not a prudent course.

In our present approach the only viable option left, and therefore the natural

choice, is to introduce ρ h2 = Ω ≡ K̃θ
θ−K̃

ρ
ρ

ρ
; K̃ζ

ζ = h3 will be determined by the

maximal slicing condition. Note that Ω will be an odd function of ρ.

Between this “Ω,” the maximal slicing condition, and the conformal extrinsic

curvature K̃ρ
ρ , we can make substitutions whenever the following henceforth offending

quantities appear:

K̃θ
θ = K̃ρ

ρ + ρΩ; (4.8)

K̃ζ
ζ = −

(
3K̃ρ

ρ + 2ρΩ
)

; (4.9)

Kρ
ρ =

K̃ρ
ρ

ψ2
; (4.10)

Kρ
ρ
′ =

K̃ρ
ρ
′

ψ2
− 2ψ′

ψ2
K̃ρ
ρ . (4.11)

This will have the effect of constraining our system to consider only K̃ρ
ρ and Ω (h1

and ρ h2).

Now, then, the momentum constraint (3.20) as established in chapter 3, is

∆BK
B
A −∆AK = −(5)Rµν γ

µ
An

ν .

It is first order in K, so we expect a first-order ODE for the curvature as a reward

for our labors on this equation.

One may immediately see that the second term on the LHS vanishes by virtue of

our maximal slicing condition.
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Into the RHS, following the strategy outlined previously, we substitute the 5-D

Einstein equation for the 5-D Ricci curvature and perform the specified contraction

and projection:

∆BK
B
A = −8π ∂AφΠ

ψ2
.

Using the Christoffel symbols provided by MAPLE 9.5 to perform the covariant

divergence, it becomes apparent that, because of the diagonality of KB
A , the only

nontrivial equation is that of ρ. Upon invoking the substitutions (4.8-11), we obtain

the object of our momentary desires:

K̃ρ
ρ
′ + K̃ρ

ρ

(
6ψ′

ψ
+ 4σ′

)
+ 2 Ω (ρ σ′ − 1) + 8πΦ Π = 0. (4.12)

4.2.3 Introducing Π, and a Constraint on ψ

The Hamiltonian constraint (3.18),

(4)R−KB
AK

A
B +K2 = (5)R + 2 (5)Rµν n

µnµ,

is likewise nowhere near as challenging as it appears at first blush.

The RHS involves contractions of the 5-D Ricci tensor. We require the 5-D Ricci

scalar and the projection normal to the slices:

(5)R + 2 (5)Rµν n
µnµ = gµν (5)Rµν + 2 (5)Rµν n

µnµ

= 8π (gµν + 2nµnν) ∇µ∇νφ

=
8π

ψ4

(
Φ2 + Π2

)
, (4.13)

where we have introduced the character Π ≡ ψ2 nµ∂µφ. We shall say more about Π

later on.
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Meanwhile, we must flesh out the left-hand side. The maximal slicing condition

helps us by again forcing the final term to vanish. The first term we have already

obtained (4.5), and K B
A K A

B may be written as

KB
A K

A
B =

∑
A

(
KA
A

)2
= Kρ 2

ρ + 2Kθ 2
θ +Kζ 2

ζ ,

becauseKB
A is diagonal, and because (as we have seen)Kθ

θ = Kϕ
ϕ by virtue of spherical

symmetry. This of course may be further “simplified” by the substitutions (4.8-11):

KB
A K

A
B =

1

ψ4

(
12K̃ρ 2

ρ + 16ρΩ K̃ρ
ρ + 6ρ2Ω2

)
.

After assembling all the pieces of the Hamiltonian constraint and prettying it up,

we come to

ψ′′

ψ
+
ψ′

ψ

[
2

ρ
+ σ′ +

ψ′

ψ

]
+ K̃ρ 2

ρ +
4

3
ρΩK̃ρ

ρ +
1

2
ρ2Ω2

+
1

6

(
σ′′ +

2σ′

ρ
+ σ′ 2

)
+

2

3
π
(
Φ2 + Π2

)
= 0 (4.14)

Equation (4.14) can in turn be used to render the α equation (4.7) simpler:

α′′ + α′
(
σ′ +

2

ρ
+

4ψ′

ψ

)
− α

(
6ρ2Ω2 + 16ρΩK̃ρ

ρ + 12K̃ρ 2
ρ + 8πΠ2

)
= 0. (4.15)
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4.3 Evolution equations

4.3.1 Evolution of Metric Fields

We now turn our attention to the dynamical equations for metric quantities. Ob-

taining these is done by a fairly straightforward application of the ADM equations.

Recall that (3.14)

∂tγAB = ∆AβB + ∆BβA − 2αKAB.

Now, in this the index on ~β is covariant, whereas it is given to us as a contravariant

vector. Also, the extrinsic curvature is double-covariant, whereas our preferred form

is mixed type. Fortunately both of these issues are easily dealt with:

∂tγAB = ∆AβB + ∆BβA − 2αKAB

= γBC ∆Aβ
C + γAC ∆Bβ

C − 2α γBCK
C
A

= γBC
(
∆Aβ

C − 2αKC
A

)
+ γAC ∆Bβ

C

= γBC
(
∂Aβ

C − 2αKC
A

)
+ γAC ∂Bβ

C + βD
(
γBC ΓCAD + γAC ΓCBD

)

The combination of metrics and Christoffel symbols in the last term happens to equal

γAB,D;

.˙. ∂tγAB = γBC
(
∂Aβ

C − 2αKC
A

)
+ γAC ∂Bβ

C + βD∂DγAB

= γBρ ∂Aβ
ρ − 2α γBCK

C
A + γAρ ∂Bβ

ρ + βρ∂ργAB,

where we have performed the specified sums involving ~β and invoked the fact that

βA = (βρ, 0, 0, 0). Now all that remains is to extract the explicit equations for each

metric component. The evolutions of γρρ and γθθ = γϕϕ csc2 θ both give equations for

ψ̇:
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ψ̇ = βρψ′ +
1

2

βρ ′ − αK̃ρ
ρ

ψ2

 ψ; (4.16)

ψ̇ = βρψ′ +
1

2ρ

(
βρ − ραK̃θ

θ

ψ2

)
ψ. (4.17)

So, we have two equations for ψ̇, and each should be true. In the coding we only

use one of them (4.16), but for now we may set their corresponding right hand sides

equal to each other; thus pops out one last, unexpected constraint equation, for βρ:

βρ ′ =
βρ

ρ
− αρΩ

ψ2
. (4.18)

The ADM metric equations harbor one more component’s evolution to find from the

ADM equation, and that is σ’s:

σ̇ = β σ′ − βρ ′ +
α

ψ2

(
4K̃ρ

ρ + 2ρΩ
)
. (4.19)

(Here we have used the first ψ̇ equation to replace the term arising from the

product rule in the time derivative; that is whence the K̃ρ
ρ and βρ ′ come. We could

use (4.18) to replace the βρ ′ in (4.19), but keeping the derivative is less painful than

having a ρ−1 in the equations, so we won’t worry about it.)

One equation thus far is conspicuously absent, and it is not surprising that it

is from the ADM equation concerning the evolution of extrinsic curvature that we

obtain the evolution of Ω, it being composed of extrinsic curvature components. The

derivation, however, is long and unwieldy2 and requires the use of MAPLE unless one

wishes to go absolutely mad.

2 Just look at (3.15)!
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So, after assembling the various pieces and executing MAPLE’s tensorial linear

combination command (lin com(coeff1, term1, . . .)) and performing some col-

lections and aesthetic improvements beyond the capacity or inclination of MAPLE’s

“1000 mathematicians,” we obtain:

Ω̇ = βρ
(

Ω′ +
Ω

ρ

)
+

(
βρ ′ − α

ψ2
K̃ρ
ρ

)
Ω (4.20)

+
1

ψ2ρ

[
α′′ − α′

ρ
+ α

(
σ′′ + σ′ 2 − σ′

ρ
+

4ψ′′

ψ
− 4ψ′

ψ

(
α′

α
+

1

ρ
+

3ψ′

ψ

)
+ 8πΦ2

)]

Given (4.18), the second term may be alternatively expressed as Ω K̃θ
θ , but as we are

not interested in K̃θ
θ as a variable, we will leave (4.20) be.

4.3.2 Evolution of the matter fields

As mentioned earlier, the matter itself follows the covariant wave equation,

∇µ∇µφ = gµν∇µ∇νφ = 0.

As this is a second-order equation, it is convenient for our numerical approach to

break it into two coupled first-order equations. In fact, we have already foreshadowed

this in (§ 4.2.3) when we defined Π ≡ ψ2 nµ∂µφ; expanding this yields the first of our

matter evolution equations:

Π

ψ2
= nµ∂µφ =

φ̇

α
− βρφ′

α

.˙. φ̇ = βρΦ +
α

ψ2
Π. (4.21)

As Φ is (for the purposes of the calculation) an “independent” field, we shall also

require its evolution; since Φ = φ′, we can differentiate (4.21) with respect to ρ and
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invoke the free commutation of partial time and space derivatives ([∂t, ∂ρ] = 0):

Φ̇ = βρΦ′ + βρ′Φ + ψ−2

[(
α′ − 2ψ′

ψ

)
Π + αΠ′

]

= βρΦ′ +

(
βρ

ρ
− αρΩ

)
Φ + ψ−2

[(
α′ − 2ψ′

ψ

)
Π + αΠ′

]
(4.22)

where, for what it’s worth, we have used the β constraint (4.18) to eliminate βρ′.

For the other decoupled equation, we naturally must return to the wave equation.

By the miracles of tensor calculus it may be expressed in a form more conducive to

the manipulations we desire to make, viz .,

∇µ∇µφ =
1√
−g

∂ν
(√
−g gµν ∂µφ

)
= 0.

Carrying out the expansion of this delightful equation with the help of (Eqs. 4.3,

4.21, & 2.4) we obtain

Π̇ = βρΠ′ + Π

[
βρ′ + βρ

(
6ψ′

ψ
+ σ′ +

2

ρ

)
−
(

6ψ̇

ψ
+ σ̇

)]

+
α

ψ2
Φ′ +

α

ψ2
Φ

[
α′

α
+

4ψ′

ψ
+ σ′ +

2

ρ

]

Into this we substitute the equations for ψ̇, βρ′, and σ̇ found earlier. When the

dust settles we are left with the comparatively elegant

Π̇ = βρ Π′ + Π

(
βρ

ρ
− αρΩ− α

ψ2
K̃ρ
ρ

)
+

α

ψ2

[
Φ′ + Φ

(
α′

α
+

4ψ′

ψ
+ σ′ +

2

ρ

)]
. (4.23)
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Chapter 5

Supplementary Equations

5.1 Apparent Horizon

The questions that naturally arises in making numerical models of gravitational

collapse are, How do we know when a black hole-like object has been created? And

how do we convince the computer to ignore it and keep going?

The answer to each of these is the apparent horizon. Whereas the event horizon

most physicists (and physics-savvy laymen) are acquainted with is a globally-defined

surface, the apparent horizon is subject to a local description. Specifically, the ap-

parent horizon is defined in terms of the local behavior of null, or light-like, rays.

One may imagine, akin to the spirit of Einstein’s famous gedanken experiments,

a series of concentric shells surrounding the origin of the collapse—the location of

the presumptive black hole. At each point on each of these spheres, let there be a

point-source of light. If we suppress the angular directions, the light has only two

choices: inbound or outbound. The outbound light will form a growing sphere whose

progress will be affected by the local gravitational field.

One may imagine, then, if gravity is sufficiently strong, that some of these spherical

surfaces of light (“null surfaces”) may not get very far before being stopped and

dragged back in to the black hole—paradoxically, even the outbound rays of light are

converging. The traditional way of dealing with apparent horizons is to define the

53



expansion θ as the directional derivative of null geodesics with respect to themselves:

θ ≡ ∇vv
µ = vα∇αv

µ; (5.1)

vµvµ = 0.

Surfaces for which this quantity is less than or equal to zero are called “trapped

surfaces”; the outermost surface where the expansion is zero constitutes the apparent

horizon.

In particularly easy cases (such as Schwarzschild), the apparent horizon corre-

sponds exactly to the event horizon, ρAH = ρEH = 2m. In general, however, the

two horizons are distinct, with the apparent horizon always being located within the

event horizon1

Apparent horizons help answer the questions posed at the beginning of this section.

They are easily defined in terms of variables a computer is dealing with, without

having to look at the whole metric. The formation and existence of an apparent

horizon indicates the existence also of a black hole with a central singularity (see,

e.g., [31]). The location of the apparent horizon can be used as an excision point,

telling the computer to ignore points with ρ ≤ ρAH , thus allowing for the evolution

outside the black hole to continue beyond the time a black hole is formed.

In the course of testing (5.1) to find the apparent horizon of the Schwarzschild

solution (as practice for doing it for our real problem), we found it was actually a

rather unwieldy way of going about it. Being that Schwarzschild is just the canonically

easy case, this did not bode well.

Fortunately, there is a “back door,” if you will, to apparent horizons in the case

of spherical symmetry. Consider again the family of concentric spheres centered at

the singularity of a black hole (or where it would form). Each surface is uniquely

characterized by its area, and vectors normal to it are manifestly spacelike.

1 Unless the cosmic censor is taking the day off.
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Until, that is, you reach the spheres at which time and space switch their respec-

tive timelike and spacelike natures and even outgoing light must converge. When

the erstwhile spacelike normal vectors become null, one has reached the outermost

trapped surface, which is the apparent horizon.

For Schwarzschild spacetimes the area is the standard 4πr2, so the norm of the

normals to these spherical surfaces is

gµν ∇µ(4πr
2)∇ν(4πr

2) = grr(8πr)2

= 64π2r2
(
1− 2m

r

)
,

which clearly changes signature at r = 2m.

Extending this to our situation is relatively easy. Instead of an area, because of

the extra dimension our trapped “surfaces” are parametrized by a volume:

V =
∮
∂V

√
ĝ d3x

∣∣∣∣ ρ=ρ0
t=t0

It may be remembered that in Table 1 we defined ĝAB as the metric of the reduced

manifold on (ζ, θ, ϕ), such that

dl2 = ĝAB dx
A dxB = ψ4

(
e2σdζ2 + ρ2(dθ2 + sin2 θdϕ2)

)
is the line element on the trapped “surface” V . From this it is evident that the volume

element
√
ĝ = ψ6eσρ2 sin θ. Therefore,

V =
∫ 2π

0

∫ π

0

∫ 2π`

0
ψ6eσρ2 sin θ dζ dθ dϕ

= 8π2 ` ψ6eσρ2,

because nothing in the integrand (save the sin θ) depends on the differential coor-

dinates; here we are using ` as an unspecified parameter denoting the “size” of the

extra dimension ζ.
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We wish to find that surface at which the spacelike normals become null, i.e., for

which

gµν∂µV ∂νV = 0. (5.2)

Since our volume depends only upon t and ρ (making the fairly unphysical assumption

that the extra dimension is static in size, i.e., does not and is not expanding with the

rest of the universe), this is simple to expand:

gtt V̇2 + 2gtρ V̇ V ′ + gρρ V ′ 2 = 0

A little bit of algebra later, we have

[(
α

ψ2
+ βρ

)
V ′ − V̇

] [(
α

ψ2
− βρ

)
V ′ + V̇

]
= 0

The second factor is that which governs the signature of the whole; hence we need

only monitor the quantity

χ =

[(
α

ψ2
− βρ

)
V ′ + V̇

]
(5.3)

and watch for the tell-tale sign-swap.

We may do something clever with χ: insert the value obtained for V and expand

the derivatives, then replace the time derivatives with their more practical (for pur-

poses of numerical modelling) combinations of spatial derivatives, as dictated by the

evolution equations obtained in the previous chapter. Ultimately this yields

χ = 3βρ′ψ2 + αK̃ρ
ρ + (ψ2 + 2)αρΩ +

2α− 3ψ2βρ

ρ
+

6αψ′

ψ
+ ασ′ > 0 (5.4)

until the point at which the apparent horizon forms.
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5.2 Black Hole Mass

It may also be helpful to know the total mass of any black holes that form.

Fortunately, there is an equation, clearly true of the Schwarzschild solution, that may

be adapted our model:

m =
ρ

2

1−∇µ

(
A

A0

) 1
2

∇µ
(
A

A0

) 1
2

 (5.5)

where A0 = 4π is the dimensionless area of a unit sphere. This formula lends itself

to a generalization to our case fairly easily, if we replace the A’s with V ’s. In which

case,

m =
ρ

2

[
1− ∂µṼ

1
2 ∂µṼ

1
2

]
,

where Ṽ = V/V0 = ψ6eσρ2. We have replaced covariant derivatives with their cor-

responding partials in recognition that a covariant derivative of a scalar reduces to

mere partial differentiation. Applying the chain rule, we have

m =
ρ

2

[
1− 1

4Ṽ
gµν∂µṼ ∂νṼ

]
. (5.6)

The resemblance to our apparent horizon condition (5.2) is immediately obvious,

permitting us to write

m =
ρ

2

[
1− 1

4Ṽ

[(
α

ψ2
+ βρ

)
V ′ − V̇

] [(
α

ψ2
− βρ

)
V ′ + V̇

]]

=
ρ

2

[
1− χξ

4Ṽ

]
, (5.7)

in which χ is our apparent horizon indicator and ξ is the factor we discarded previously

(basically χ with the addition and subtraction interposed).
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Chapter 6

The Main Equation Library

At this juncture it may be useful to present and catalog our collection of the constraint

and evolution equations we shall use in modelling the dynamical collapse of a scalar

field in 4 + 1 dimensions.

So, for your reading pleasure and without further ado, here are the equations more

or less as we will be using them in our code:

6.1 Evolution

• Matter

φ̇ = βρΦ +
α

ψ2
Π

Φ̇ = βρΦ′ +

(
βρ

ρ
− αρΩ

)
Φ + ψ−2

[(
α′ − 2ψ′

ψ

)
Π + αΠ′

]

Π̇ = βρ Π′ + Π

(
βρ

ρ
− αρΩ− α

ψ2
K̃ρ
ρ

)
+

α

ψ2

[
Φ′ + Φ

(
α′

α
+

4ψ′

ψ
+ σ′ +

2

ρ

)]

• Metric

ψ̇ = βρψ′ +
1

2

βρ ′ − αK̃ρ
ρ

ψ2

 ψ

σ̇ = β σ′ − βρ ′ +
α

ψ2

(
4K̃ρ

ρ + 2ρΩ
)
.
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Ω̇ = βρ
(

Ω′ +
Ω

ρ

)
+

(
βρ ′ − α

ψ2
K̃ρ
ρ

)
Ω

+
1

ψ2ρ

[
α′′ − α′

ρ
+ α

(
σ′′ + σ′ 2 − σ′

ρ
+

4ψ′′

ψ
− 4ψ′

ψ

(
α′

α
+

1

ρ
+

3ψ′

ψ

)
+ 8πΦ2

)]

6.2 Constraints

βρ ′ =
βρ

ρ
− α ρΩ

ψ2

K̃ρ
ρ
′ + K̃ρ

ρ

(
6ψ′

ψ
+ 4σ′

)
+ 2Ω (ρ σ′ − 1) + 8πΦ Π = 0

α′′ +

(
σ′ +

2

ρ
+

4ψ′

ψ

)
α′ − 2

(
3ρ2 Ω2 + 8ρΩ K̃ρ

ρ + 6K̃ρ 2
ρ + 4πΠ2

)
α = 0

ψ′′

ψ
+
ψ′

ψ

[
2

ρ
+ σ′ +

ψ′

ψ

]
+K̃ρ 2

ρ +
4

3
ρΩK̃ρ

ρ+
1

2
ρ2 Ω2+

1

6

(
σ′′ +

2σ′

ρ
+ σ′ 2

)
+

2

3
π
(
Φ2 + Π2

)
= 0

6.3 Supplementary

KB
A =

K̃B
A

ψ2
Ω =

K̃θ
θ − K̃ρ

ρ

ρ

(4)K̃ = K̃ρ
ρ + K̃ζ

ζ + K̃θ
θ + K̃ϕ

ϕ = 0

[(
α

ψ2
− βρ

)
V ′ + V̇

]
= 3βρ′ψ2 +αK̃ρ

ρ +(ψ2 +2)αρΩ+
2α− 3ψ2βρ

ρ
+

6αψ′

ψ
+ασ′ > 0

m =
ρ

2

{
1− 2π2`

V

[(
α

ψ2
+ βρ

)
V ′ − V̇

] [(
α

ψ2
− βρ

)
V ′ + V̇

]} ∣∣∣∣∣
V=8π2` ψ2ρ2eσ

59



Chapter 7

Numerical Approach

7.1 Discretizing Derivatives Into Differences

Difficult manipulations confirm what is painfully apparent at the first cursory

glance: the set of equations we have developed are superlatively resistant to ana-

lytical solution. Even after the many simplifying assumptions, Killing vectors, and

new fields we have introduced, our last and only hope is to turn to computational

number-crunching. With all its liabilities and idiosyncracies, numerical differencing

is our recourse for integrating the differential equations which represent gravitational

dynamics in the presence of an extra spatial dimension.

The main equation library (see previous chapter) is partitioned into evolution and

constraint equations in anticipation of the different schemes required to treat the

entire set. We shall now briefly describe these.

7.1.1 Evolution

Our overall approach is to use an iterative Crank-Nicholson (ICN ) differencing

scheme for the time-evolution equations. Because we are considering dependence in

only one spatial direction, the constraint equations are to be considered as ODEs on

every time-slice. To be explicit, we can demonstrate the iterative ICN technique on

the following model equation:

f,t = F (t, ρ, f, f,ρ). (7.1)
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Because our continuum will be approximated as a discrete set of points, we will

adopt a new meaning for super- and subscripts, independent of our former covariant

usage, in the context of numerical work. The heretofore continuous position parameter

ρ will be replaced by the array ρi where the subscript i runs from 0 . . . N . If the grid

spacing is given by h, then ρmax, representing the outer edge of the grid, will be equal

to N · h. We do a similar discretization for time (labelling the slices); to distinguish

between points on a slice and sequential slices we use a superscript: t→ {tn} = n ·dt.

A function f(t, ρ) of the continuum variables (t, ρ) in our discretization now becomes

f(tn, ρi) ≡ fni . (7.2)

The toy-model equation (7.1), expressed via ICN differencing, is now

fn+1
i − fni
dt

=
1

2

(
F n+1
i+1 + F n+1

i−1

)
+

1

2

(
F n
i+1 + F n

i−1

)
(7.1′)

Note that on the right hand side we have averaged the source term at both the n and

the n+1 time levels. This differencing scheme is second-order in space and time with

respect to the point-event at (tn+ 1
2 , ρi). Equation (7.1′) can be “solved” for fn+1

i :

fn+1
i = fni +

1

2

{(
F n+1
i+1 + F n+1

i−1

)
+
(
F n
i+1 + F n

i−1

)}
dt.

However, this is an implicit scheme, as we have the appearance of the advanced time

level (fn+1) on both the right and left-hand sides, and on the RHS it is buried inside

the F . To solve this we would need something akin to a matrix solver. As even in

one dimension this is computationally expensive, we modify this implicit scheme to

make it explicit. In particular, we use the value of fn, fn,ρ at the n time level to get an

initial approximation for the n+ 1 time level, (0)F n+1
i = F n

i . We then substitute this

“static-evolution” guess into the mess on the RHS and find a better approximation for
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fn+1
i , call it (1)fn+1

i . This “first iteration” of f we substitute into the RHS to obtain

(1)F n+1
i and thus a better value for fn+1

i , call it (2)fn+1
i . We thus iterate repeatedly

using the latest value for fn+1
i , until the kth iteration, (k)fn+1

i , is within some specified

tolerance of the previous iteration, (k−1)fn+1
i .

This is the basic strategy for each of the evolutionary equations. It is worth

pointing out that the source terms, which we have consolidated under the beguilingly

simple label F , are functions of other variables besides the one being integrated.

7.1.2 Constraints

For the non-hyperbolic (elliptic) “constraint” equations, comprising the equations

for α (from the slicing condition), ψ (from the Hamiltonian constraint), K̃ρ
ρ (from

the momentum constraint), and β (from the definition of K̃ρ
ρ), different strategies are

required.

Both the α and ψ equations are second-order of the general form

f,ρρ + Af,ρ +Bf = S,

where A, B, and S are nonlinear combinations of the “other” variables. Thus, despite

the overt hideousness of these equations (see chapter 6), their structure is actually

much like that of the ordinary second order differential equations one learns about in

introductory calculus.

Pleasant as the overall form is, as stated earlier, solving these equations analyt-

ically is not a realistic option, so we turn to computational methods augmenting

the ones employed for the evolution equations. Our strategy for these second-order

equations is to use centered-differencing in the space of the function f (be it α or ψ)

while allowing the coefficients A,B, S to be evaluated at the point ρi in the following
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manner:

fni+1 − 2fni + fni−1

h2
+ Ani

fni+1 − fni−1

2h
+Bn

i f
n
i = Sni .

Note again that everything occurs at a single time level. This can be recast in a form

that is suggestive of matrix manipulations:

(
1

h2
− Ani

2h

)
fni−1 +

(
− 2

h2
+Bn

i

)
fni +

(
1

h2
+
Ani
2h

)
fni+1 = Sni (7.3)

Define the vector (in a different vector space than the world of the Einstein equations

where we worked in the preceding) of function-values ~fn and the source values ~Sn.

We can then represent the mess above as the simple matrix equation

M ~fn = ~Sn,

where M is a tridiagonal matrix whose nonzero elements correspond to the indexed

coefficients in (7.3). Our solution, then, reduces to the solution of the above matrix

equation for ~fn. Fortunately, tridiagonal equations are not as expensive to solve as

generic matrix equations owing to their sparseness and the symmetry of their form.

Indeed, there are a number of canned routines extant that perform this inversion; one

of which we borrowed rather than write our own.

This approach works for α and ψ; for the first order K̃ρ
ρ and β equations we can

do a straightforward integration of the form

f ′ = F

fni+1 − fni
h

=
1

2

(
F n
i+1 + F n

i

)

where we have again done a slick averaging to obtain an equation second order with

respect to the point (tn, ρi+ 1
2
).
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The order in which we perform these operations makes a difference that must be

accounted for. In particular, the α and β equations, as a pair, decouple from the

K̃ρ
ρ and ψ equations; which is to say that the equations for K̃ρ

ρ and ψ do not depend

upon α or β. Furthermore, α’s equation contains no mention of β. This suggests a

natural order in which to perform the integrations: we will first integrate K̃ρ
ρ and ψ

(iteratively, as they do not decouple from each other). Once K̃ρ
ρ and ψ are known, it

is natural to treat α next. Finally, we integrate β.

7.2 Boundary Conditions

Up to this point we have assiduously avoided mention of the silent partner in any

well-posed differential equation problem. Now, therefore, is a critical time to discuss

the boundary conditions we should like to employ.

First (because they’re easier), we deal with the BC’s for the constraint variables.

At ρ = 0, regularity conditions (see § 3.1.1) demand that α and ψ be even functions

of ρ. As a result, we can take as boundary conditions the vanishing of their first

derivatives:

∂α

∂ρ

∣∣∣∣
ρ=0

=
∂ψ

∂ρ

∣∣∣∣
ρ=0

= 0;

or in other words, that α and ψ are subject to homogenous Neumann conditions at

the origin. Since the equations for α and ψ are second-order, we need an additional

condition for complete determination thereof. Here things become a little more subtle

(which is physics-speak for “nasty”). Physically, we assume that the far-field regime

approximates Minkowski space.1 This is known as “asymptotic flatness.” For the

1 Of course, in five dimensions this amounts to only a guess.
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lapse and conformal factor this implies that both should take the form

1 +
C(t)

ρ
+O(ρ−2) (7.4)

far from the origin. Thus, if we were integrating all the way out to spatial infinity, our

boundary conditions would be that both α and ψ go to unity. In practice this is not

the case, as we are truncating our spatial grid at a “large” but nonetheless very finite

value. As a result, we have no right to expect either α or ψ to be equal to unity at

the outer edge of the grid. Thus it would be nice to find a correction to the boundary

condition that reflects its expected far-field behavior. The above form (7.4) provides

such a possibility. Using ψ as an example, we can rewrite the asymptotic condition

as

[ρ(ψ − 1)],ρ ∼ O
(
ρ−2

)
. (7.4′)

Provided that our outer edge, ρmax, is “sufficiently” far away to be in the asymptotic

regime, our condition becomes the Robin (‘ro-BAN’) condition, otherwise expressed

as

ψ + ρψ,ρ|ρmax�1 = 1.

Unfortunately, application of this BC to ψ proves to be unstable for reasons that are

still unclear. As a result, we are forced to default to the simple Dirichlet condition

rejected previously, which gives us decent results but also pause. Partly as a result,

we tended to use a rather large grid with the hope that the outer boundary was well

within the asymptotic regime and that therefore the Dirichlet approximation was

sufficiently faithful to reality.

For our quantities βρ and K̃ρ
ρ , which satisfy first-order ODEs, but one boundary

condition is needed. In both cases, we chose to use the asymptotic condition, in

which both βρ and K̃ρ
ρ vanish at spacelike infinity, and integrate inward. Again,
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because of the finite size of our grid, the use of this homogeneous Dirichlet BC is

an approximation which strictly needs a correction. In this case, that correction is

provided for both by the value of the function at ρ = 0; for both functions, regularity

demands that they vanish at ρ = 0. This however is not to be treated or considered as

an over-determining BC: the actual, near-scandalous, operation is to integrate from

the outside in, find the variation from zero at the origin, and then offset the entire

function by exactly that much in the opposite direction.

For the evolution equations, we will use regularity at ρ = 0 (technically, then, this

is an initial-boundary value problem). Regularity demands that certain functions be

even or odd and have corresponding homogeneous Neumann or Dirichlet boundary

conditions:

σ′(0) = 0
φ′(0) = 0
Π′(0) = 0

Ω(0) = 0
Φ(0) = 0

Second-order equations require two conditions; the natural place to put the other

member of the pair is at the outer edge, and as these are wave-like equations, the

natural choice is some sort of “outgoing wave” condition.

The simpler variables are those relating to the scalar field. Using flat space as

our example, we expect that the solution to the general flat space wave equation in

spherical coordinates is just

1

ρ
(f(t− ρ) + g(t+ ρ)) ,

where we think of f as the outbound, and g as the inbound wave. The imposition

of outgoing wave boundary conditions is found in simply requiring that g = 0, or

that φ = f(t−ρ)
ρ

(φ being our canonical example here). If this is the case, simple
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manipulations reveal that the correct outgoing wave condition can be written as

(ρφ),t = −(ρφ),ρ.

In this case, we will impose exactly this condition for the scalar fields, although one

would imagine, again, that this is true only in the asymptotic regime where spacetime

is essentially flat.

For the remaining two variables, life (which continues beyond the boundary) is

more complicated. We have equations for σ and Ω, which are first order in time but

second order in space. The latter can be seen in the Ω̇ equation, in which there are

second derivatives of σ.

We’ll need a characteristic decomposition, and find the ingoing and outgoing wave

components of a generic solution. To get this characteristic decomposition we need

a strictly first-order system in both time and space. Hence we must introduce the

variable η ≡ σ′

ρ
. To get the relevant behavior of our gravitational waves, we will

assume that these variables are nontrivial but that all other undifferentiated metric

components are constant.

Then the evolution equations, decoupled, and with all appropriate substitutions

made (for there are terms that show up that can be simplified in terms of our other

“dynamic” variables), become

σ̇ = 0 + . . .
Ω̇ = βρ Ω′ + 1

3
α
ψ2 η

′ + . . .
η̇ = βρ η′ + 3 α

ψ2 Ω′ + . . .

This, of course, may be cast into a matrix formulation in the vector H = [σ,Ω, η]T as

follows:

Ḣ = AH ′ +B
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 σΩ
η


•

=

 0 0 0
0 βρ 1

3
α
ψ2

0 3 α
ψ2 βρ


 σΩ
η


′

+

 · · ·· · ·
· · ·

 (7.5)

where, of course, A represents the coefficients on the derivatives, and B is a column

vector containing all the “extra” terms that do not involve the components of H.

The primary behavior of H is governed by the derivatives, so we will, for the

purposes of finding the boundary conditions here ignore B from now on. Furthermore,

let it be remembered that although the fields α, βρ, andψ that appear in the matrix

A are in general variable, for points “close enough to infinity” we are assuming these

functions take on an asymptotic constancy with respect to ∂ρ and ∂t.

Wavelike solutions to this linearized set of equations, H ' H0e
i(kρ±ωt), are assumed

to exist; some little manipulations of our matrix equation using this ansatz yields

(
A∓ ω

k
1
)
H = 0,

the classic eigenvalue problem, with the eigenvalues ω
k

being the characteristic veloci-

ties, and the eigenvectors H(0,+,−) being the characteristic waveforms, which will give

us (assumedly) the far-field behavior, and thus our outer boundary condition.

Carrying out the eigencalculation in the eigenway, we obtain (as alluded to briefly

in the preceding paragraph) the eigenvelocities {0, βρ ± α
ψ2} with corresponding non-

normalized eigenvectors

H(0) =

 1
0
0

 ; H(+) =

 0
1
3

 ; H(−) =

 0
1
−3

 .
The aggregate of these vectors, in a 3× 3 matrix, is recognizable as the inverse of the

diagonalizing matrix,

R−1 =

 0 1 0
1 0 1
3 0 −3

 .
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If we multiply our linearized (far-field regime) matrix equation (7.5) by R, we get

R Ḣ = RAH ′

˙(RH) =
(
RAR−1

)
(RH)′ (7.6)

because R consists entirely of constants.

The quantity we really want is v = RH, consisting of the characteristic variables:

v1 =
1

6
(3 Ω + η) ; v2 = σ; and v3 =

1

6
(3 Ω− η) .

Their respective wave equations (7.6) are simple to solve, since by the properties of

linear algebra, the matrix R thus applied to A renders it diagonal.

The diagonal elements, identical to the eigenvalues of course, become the charac-

teristic velocities of these eigenwaves, to wit,

v̇1 =

(
βρ +

α

ψ2

)
v′1; v̇2 = 0; and v̇3 =

(
βρ − α

ψ2

)
v′3; (7.7)

which are classical advection equations with characteristic velocities equal to the

eigenvalues found previously. From these we see that v2 = σ is static (for ρ � 0).

The far-field behavior of the other two eigenvelocities tends towards ±1, because the

shift βρ → 0 while both the lapse and conformal factor α, ψ → 1.

Keeping in mind, of course, that this linearized approach is assumed to be valid

only far from the origin, it is nonetheless interesting to note that at some closer point

even the outgoing wave’s velocity may become negative—a signature of a “black”

region. Practically speaking, in the code the greater of the characteristic velocities

is used as the Courant limit, or the maximum speed at which information can move

between grid points.

It is a simple mental exercise, therefore, to convince oneself that v3 represents an

outgoing wave at infinity (v3(t−ρ) satisfies v̇3 = −v ′3), and v1, the inbound wave. Our
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outer boundary condition, then, is simply to kill the ingoing characteristic variable

v1 = 1
6
(3 Ω + η).

Expressing our true variables in terms of the characteristic variables vi,

Ω = v1 + v3;
1

3
η = v1 − v3,

the application of our v1 → 0 boundary condition means that

Ω = v3

(
ρ+ (βρ − α/ψ2)t

)
η

3
= −v3

(
ρ+ (βρ − α/ψ2)t

)

Therefore, Ω must obey v3’s advection equation at the outer boundary: Ω̇ =
(
βρ − α

ψ2

)
Ω′.

Meanwhile, we can get away with telling the computer that σ′ = ρη = −3ρΩ at the

furthest point(s) on the grid.

Strictly speaking, this maneuvering serves only to inform the code about the

dynamic behavior of the fields at the outer boundary—that no waves ought to be

reflected, let alone be spontaneously generated, at ρmax. There is another issue that

is easily addressed: the falloff with distance. Again, in five dimensions this amounts

to only a guess, but it is reasonable to suppose (and the convergence tests make no

large complaint) that the fields drop off as ρ−1; i.e., that the “true” field behavior is

sufficiently approximated by Ω ∼ 1
ρ
Ωguess, where Ωguess represents the Ω obtained in

the foregoing boundary condition considerations.

7.3 Convergence Testing

We use center-differenced approximations wherever possible, as this is second-

order accurate:

∂ψ

∂x
≈ ψi+1 − ψi−1

2h
+O(h2).
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It is a central assumption to numerical differencing that the numerical solution ψh,

obtained at a resolution level dx = h, differs from the “true” solution by a small,

second-order quantity, i.e., ψh = ψ̂ + O(h2) = ψ̂ + εh2. In like manner, were we to

double the grid spacing to 2h, and again to 4h, it is assumed that this doubling will

propagate through so that

ψ2h = ψ̂ +O
(
(2h)2

)
= ψ̂ + ε(4h2)

ψ4h = ψ̂ +O
(
(4h)2

)
= ψ̂ + ε(16h2)

Now, if our differencing code is faithfully representing our differential equations,

then the numerical solutions ought to be converging to the “true” solution at higher

resolution, which is to say smaller grid spacing. To determine whether this is hap-

pening, it is instructive to take the ratio of the differences between the numerical

solutions for different resolutions.

|ψ4h − ψ2h|
|ψ2h − ψh|

=
ε(16h2 − 4h2)

ε(4h2 − h2)
= 4.

Included in our program-package is a set of “initial data” files, id0, id1, id2, . . .,

where each one has double the resolution of the last, e.g., whereas id3 has 4097 =

1+212 grid points, id4 has half the spacing for a total of 8193 = 1+213 grid points. In

general, idN has 1 + 29+N data points. (Naturally, the higher the resolution level, the

longer the computation run lasts. Level 3, for instance, typically takes less than an

hour, while a run at level 5 takes the better part of a day on the computers available

to us.)

There is also a pre-existing program that takes runs at three different levels (say,

3, 4, and 5), and computes the ratio of the differences in the solutions. The closer the

result is to a string of fours (or a horizontal line at four when plotted), the greater
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our assurance that the code is converging to a correct solution. A sample of our

convergence test is provided in Figure 7.1.

Figure 7.1 — Two convergence test results for σ at {id2, id3, id4} (dashed)
and {id3, id4, id5} (solid) in a dispersive case (σ0 = 0.1). The ratio of level-
differences tends to be near 4 for most of the time; this gives us reasonable
confidence that our code is convergent to the “real” solution.

The time span represented here was not sufficiently long for the outgoing
wave to reach the outer boundary. The “noise” at 7 < t < 13 therefore arises
when the inbound wave hits the origin, and is an indication that our boundary
conditions at ρ = 0 are not perfect. Nevertheless, it is clear that the noise is
dampened in successively finer resolution-triads, and is “close enough” to four
to suit our purposes.
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Chapter 8

Results and Interpretations

We achieved some rather remarkable results. One area of intrigue was the window

of criticality, i.e., the region of phase-space (with respect to the field’s initial am-

plitudes), where the system must “decide” whether it will become a black string, or

disperse into nothing interesting.

Of particular interest was whether or not the system exhibited the critical phe-

nomena, especially self-similarity, noted in previous numerical simulations of 3 + 1

spacetime by Choptuik and others, as described in (§ 1.1.4) of this thesis.

And apparently we are not alone in this our interest; for a paper [32] posted on

lanl.gov’s arXiv just days before the completion of this thesis presents much the same

work (albeit in many fewer pages). The authors seem to have found an even stronger

case for discrete self-similarity in 4 + 1 pure gravitational collapse. It is encouraging

to see corroboration from our colleagues, albeit disappointing to be thus “scooped,”

or beat to the punch.1

Our initial data files call for, and therefore allow user-controlled variation in, the

initial amplitude of both the scalar field φ = φ0 e
−
(

ρ−ρ0
δφ

)2

and the logarithm of the

ζ-scaling, σ = σ0 e
−( ρ−ρ0

δσ
)
2

. For the sake of code exploration, we decided to set each

1Upon closer investigation, it appears the “scooping” is not as complete as was initially feared;
the problem addressed in [32] concerns the relaxation of a distorted SO(3) spherical spacetime—a
similar idea to that which we use here, but sufficiently different as to leave our approach, for the
moment, unique.
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initial amplitude to zero in turn, in order to investigate the contributions of each field

separately.

8.1 Scalar Field Collapse

The results for the scalar field were not as interesting as those for the gravitational

field. It may satisfy the reader’s interest, therefore, to merely note that the critical

amplitude for collapse of a massless scalar field is φ0 ≈ 0.0275. Table 2 shows the

margin of criticality for the collapse of a massless scalar field, with an initial σ of

zero. Naturally, during the course of the evolution σ leaves zero because, according

to the Einstein equations, the matter affects the metric of spacetime.

Resolution Critical amplitude Precision

4097 φ0 = 0.02725 ± 5E-5 ± 0.183%

8193 φ0 = 0.0275655 ± 5E-7 ± 0.00184%

16385 φ0 = 0.02775 ± 5E-5 ± 0.180%

Table 2

The critical point for φ remained, as would be hoped for, approximately constant

as we went to increasing levels of resolution, drifts upward slightly as we used finer

grids; whether this is a purely numerical effect or not remains as yet unknown.

We could have dug deeper into all id levels, but felt it was sufficient to stop at

∆φ/φ < 1% at resolution levels 3 and 5 (4097 and 16385 points respectively), and

at ∆φ/φ < .02% in the case of 8193 points. It is impressive how the development

of a black hole final state is so exquisitely sensitive to initial conditions, one part in

tens of thousands makes a difference! Certainly, one might expect that there would

be a specific point of criticality (such is what we set out looking for, after all), but to
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actually find it so precisely brings a sense of awe.

8.2 Gravitational Field Collapse

Our greater interest was in studying the behavior of the system in the absence of

matter, i.e., pure gravitational collapse. It should be stressed that this is a uniquely

five-dimensional effect, as the only thing allowed to “collapse” from an initial state was

a spherical gaussian pulse, σ = σ0 e
−( ρ−ρ0

δσ
)
2

—a localized distortion in an otherwise

flat spacetime.

Granted, how one might physically arrange to have a spherical pulse of spacetime

distortion in the first place is one of those imponderables of purely theoretical physics.

Nevertheless, our findings, as well as those in [32], suggest that were such an unlikely

configuration to spring into existence somewhere, and were it strong enough, there

could form a black hole—composed entirely of nonmaterial gravity—at the center of

the shell. A black hole composed of nothing but gravity is enough to tantalize any

imaginative physicist.

As in scalar field collapse, gravitational field collapse has a critical point. Since

making black holes out of pure gravity is much more intriguing, we delved deeper into

the window of criticality and thus discovered some fascinating behavior, some or all

of which has yet to be explained from the equations.

Resolution Critical amplitude Precision

4097 σ0 = 0.119375 ± 5.625E-3 ± 4.712%

8193 σ0 = 0.114144395 ± 5E-9 ± 4.38E-6%

16385 σ0 = 0.1141337109 ± 3E-10 ± 2.63E-7%

Table 3
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Again, we emphasize the incredible sensitivity to the initial amplitude—one part

in a billion! We have no doubt that, were it desired (if by no more than sheer

curiosity), we could push this all the way down to machine precision. Again, this is

not so much an astonishment but a startling confirmation of what we had intuited

from the beginning. After all, the system has to take exactly one of exactly two

options as a final state.

All this aside, the sensitivity is the least interesting thing about gravitational field

collapse. One much more intriguing observation we made is that the closer the initial

field is to criticality, the sooner the black string forms.

In other words, a σ0 of .25 lags behind, and forms a black string later than, a σ0

of .15, and so on down to the critical amplitude. This pattern holds true independent

of the grid resolution and baffles myself, my advisor, and Dr. Nielsen of the BYU

physics department. This dynamic is shown in the following four figures, all from

data generated at id3, or on a grid of 4097 points.

The first (Fig. 8.1) shows the evolution of σ(t, ρ) for three initial amplitudes,

σ0 = .25 (solid line), σ0 = .20 (dotted), and σ0 = .15 (dashed). All of these amplitudes

are well within the black-string-formation domain (see Table 3).

Most intriguingly, the “weaker but quicker” field is also the only one of the three

to transpire in the positive range, something made even clearer in Figure 8.3. One

wonders if quick death and an upwardly-mobile σ (that even breaches σ = 0) are

related.

The second (Fig. 8.2) illustrates the evolution of the lapse—in a sense, it is a

picture of the evolution of time, since physically α answers to the rate at which a

test-point moves from one spatial slice to the next. Thus, when α reaches zero (or gets

really close), time has essentially stopped at that locale. While we did not have time

to implement the apparent horizon or mass equations, a very small α (and gradients
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that caused the program to quit) serve as good enough indications of black string

formation. Again, we see that the weaker initial field reaches a black-string state

sooner.

Even stranger, it appears that the value of the lapse α at the origin passes through

a certain value (≈ 0.67) at a particular time (≈ 7.5) regardless of the initial amplitude

of the collapsing gravitational wave! This mysterious phenomenon is shown in Figure

8.4.
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Figure 8.1 — Semilog plot of σ(t, ρ) for three initial amplitudes. The vertical scale
for each row has been adjusted to allow easy visualization of the field at all times.
The weaker initial amplitude (dashed) collapses faster and is the first to make a black
string.

(Figs. 8.1-8.4) are shown as semilog plots, or a plot of the function with respect to
the logarithm of ρ, in order to magnify the action near the origin for our viewing
pleasure.)
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Figure 8.2 — Semilog plot of α(t, ρ) for three initial amplitudes. The weaker initial
amplitude (dashed) collapses faster and is the first to approach zero, indicating the
formation of a black string.
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Figure 8.3 — Time plot of σ|ρ=0 for three initial amplitudes. The weaker initial
amplitude (dashed) collapses sooner, and is the only one to die in the positive regime.
Is there a relation between a σ(0) > 0 and rapid black string formation?
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Figure 8.4 — Time plot of α|ρ=0 for three initial amplitudes. For some reason yet to
be determined, the value of α(0) at a particular time in the evolution is independent
of the initial amplitude of original the gravitational field. This phenomenon persists
at higher resolution levels.
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Finally, we look at two evolutions, for initial field strengths at the respective edges

of the extremely narrow critical window for id5. Even with the semilog plot, and

even with a compression of frames favoring the latter half of the evolution, so close

to each other are the initial data that the evolutions are virtually indistinguishable

until t=12.125.

Figure 8.5 — The supercritical (solid line) and subcritical (dashed) evolutions of σ
at 100±2.63E-7% of the critical amplitude. In the final frame, there are indications of
self-similarity manifest in the “self-echoing” of the outbound shock wave. An adaptive
grid would be needed to tell for certain.
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The most interesting feature of this pair is the self-echoing visible in the left half

of the final frame (see Fig. 8.5). Also, in (Fig. 8.6) we get this really strange kink in

α.

Figure 8.6 — The supercritical (solid line) and subcritical (dashed) evolution of α
at 100± 2.63E-7% of the critical amplitude. What’s with the kink?
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Finally, we look at the super- and subcritical behavior of α at the origin. Two

things to notice here are the bouncing as the “moment of decision” is approached,

and the general structure of the curve—something that we didn’t get to see in the

plots of collapse far from criticality. The critical road to a black string state is not

exactly what one would call monotonic, or even smooth.

Figure 8.7 — Time plot of α|ρ=0 for supercritical (solid line) and subcritical (dashed)
evolutions. The bouncing at the point of decision gets quite violent before the (slightly
greater) wave forms a black string while the other disperses harmlessly away.
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Chapter 9

Some Final Words

9.1 Cosmological Considerations

In an episode of The Simpsons, Stephen Hawking is talking to Homer Simpson in

Moe’s tavern. Says Hawking to Homer, “Your theory of a donut-shaped universe is

intriguing. I may have to steal it.” [33] Perhaps Matt Groening, et al., were on to

something there: the work presented herein made no stipulations about the size of

the extra dimension relative to our submanifold.

Black strings, the result of gravitational collapse in 4+1 dimensions, are fascinating

objects of study and may yet have more to reveal about our universe. Far from

their original conception in the tenfold universe of planckoscopic string theory, black

strings may describe large objects, from Cygnus X-1 to the supermassive black hole

supposed to exist at the core of our own galaxy. Furthermore, if black holes are

actually the four-dimensional projections of five-dimensional black strings, this has

stunning implications for more mundane objects such as our sun, our planet, or even

our own bodies: if our universe has an unseen dimension, it would be expected that

black strings are not the only things to have an extension into the larger manifold.

9.2 Future Work

Clearly, “the field [of numerical gravitational collapse with an extra spatial di-

mension] is white, already to harvest” (D&C 4:4). One simple question, so obvious
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I am astonished and even a little embarrassed that we did not think to address it

earlier, concerns σ0 < 0; all of our runs were for positive σ0. Since the actual metric

component at issue is gζζ = e2σ, a σ0 < 0 would imply that the distortion in the

extra dimension would be a compression instead of a spatial rarefaction. It would

be interesting to explore the negative-σ regime to see if black strings still form, and

whether the σ-black-string phase space exhibits interesting structure in the negative

regime, or even an as-yet-undetected symmetry with respect to σ0 = 0.

In addition, there are a number of assumptions we were forced to make for the sake

of expediency which, in an expansion of the techniques utilized herein, may be done

away with for a more in-depth examination. For instance, the astute reader will have

noted that we began this thesis speaking of “black pearl necklaces,” or the question

of whether black strings will multifurcate into an array of independent black holes.

However, our assumption of the Killing vector ξ = ∂ζ rendered the extra dimension

inoperative, with its only effect—which nonetheless turned out to be substantial—

being found in the term it contributes to the metric. Clearly, further work is possible,

and necessary, wherein this Killing vector is not imposed and the numerical work

done on a two-dimensional ρ - ζ grid.

The type of matter we chose to work with was the simplest of all, the massless

scalar field. Unfortunately, it is also the hardest to physically identify; when one

thinks of “matter” collapsing into a black hole one usually has in mind such things

as dust and fluid—more physically realizable, naturally, but also much harder to

work with in the equations. Thus, using a more pedestrian type of matter in the

stress-energy tensor may be an interesting venture.

On the other hand, more exotic forms of matter and energy might also yield

interesting results—say, forming a black hole entirely out of light (electromagnetic

fields) or the truly exotic Yang-Mills field. One potent question regarding the latter
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impinges upon work done by Millward and Hirschmann [34] of BYU, demonstrating

that the YM field persists outside the black hole formed thereof in apparent violation

of the classical “no-hair” theorem. The addition of an extra dimension to this work

could yield some fascinating insights.

We assumed at the outset to be working in a universe of zero cosmological constant,

despite the compounding evidence [29] that ours is a universe of ΩΛ ∼ 0.7. Therefore,

if one were to seriously wish to use higher-dimensional gravitation to predict and/or

explain variances in astronomical black hole data from the expectation, inclusion of

a nonzero Λ in the Einstein equations would be a must.

It could be that the self-similarity we caught a hint of is not limited to gravita-

tional field collapse (i.e., of pure σ distortions); after all, we did have to delve into

the tenth decimal place to see it! We would not be surprised to find self-similarity

that close to a scalar field collapse as well. It may also be an interesting course of re-

search to determine, on a theoretical basis, the reason for the self-similarity observed

numerically. Along with that, we would hope for an explanation of why the critical

point takes on the value we found, and explanations of α’s critical kink (Fig. 8.6)

and of its passage through a single point in its phase-space, regardless of the initial

amplitude of σ.

9.3 Summary and Conclusion

Fascinating as those issues are, in this work, however, we chose to focus on the

simple questions pertaining to black string formation via gravitational collapse in the

first place. After all, better to have in hand some indication of black strings which

one may search for, before wondering if one’s own body occupies more dimensions

than is commonly assumed. Our investigation, then, required solving the Einstein

equations in 5-D, best done under the assumption of symmetries which we enforced
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and explored via Killing vectors.

The spherical Killing vectors revealed a functional form for metric (and other

tensor) components that forced a choice between two appealing approaches. The first

approach proved a mistake, however, as shown (ex post facto) by careful consideration

of what the Killing-revealed functionalities implied for equation-regularity. Dividing

out spherical symmetry at first may sound like a good idea, but in doing so one

encounters singular terms that cannot be transformed away. Numerical relativists

everywhere ought to take note of this revelation.

Simplifying matters with a gauge choice, and sacrificing one question (regard-

ing black string stability) to efficiently answer others (regarding gravitational field

collapse), we discovered the mind-bending possibility of black strings made entirely

of gravity. These begin as a spherical “shell” configuration of what appears (in a

gedanken context, anyway) to be a longitudinal gravitational wave, or more pre-

cisely as a spherically symmetric local distortion in the extra dimension. We played

exclusively with stretching (or as acousticians would call it, rarefaction); an initial

compression (or negative σ) would make a fascinating additional study, as noted in

(§ 9.2) above.

If we may use the classic trampoline mental illustration of general relativity’s

curved spacetime, it is as if we stretched out spacetime in a narrow ring about the

origin, then let it go. To our satisfaction if not astonishment, as in regular scalar

field collapse, the local distortion bifurcates into outgoing and ingoing pulses. The

ingoing portion increases in amplitude until the trampoline itself is rent at the center,

signifying a black hole/string. The formerly ingoing wave, or the part of it that didn’t

get sucked into the singularity, radiates away.

Even more amazing, however, is that if the initial stretching of spacetime is just

right, or within millionths of a percent of being “just right,” the reflection of the

88



ingoing wave exhibits a self-echoing pattern characteristic of self-similarity. According

to [32] this is no illusion; what remains a mystery is the theoretical basis for this

behavior. Also intriguing, and remaining a mystery for the present time, is why

smaller initial-amplitude distortions collapse faster than their larger counterparts.

This work opens the way, we think, to a wider world which physicists would be

wise to explore more earnestly. Between this work and [32], and previous [1-31] and

subsequent research (§ 9.2, above), we begin to understand what kinds of things one

expects to find in “a donut-shaped” universe.

This includes the possibility of black holes made of nothing but a wrinkle in

spacetime. The formation of such, if close to the critical value (and our present work

offers no opinion as to whether critical collapse is some kind of “attractor” in black

string phase space), would be marked by a distinctive self-similar radiative signature.

One might also wonder, since the Big Bang is a sort of reverse-collapse, if we

might see echoes of self-similarity in the residual evidence of the founding event of

the universe. Thus, black strings may hold the very key to the physical answer of

man’s eternal question, Where did all of this come from?
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Appendix A

Fun with conformal metrics

From the trace-free portion of the ADM equation for the time derivative of the slice

metric we can discover what turns out to be a useful fact.

Let there be a metric that is conformal to our slice metric, i.e., γAB = ψ2pγ̂AB; γAB =

ψ−2pγ̂AB.

First of all, we note that since the contravariant metric (as a matrix) is defined as

the cofactor of the covariant metric divided by the determinant thereof,

γAB ≡ cof(γAB)

γ
,

then the time derivatives of γ and γAB are related thus:

γAB∂tγAB =
1

γ
∂tγ. (A.1)

(The interested reader is invited to show this for him- or herself.)

With this in mind we contract (3.14) with γAB to find

∂t ln(γ) = 2(∆Aβ
A − αK). (A.2)

The trace-free portion of the d = 4-dimensional spatial slice metric’s time deriva-

tive is therefore (invoking (A.1)),

∂tγAB −
1

d
γAB

(
γCD∂t(γCD)

)
= ∂tγAB −

1

d
γAB

(
1

γ
∂tγ

)
. (A.3)
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We then substitute (3.14) and (A.2) to obtain

∂tγAB −
1

d
γAB

(
1

γ
∂tγ

)
= ∆AβB + ∆BβA − 2αKAB −

2

d
γAB

(
∆Aβ

A − αK
)
.

Here another interesting fact comes to our aid. For if we multiply ∂tγAB −

1
d
γAB

(
1
γ
∂tγ

)
by unity in the form of γ

1
dγ−

1
d and distribute the negative power of

γ we have before our eyes the time derivative of γ−
1
dγAB, multiplied by the remaining

dth root of γ. Therefore,

γ
1
d∂t(γ

− 1
dγAB) = −2αKAB + ∆AβB + ∆BβA −

2

d
γAB

(
∆Aβ

A − αK
)
. (A.4)

Now, since γ is the determinant of γAB there is a relationship between it and the

determinant of the conformal metric, γ̂:

γ = det(γAB)

= det(ψ2pγ̂AB)

= ψ2dpγ̂.

Therefore, the combination γ−
1
dγAB may be rewritten in terms of the conformal met-

ric:

γ−
1
dγAB =

(
ψ2dpγ̂

)− 1
d ψ2pγ̂AB

= γ̂−
1
d γ̂AB ! (A.5)

Thus we see that the combination (A.5) is conformally invariant. This is the afore-

mentioned useful fact: if we can replace γ−
1
dγAB with any conformally equivalent com-

bination, there is nothing to stop us from using coordinates such that γAB = ψ2pγ̂AB,

and choosing a γ̂AB that is as simple as reason and good judgment will permit.
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Along the abandoned road of our first approach (using s), we found that indeed

there was a coordinate choice we could make that rendered γ̂AB = δAB, as simple as

one might hope. We will stop short of actually implementing the conformal transfor-

mation, but content ourselves with the knowledge that it is possible.

Given this fact, then, by conformal invariance, the LHS of (A.4) vanishes! We are

thus left with an almost-elegant explicit equation for KAB that is much easier dealt

with than the more abstract and elusive “projection of the covariant derivative of

nµ”:

KAB =
1

4
γAB

(
K − ∆Cβ

C

α

)
+

1

α
∆(AβB). (A.6)

(The parentheses around the indices in the final term denote symmetrization in

the usual way.) This used to come in very handy in filling out the ADM equations

until we decided that K̃ρ
ρ , Ω, and a slicing condition were sufficient.
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