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ABSTRACT

GENERATING ORDER 2 AND 4 FREE-FERMIONIC

NAHE-BASED HETEROTIC MODELS

Jared Greenwald

Department of Physics and Astronomy

Bachelor of Science

A short overview of string phenomenology is presented which motivates the

search of the free-fermionic heterotic string models. The process of generating

these models is discussed along with the use of group theory in describing

the Standard Model. All possible order 2 and 4 boundary vectors (BV’s) are

generated with the constraint that they can be added to the NAHE set and still

form a consistent MSSM string model. Combining the BV’s with the NAHE

set results in new string models which will be analyzed in group theoretic

terms to classify them according to their individual Standard Models.
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Chapter 1

Introduction

1.1 Group Theory

Symmetries exist everywhere in nature. Anything from the arrangement of atoms in

a molecule to the petals of a flower exhibit some kind of physical symmetry. Group

theory is the mathematical study of symmetry and it is useful in helping us to describe

physical systems. A group is any collection of objects that follow a specific set of

axioms. That set of axioms are as follows: Let G be a group and a, b, c ∈ G and ∗ be

a binary operation defined on G.

1. Closure: a ∗ b ∈ G ∀ a, b ∈ G

2. Identity: ∃ e ∈ G such that e ∗ a = a ∗ e = a ∀ a ∈ G

3. Inverse: ∃ a−1 ∈ G such that a−1 ∗ a = a ∗ a−1 = e ∀ a ∈ G

4. Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ G

Some informative examples (and non-examples) of groups are the integers under

the operation of addition, Z+, but not the integers under multiplication, Z×, since

1



1.1 Group Theory 2

not all elements have an inverse. Including the inverse would require the use of the

rationals, Q, which are a group under addition or multiplication. It is interesting to

note that some subsets of a group also follow the above axioms and are also groups.

A group contained within a larger group is called a subgroup.

The special unitary group of order two, SU(2) (the collection of 2x2, unitary,

determinant 1 matrices), is a more physically motivated group which can be used

to represent spin and angular momentum in quantum mechanics and is generated by

Pauli matrices. The Lorentz transformations from special relativity also form a group.

These are just two examples of how groups can be used to represent symmetries of a

given system.

1.1.1 Symmetries

In discussing how groups relate to symmetries, I have failed to define what a symme-

try actually is. A symmetry is defined as some action that leaves a system invariant.

Consider the dihedral group of order four, D4. It is a group of eight elements which

are used to represent the symmetries of the square. The elements of the group corre-

spond to actions performed on the square and consist of one identity, 90◦, 180◦, 270◦

rotations and 4 flips: horizontal, vertical and two diagonal. These are visualized in

Fig. 1.1. As can be shown, these actions all leave the square invariant and so they

represent all independent symmetries of the square. In the previous section, quan-

tum mechanical spin and Lorentz transformations were given as examples of groups.

Specifically, these groups are known as Lie groups. Lie groups have elements that

are infinitesimally separated in terms of a mathematically continuous parametriza-

tion. It is this parametrization that allows Lie groups to be used to represent systems

with continuous symmetries. Many other important symmetries exist in the physical

universe and now I will highlight a set of symmetries that pertain to particles.
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Figure 1.1 The dihedral group of order 4, has the same symmetries of
the square and contains, as elements, three rotations (R) and four flips
(h,v,d1,d2).

1.2 Particle Physics

1.2.1 Particles, Forces and the Standard Model

According to our current understanding of the universe, four forces govern the in-

teractions between matter particles. These four forces are gravity, electromagnetism

and the weak and strong nuclear forces. In terms of particle physics, each of these

forces has a corresponding particle constituent. When matter particles exchange this

‘force’ particle, the matter particles experience this force between each other.

All force-carrying particles are bosons. A boson is a particle with integer spin

and does not obey the Pauli exclusion principle. All force-carrying particles have

spin 1 or 2. The graviton mediates the force of gravity while the photon, represented

symbolically by γ, is the force particle for the electromagnetic force. The strong

nuclear force is carried by eight bosons called gluons and the weak nuclear force is

mediated by the W and Z bosons: W+, W− and Z.

The Standard Model of particle physics is one of the most inclusive and well-

verified theories of modern physics. The theory helps to explain three of the four

forces: electromagnetism and the strong and weak nuclear forces. Through the Stan-
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dard Model these three forces can be unified into a grand unified theory, which is

used to understand the condition of the universe just after the big bang. It has been

proposed that as the universe expanded and cooled the single unified force splintered

into the four forces that we see today.

1.2.2 The Groups of the Standard Model

Three of the four forces in nature have been shown to come from a single force by

the same grand unified theory. This is much like how a group can contain many

subgroups. In fact the forces do have a group theoretic representation, below I list

the Lie group associated with the corresponding force.

Lie Group Force

SO(10) ⇒ Grand Unified Theory (GUT)

SU(3) ⇒ Strong Nuclear (Gluons)

SU(2) × U(1) ⇒ Electroweak (EM coupled with Weak)

The Lie groups associated with the Standard Model are also called gauge groups. I

will use the terms interchangeably.

1.3 String Phenomenology

1.3.1 String Theory

You will recall that in our discussion of the Standard Model only three of the four

forces were represented. Gravity is not part of the Standard Model. Due to the

success of the Standard Model in unifying three forces, it is logical to look for a way

to unify all four forces into one theory, a “Theory of Everything.” String theory

offers a possible theory of everything. Therefore, it has great promise in describing
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our universe. In its current state, string theory has been shown to yield gravity, the

standard model, and even dark matter/energy.

In its most fundamental form, string theory describes fundamental particles (quarks,

electrons, etc.) as one dimensional, vibrating strings. These strings are identical and

the vibrational modes that propagate on the string determine what type of particle

we see it as. These loops can be either closed or open and this necessitates various

boundary conditions for the string vibrations. To make the theory mathematically

consistent, string theory requires the existence of anywhere between 6 (in the case of

supersymmetry) or 22 (in the non-supersymmetric case) extra dimensions above the

four spacetime dimensions required by Einsteinian relativity. The six extra dimen-

sions are represented by mathematical objects called Calabi-Yau manifolds.

String theory is a generalized name given to a set of five string theories: Types

I, IIA, IIB, Heterotic E8× E8 and Heterotic SO(32). There has been much work on

investigating the differences between the string theories and it is now believed that

they are all low-energy forms of an 11-dimensional theory called M-theory, for which

11-D supergravity is also a low energy form. If that is the case then M-Theory is

truly the “Theory of Everything.”

1.3.2 String Models

String theory requires the existence of extra dimensions above the four extended di-

mensions we experience everyday. This means that the extra dimensions of string

theory must be very small and curled up (or compactified). Consider compactifying

two extra dimensions of a four dimensional spacetime. An extra compactified dimen-

sion can be thought of as a loop and when another dimension is added a second loop

is allowed to traverse the first loop creating a sphere or a torus for the two dimen-

sional surface. (See Fig. 1.3.) As the number of extra dimensions increases there are
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Figure 1.2 Extra dimensions can be visualized by considering the 4-D
spacetime to be a plane and then at every point on that plane there would
exist a surface created by the extra dimensions. Here the extra dimensions
yield a sphere.

Figure 1.3 Adding one compactified dimension to another can be visualized
by identifying points on both loops and then allowing those points to travel
around the one of the loops. To make a torus one must identify only one
point one each loop. Whereas to make a 2-sphere, one must identify two
points on each loop.

many more ways to combine the compactified dimensions (loops) together. In the

work which we will be considering here, the number of extra dimensions is six.

It has been shown that there exist a minimum of 10500 to 101000 string models,

called the “string landscape” [1]. One arrives at this number based on taking the num-

ber of Calabi-Yau manifolds (approximately 100 billion), the manifolds on which the

six extra dimensions are compactified [2], and then adding possible electromagnetic-

like fluxes to the manifolds (there are anywhere from 10500 to 101000 flux combinations

per manifold) [3]. Each of these string models corresponds to a different universe,

each with its own physics and corresponding gauge groups. To test string theory as

a quantum theory of gravity, it is necessary to find out if any of these string models
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Figure 1.4 A heterotic closed string has both left-moving and right-moving
waves. The LM live in a 10-D superstring theory while the RM live in a 26-D
bosonic string theory.

contain our universe as a solution. This requires that we must begin a systematic

check of these models (or at least regions of them).

1.3.3 Heterotic String Theory

String phenomenology is the process of modeling specific string theories and inves-

tigating what gauge groups and matter are produced. This matter and these gauge

groups come about through different compactifications of the extra dimensions above

four. In a superstring theory there is one bosonic wave and one fermionic wave for each

dimension while in bosonic string theory there is only a bosonic wave for each dimen-

sion. There are varying methods used to describe the compactification process. We

use the free-fermionic approach, which is a method that describes compactifications

in terms of fermionic fields. Real fermionic fields can be paired to represent bosonic

waves. Alternate bosonic methods of compactification appear more physical, as they

tend to describe compactifications in terms of geometry while the free-fermionic is

an abstract mathematical approach. However, the free-fermionic approach is more

manageable for systematic computer-based model building.
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1.3.4 NAHE Model Generating

Since there has been shown to be a duality [4] between the 5 main string theories:

heterotic E8×E8, heterotic SO(32), IIa, IIb and I, we are also free to choose the most

convenient interpretation in order to make our modeling calculations easiest. Thus

we have chosen to use the free fermionic language of the heterotic E8 ×E8 approach.

In this approach, closed strings are endowed with the above described fermionic

fields. These fields move in either a clockwise (called right-moving, RM) or a counter-

clockwise (known as left-moving, LM) direction. What makes the heterotic theories

unique is that the RM waves can be thought of as living in a 26 dimensional, purely

bosonic string theory while the LM waves live in a 10 dimensional superstring the-

ory.(see Fig. 1.4) In a null (also called light cone) gauge, the LM have 8 transverse

degrees of freedom. Since these are part of a 10 dimensional superstring theory, each

dimension contributes one bosonic and one fermionic field. In a four dimensional

theory, two of the light cone dimensions remain uncompactified and each dimension

corresponds to a LM bosonic field, a LM fermionic field and a RM bosonic field. The

two LM spacetime bosonic fields produce only Planck-scale massive modes and the

two RM spacetime bosonic fields only occur for graviton or gravitino particles. We

will effectively ignore those fields since we are solely concerned with the standard

models of each string model we investigate and not with gravity. Letting the other

bosonic fields be replaced by two fermionic fields, much like a Cooper pair, we find 20

fermionic LM fields. Since the RM waves are all bosonic in nature, we get 44 fermionic

fields from the 22 compact dimensions. This yields 64 degrees of freedom for each

free-fermionic heterotic model. We associate with these fields a 64-component vector,

called a boundary vector (BV), −→α . Since these fermionic fields represent waves, we

can characterize them by a phase factor, which is the number of times the closed

string is traversed before a given wave comes back into its original state. This gives
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us a range for the components of the BV, −1 < αi ≤ 1 where i = 1 to 64. The BV

are not freely specifiable but have been shown to be constrained according to [5, 6],

We call these the ABK/KLT constraints:

Ni,j

−→
Vi ·

−→
Vj = 0 (mod 4) (1.1a)

Ni

−→
Vi ·

−→
Vi = 0 (mod 8) (1.1b)

−→
Vi ,

−→
Vj ,

−→
Vk must have an even

number of periodic real fermions. (1.1c)

Where
−→
Vi is the ith BV, Ni is defined to be the lowest integer such that Ni

−→
Vi =

−→
0 (mod 2) (called the order of

−→
Vi) and Ni,j is the least common multiple of Ni and

Nj . Also note that the dot products in equations (1.1a) and (1.1b) are actually

Lorentz dot products where the RM products are subtracted from the LM products.

The periodicity constraint means that there must be an even number of value 1 com-

ponents shared between all three vectors. These constraints make the BV consistent

with conformal (Lorentz) invariance of the worldsheet (spacetime).

An important set of consistent BV’s is called the NAHE (Nanopoulos, Antoniadis,

Hagelin, Ellis) [7] set. They are:

VI = (164)

VII = (12, (1, 0, 0)6‖044)

VIII = (12, (1, 0, 0)2, (0, 1, 0)4‖112, 06, 14, 022)

VIV = (12, (0, 1, 0)2, (1, 0, 0)2, (0, 0, 1)2‖

110, 02, 12, 02, 12, 08, 12, 016)

VV = (12, (0, 0, 1)4, (1, 0, 0)2‖

110, 04, 12, 06, 14, 018) (1.2)
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Where Xn = X, X, ..., X, X (n copies of X). This set is of order 2 since the αi ∈ {0, 1}.

There are symmetries of the components found in the NAHE set and this constrains

the allowable wave phases. So given a BV, when the first two components have 1’s

(denoting BV’s producing spacetime fermions), the next 18 slots are divided into sets

of three and must have an odd number of 1’s in each of those sets of three with 0’s

elsewhere. That takes care of the LM. The RM must be divided up into pairs of

components with the exception of αi with i ∈ [37, 48] remaining possibly unpaired

among themselves. In that case, those unpaired RM α’s must be paired with the

corresponding LM α’s. With that in mind, the first 6 must be the same followed by

the next 4 being the same to ultimately produce the standard model gauge group,

SU(3)c ×SU(2)L ×U(1)Y . The remainder of the BV consists of a set of 6 paired and

12 possibly unpaired followed by 16 paired components, the last producing the E8

hidden sector gauge group. The entire RM is freely specifiable within order N. Order

N means that the elements are composed of αi ∈
{

0,± 1
N

2

,± 2
N

2

, · · · ,±
N

2
−1

N

2

, +
N

2

N

2

}

[8]

(note: that I use αi ∈ {0, 1, ..., N} for the discussion in this paper). These form the

first set of constraints. When used by itself, the NAHE set yields a Grand Unified

Theory. In terms of gauge groups this is: SO(10) × SO(6)3. Because of this result,

many semi-realistic models are formed by trying to break the SO(10) symmetry of

the NAHE set. This is done by adding more BV’s. Eventually we intend to add to

this set more BV’s that satisfy the ABK/KLT constraints outlined by [5, 6] and the

component symmetries consistent with the work of Nanopoulos, Antoniadis, Hagelin

and Ellis.

One of the main problems presented by heterotic model building is the wide range

of string models that can be generated. It then becomes important to classify the

different models. In the end it would be profitable to know the characteristics of

each of the string models and especially to know what subset of the models contains
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our universe’s physics. One way to classify these string models is by their individual

Standard Models. In an effort to categorize the heterotic string models in this way,

we first must generate sets of BV’s consistent with the ABK/KLT constraints and the

NAHE BV’s. We generate our BV’s computationally thus ensuring a complete set of

order 2 and 4 BV’s. The program we wrote to perform this calulation was designed

to generate the BV’s combinatorically as will be explained in Chapter 2.

This paper focuses on just the generation of the BV’s but the next step in cat-

egorizing heterotic string models would be to combine a single BV, of order 2 or

4, to the NAHE set. We add the BV to the NAHE set so as to break the SO(10)

gauge symmetry into smaller gauge groups like SU(3), SU(2) and U(1). This would

yield string models with Standard Models potentially similar to the Standard Model

in our own universe. We would then analyze the resultant string model in terms of

it’s Standard Model and classify it according to the Lie algebras associated with its

constituent particles and forces. Adding more than one BV to the NAHE set and

performing the same analysis would then be the next step. In lieu of these goals, we

will move onto describing the process of generating BV’s.



Chapter 2

Methods and Revisions

Generating string models in the free-fermionic heterotic language is equivalent to

generating 64-component linear arrays called boundary vectors, BV’s. In Chapter 1,

we discussed some of the previous work in creating the BV’s and the different forms

the components can take. Each of these vectors is split into two pieces representing

the left moving (LM) and right moving (RM) waves that exist on a heterotic string.

2.1 Language

According to the component symmetries listed in Chapter 1 we can calculate an

upper limit on the number of vectors that can be used to represent string models.

Combinatorically, there are 224 possible LM’s after requiring α3 = α6, α9 = α12, α15 =

α18 with either one pair equal to unity and the rest zero or all three pairs equal to

unity [7]. In addition, there are 22 paired RM fermions, each ranging through the

values specified by the order of the components, N . This yields N22 possible RM’s.

Combining these results we have an upper limit on the number of BV’s that could be

produced. Even for N = 2 this upper limit is very large, 224 × N22 = 939 524 096.

12
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Therefore, we have employed CASPER’s RUSH computing cluster located at Baylor

University for our calculations. Since the main purpose of this investigation is to

construct these 64-component vectors, we used matlab to write the bulk of the

BV generating program. We did so because matlab is a powerful matrix analysis

language and has relatively simple syntax for loops.

2.2 Programming Method

Our first task was to write a code to generate all 256 LM’s. This part of the code

was written in mathematica and consisted of generating unique permutations (not

combinations) of (1,0,0),(0,1,0),(0,0,1), and (1,1,1). In addition, every LM begins

with (1,1) to represent that the waves living on the heterotic string are fermionic.

Next, we ran a series of embedded do loops to create the permutations of the four

previously listed 3-vectors. These were appended to a DAT file to be referenced by

the RM generating program.

Once we realized the difficulty in programming with mathematica, we switched

to matlab to write the RM generating program. A basic outline of the program is

as follows:

i. Input Order, N

ii. Generate RM

iii. Associate RM with a LM

iv. Test the BV against ABK/KLT

v. Repeat iii and iv 256 times

vi. Return to ii until no RM’s are left

After specifying an order, N, our original code was setup to generate a RM according

to the NAHE symmetries [7] using a large number of for loops. That RM was
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then paired with all 256 LM’s one by one, thus creating a BV. Each one of these

candidate BV’s were tested against the ABK/KLT constraints [5, 6]. Coding the

constraint equations (see section 1.3.4) was relatively simple. We used matlab’s

native dot product command while adapting the RM’s elements to turn the products

into Lorentz products. A Lorentz product is similar to a dot product except that

when certain elements are squared they receive a minus sign instead of a positive sign

for the sum. In the case of the BV’s, the RM elements receive this minus sign. The

periodicity constraint was tested by adding the candidate BV and two NAHE vectors

together. There must be an even number of components of this new vector that equal

(3+(N −2)/2). We also removed any BV’s generated that were not order N . This is

a concern because BV’s with order equal to all factors of N will be produced by our

program. For example, order 2 is a subset of order 4 so we have designed our program

to remove all order 2 BV from the N = 4 database. Once passed, a candidate vector

is appended to a DAT file for later use. We ran the program for N = 2 and 4.

2.3 Programming Setbacks

Upon investigating the initial output of the program, Gerald Cleaver noticed that

another essential symmetry was neglected when building the new BV’s. This symme-

try has to do with the constraints of which fermionic waves are allowed to be paired

together. In programming terms this equates to ensuring that certain BV elements

match. This change necessitated a rewriting of the matlab script. In order to get

the fermionic waves paired correctly (also called charge pairing), I had to create a

new LM generator and to adapt the original RM generator. Before discussing the

programming changes it is important to overview how the charges can be paired.

First, here is the generalized form of a RM:
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Set 1:{y1, y2, w5, w6, y1, y2, w5, w6}

Set 2:{y3, y4, y5, y6, y3, y4, y5, y6}

Set 3:{w1, w2, w3, w4, w1, w2, w3, w4}

Table 2.1 Using the notation of the generalized LM’s and RM’s discussed
in this section, here are the three sets of charges to be paired.

RM [i] = [a, a, a, a, a, a, b, b, b, b, y1, w1, y2, w2, y3, w3, y4, w4, y5, w5, y6, w6,

c, c, d, d, e, e, f, f, g, g, h, h, i, i, j, j, k, k, l, l, m, m]

The generalized LM we are working with takes the form:

LM [j] = [1, 1, x1, y1, w1, x2, y2, w2, x3, y3, w3, x4, y4, w4, x5, y5, w5, x6, y6, w6]

Here we see that certain elements are already paired ({a, b, ..., l, m}) and will range

over {0, 1} for order 2 and {0, 1, 2, 3} for order 4. The charge pairing that we did not

take into account before was between the x, y, w and the x, y, w. These components

can be paired amongst themselves and also between the sets. Here are the three sets

of charges that can be paired together:

There are two possible pairing within each set. Take for example: Set 3 (see table

2.1); we can pair up all the LM’s with LM’s or we can only pair up two of the LM’s.

In any case, the RM’s must be paired up in the same manner. If w1 = w2 then we

are free to pair up any two of the RM’s as well. Let’s call the paired RM’s w1 and w2

then. The case where only two LM’s are paired requires that the remaining two LM’s

are paired with RM’s. For convenience we label the RM’s in the same manner as the

LM’s, i.e. if w3 and w4 are to be paired with RM’s then they will be paired with

charges which we call w3 and w4, respectively. It is important to remember that LM’s

can still only have the values: {0, 1} and that RM’s can still range over {0, 1, ..., N}.

The only restriction to this is when the RM’s are paired with LM’s. Back to our
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w1, w2, w3, w4 w1, w2, w3, w4

case i: a, a, b, b α, α, β, β

a, b, a, b α, β, α, β

a, b, b, a α, β, β, α

case ii: a, a, b, d α, α, β, δ

a, b, a, d α, β, α, δ

a, b, d, a α, β, δ, α

b, a, a, d β, α, α, δ

b, a, d, a β, α, δ, α

b, d, a, a β, δ, α, α

Table 2.2 Here are the possible charge pairings for set three in a symbolic
form.

example, then if w3 = 0, w3 must also be zero. However, if w3 = 1, w3 must be equal

to N/2.

Now in terms of combinatorics, the first case (where LM’s are paired only with

LM’s) has a total of three combinations. While case two yields six different combi-

nations. We only need to generate these few unique pairings because we will allow

each of the pairs to range over all allowed values; giving us every possible pairing.

Symbolically these are:

In the table of Set 3 pairings, (table 2.2), the pairs are allowed to range over the

values discussed above. It is of interest to note that even though I have used set three

as an example, there is no difference with the other sets and the combinations allowed

therein.

In allowing for this correction, I had to change the code to first produce all the

possible pairings for any given set. This is done by taking the allowed pairings for a set
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and then, with for statements, letting the elements range over the correct values for

the given order. This matrix composed of LM and RM elemtents is then permuted

column-wise to generate all the remaining possiblities. Another program I wrote

takes that ouput and uses it to make a LM with the appropriate RM elements. This

program uses three for loops (one for each set: 1,2,3) to combine the sets in every

possible way. These potential LM’s are tested using the rules for LM’s discussed in

2.1. This output of LM’s (plus RM elements) is then combined with the set of all

possible remaining RM elements, which creates a new BV to test according to 2.2.



Chapter 3

Results and Discussion

In Chapter 2, I gave the rules for and a general outline on how to generate BV’s. In

this chapter, I list some of the BV’s that were produced and present a brief discussion

on how these BV’s will be used eventually.

3.1 Results

Due to the enormity of the program’s output, I will not list all the BV’s generated.

Instead I list below a few example BV’s that satisfy the ABK/KLT constraints and

that produce a consistent string model when individually combined with the NAHE

set. In theses examples I have used the original component range convention which

allows the RM components to be αi ∈
{

0,± 1
N

2

,± 2
N

2

, · · · ,±
N

2
−1

N

2

, +
N

2

N

2

}

as described

in 1.3.4.

18
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3.1.1 Sample Output: Order 2

(12, (1, 0, 0)2, (0, 0, 1)4‖044)

(12, (1, 1, 1)6‖040, 14)

(12, (0, 0, 1)2, (1, 0, 0)4‖028, 12, 04, 12, 04, 14)

(12, (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 0, 0), (0, 0, 1), (0, 1, 0)|

|026, 16, 02, 12, 06, 12)

(12, (0, 0, 1)2, (1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)|

|024, (1, 0, 0)2, 16, 02, 12, 04)

(12, (0, 0, 1)2, (0, 1, 0)2, (1, 0, 0)2|

|010, 12, 04, 1, 0, 1, 02, (1, 0, 1, 0)2, 05, 12, 02, 16)

(12, (0, 0, 1)2, (1, 1, 1)2, (0, 0, 1)2|

|010, 12, 04, 1, 0, 1, 0, (0, 1, 0, 1)2, 08, (1, 1, 0, 0)2)

(12, (0, 1, 0)2, (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)|

|010, 12, 02, 12, 0, 12, 02, 1, 0, 13, 02, 116)
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3.1.2 Sample Output: Order 4

(12, (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1), (0, 1, 0), (0, 0, 1)‖ (-1/2)
40

, 04)

(12, (1, 0, 0)2, (0, 0, 1)4‖ (-1/2)
40

, 02, 12)

(12, (1, 0, 0)2, (0, 1, 0)4‖ (-1/2)
30

, 02, 12, (-1/2)
2
, (1/2)

2
, 04, 12, 02)

(12, (1, 1, 1)6‖ (-1/2)
28

, 112, (1/2)
4
)

(12, (1, 1, 1)6‖ (-1/2)
26

, (1/2)
4
, (-1/2)

2
, 02, (-1/2)

2
, (1/2)

4
, 12, (-1/2)

2
)

(12, (1, 1, 1), (1, 0, 0), (1, 1, 1)4|

|(-1/2)
25

, (1/2), (-1/2), (1/2)
3
,12, (1/2)

2
, (-1/2)

4
,12, (1/2)

2
, (-1/2)

2
)

(12, (1, 1, 1)2, (1, 0, 0), (1, 1, 1), (1, 0, 0), (1, 1, 1)|

|(-1/2)
24

, 02, 16, (1/2)
2
, (-1/2)

2
, (1/2)

2
, 02, (-1/2)

2
, 12)

(12, (0, 1, 0)2, (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)|

|(-1/2)
24

, 02, 12, (-1/2)
2
, (1/2)

2
, (-1/2)

2
, 06, (-1/2)

2
, 02)

Since the generated BV’s are at most order 4, all components must lie in the

range -2 to 2. For physical significane the components represent the phase of the

propagating fields. This phase is the number of times the wave must move around

the string to come back to its original state. Note the use of subscripts to denote

the number of times an element (or set of elements) is successively repeated and the

double bars to separate the LM’s from RM’s.

3.2 Discussion and Future Work

Since these BV’s correspond to compactifications of the extra dimensions, they also

are related to symmetries of the string models. It is these symmetries that yield
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α(21 : 27) versus α(28 : 31) SO(10) →

Same, αi ∈ {0, 1} unchanged

Different, αi ∈ {0, 1} SO(6) × SO(4)

Same, αi ∈ {non − integer, Q} SU(5) × U(1)

Table 3.1

the unique particle inhabitants of each string model. Because particles arise with

gauge group symmetries, it is necessary to find the group-theoretic description of each

string model. This symmetry analysis is performed by relating some choices of the BV

components, αi, to generators of a specific subalgebra in an adjoint representation [9].

These subalgebras then correspond to the algebras of gauge groups and therefore

to the string model’s standard model. A program designed and written by Gerald

Cleaver, called FMG (Free-fermionic Model Generator), has been developed to do

this and our output is formatted to be utilized by this program for categorization.

For a brief analysis of the process, consider the first 10 real components of the

RM BV’s. These components correspond to the SO(10) sector of the gauge group,

so depending on the values for the αi in those slots we can see different gauge group

breaking. Table 3.1 lists the gauge group breaks.

By adding BV’s with different symmetries for the SO(10) sector (components

21-31 of −→α ), we can cause different gauge groups to arise in the string model. This

symmetry breaking is done by letting the values of α21 through α27 be different from

α28 through α31. Note: By combining the last two entries of Table 3.1 we can break

the SO(10) into SU(3)×U(1)× SU(2)×U(1), a standard model like the one in our

own universe.

The database I have constructed is of two orders: 2 and 4. These vectors were
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computed so that any one of them could be added to the NAHE set. Now this set of

BV’s can be used by the CASPER string group to find acceptable linear combinations

of NAHE, order 2 BV’s and order 4 BV’s to categorize more string models. The

process by which these new combinations will be organized is beyond the scope of

this report, but comparison to analytically derived known models will be forthcoming.
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