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ABSTRACT

Primordial Origins of Supermassive Black Holes

William Kevin Black
Department of Physics and Astronomy, BYU

Bachelor of Science

Supermassive black holes (SMBHs) are orphans—since no known progenitors exist, their origins
are mysterious. They are so massive that even if the first stars collapsed into black holes, they would
struggle to even come close to supermassive sizes.

I investigate whether primordial black holes (PBHs), formed by overdensities in the Big Bang,
could be the progenitors of SMBH. I use the cosmology code Enzo to simulate the growth of single
solar mass PBHs over the course of ∼325 Myr to see if the PBHs can reach supermassive sizes.
Additionally, I compare Bondi accretion to viscous accretion.

I use two methods to test whether PBHs could grow fast enough to become SMBHs. First:
comparison to the growth of their surrounding halos—if a PBH is roughly 103 M� by the time its
halo is 108 M�, PBH–SMBH evolution is possible. Second: comparison to observed early SMBHs.
If our PBHs reach similar sizes by similar times, PBH–SMBH evolution could be a viable pathway
for those early observed SMBHs.

Aside from the main results, I discovered that Bondi accretion and viscous accretion result in
drastically different accretion rates. While black holes growing with Bondi accretion grew on order
10−4, black holes with viscous accretion grew on order 10+4. This is likely due to the dependence
of Bondi accretion on simulation resolution.

Given sufficiently dense seeding points, I found that the growth of PBHs does match the growth
needed to reach supermassive sizes. The PBHs reached 103 M� by the time their halos were 108 M�,
so they do have the potential to reach the sizes of many observed SMBHs. Their extrapolated
growth barely fell short of observed early SMBHs, but if 10–100 M� PBHs were seeded, their
growth trajectory would be on track to reach the sizes of early SMBHs.

Keywords: SMBH, supermassive black holes, PBH, primordial black holes, Eddington, Bondi
accretion, viscous accretion, cosmology, galaxies, halos
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Chapter 1

Introduction

Supermassive black holes (SMBHs) are the most massive objects in the entire universe. The center

of our own galaxy hosts a SMBH—Sagittarius A*—with a mass four million times that of our sun.

Though our entire galaxy orbits this beast, its origins are ambiguous.

As black holes grow, the matter gravitating towards them heats up due to friction. This causes

radiation, which repulses the inspiralling matter, thus slowing accretion and ultimately limiting

growth rates. Even if the first stars collapsed into black holes, their limited growth rate means that

they could only grow to a fraction of the size of SMBHs which have been observed in the early

universe. This then suggests that the black holes needed to have started growing before the first

stars to reach supermassive sizes so early.

Soon after the Big Bang, quantum fluctuations made some regions more dense than their

surroundings. These are called overdensities. Some of these fluctuations may have been dense

enough to collapse into black holes. Since these primordial black holes (PBHs) formed so long

before the first stars, they would have had much longer to accrete matter than stellar black holes,

and therefore have a better shot at reaching supermassive sizes earlier.

I ran simulations of PBHs with the cosmology code Enzo and found that PBHs could grow to

supermassive sizes quickly enough to be good candidates for the seeds of SMBHs.

1
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1.1 Black Holes

Black holes occur when matter and energy are dense enough that light is unable to escape. The

classical equation for escape velocity ve =
√

2MG/r still holds for light if we set ve = c (where M

is mass of the object, G is the gravitational constant, r is the radius of orbit, and c is the speed of

light). Solving for orbital radius, we find the Schwarzschild radius, rs = 2MG/c2, which defines

the density threshold for black hole collapse. If a mass M fits within a radius rs, gravity keeps

the light from escaping, so the object is unobservable—a black hole. In other words, if a hoop of

circumference c = 2πrs can be rotated around an object (of that Schwarzschild radius), the object

will become a black hole (this is known as hoop conjecture). [1]

Thus density alone defines whether an object becomes a black hole—mass is merely a measure

of a black hole’s size. Figure 1.1 shows the wide range of masses at which we’d expect to find black

holes, ranging from the mass of a human ovum to billions of times the mass of our Sun. The lower

limit results from the plank length [2] while the upper limit results from how massive black holes

accrete matter. [3]

Two classes of black holes have been observed thus far: stellar black holes and supermassive

black holes. Stellar black holes range from ten to a hundred times the mass of our sun (10–100 M�);

supermassive black holes (SMBHs) range from ∼105 M� up to ∼1010 M�. [4]

1.1.1 Supermassive Black Holes

Supermassive black holes were first hypothesized by Donald Lynden-Bell and Martin Rees, in

1971. [5] Three years later, the National Radio Astronomy Observatory discovered the SMBH at

the center of our galaxy: Sagittarius A*. [6] Since then, many more SMBHs have been found in

galaxy centers. [7–9]

Though many SMBHs have been detected from radiation signatures, their origins remain unclear.
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Figure 1.1 Allowed black hole sizes. While many stellar and supermassive black holes
have been observed, no black holes in other ranges have been confirmed. Neutron stars
larger than the TOV limit collapse into black holes. Note the change of scale at 100 M�.

Since no intermediate black holes (IMBH) have been observed, no traceable path exists from stellar

black holes to supermassive black holes. Additionally, black holes are limited in their growth rate.

This limit, called the Eddington Limit, suggests that a black hole can only grow so large in a certain

amount of time. SMBHs have been observed so early in the universe that even if the first stars

collapsed into black holes, they’d struggle to reach supermassive sizes by the early times we’ve

observed SMBHs.

Intermediate Black Holes While no IMBHs have been observed to date, this is likely due to

sampling error rather than a lack of existence. Sampling error arises due to an unfair survey, where

some candidates are underrepresented. Thus far, black holes have been observed through two means:

gravitational wave detection by LIGO and radiation of SMBH at galactic centers. LIGO is tuned to

detect black holes of mass ∼10 M� (LIGO detections have fallen between ∼1–80 M�, [10]) and

only SMBH are energetic enough to radiate a detectable amount. Thus, the only black holes we

currently have the knowledge or tools to detect lie in stellar and supermassive ranges.

IMBHs are likely found in globular clusters orbiting the galactic center, since globular clusters

give the best opportunities for mergers which would allow the black holes to reach intermediate
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Figure 1.2 Diagram of a black hole accreting and relegating matter. [13]

masses. Several of the black holes mentioned in reference [11] are likely IMBHs. Since IMBHs

go through many merges to reach their sizes, the remaining momentum makes it likely for the

black hole to be kicked out of its original orbit and thrust into the no-man’s land between galaxies.

Additionally, IMBHs are too small to have an accretion disk, so they don’t emit as much radiation

as SMBH. [12]

The lack of an accretion disk and possibility of them floating in open space makes it difficult for

us to detect IMBHs, so they would be underrepresented in our current spectrum of detected black

holes. Therefore, we ought not to rule out the existence of IMBH based solely on current detections.

Until IMBHs are detected, the origins of early SMBHs will remain unclear.

1.1.2 The Eddington Limit

To understand how black holes became so massive, one must understand how they grow.

Accretion is the gravitational capture of matter. As objects fall into a black hole, tidal forces near

the black hole strip matter from stars to form an accretion disk (see Figure 1.2 and reference [14] for

a video of a black hole accreting). This spiraling motion generates friction inside the disk, which
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radiates outwards as light and heat. Radiation pressure in turn repels the infalling matter, slowing

accretion. The balance between radiation and accretion for a spherically symmetric scenario gives

rise to the Eddington limit (equation (1.1)).

LEdd ≈ 34,000
(

M∗
M�

)
L� (1.1)

A star’s luminosity L (where L� is solar luminosity) can only be so large for an object of mass M∗

(where M� is solar mass). [15] The corresponding mass accretion rate is [16]

ṀEdd ≡ LEdd/c2 = M∗/tEdd (1.2)

where tEdd ≈ 45 Myr. This ODE then leads to exponential growth, proportional to et/tEdd .

Keep in mind that this only holds for perfect spherical symmetry. Accretion disks allow heat to

escape perpendicular to the disk’s plane, allowing higher accretion rates. While super-Eddington

accretion is possible, it is not often observed.

The Eddington limit gives a rough limit to the rate of accretion, which puts a rough limit on the

size to which a black hole can grow in a given amount of time. If the first stars, Population III (Pop

III) stars, collapsed into black holes and grew until today, the Eddington limit would bound how

large they could have become.

For example, using a 100 M� Pop III star at z = 20 (180 Myr) which collapses with all its mass

resulting in a black hole, we find that after 720 Myr (the time at which the Wu SMBH is observed

at 1.2 ·1010 M�) it has only reached a size of ∼8 ·108 M�.

For Pop III stars to reach supermassive sizes, they would have to accrete continuously! [17]

Since accretion at the Eddington limit for such a long time is unlikely, SMBH origins remain an

open question in astronomy. If black holes had longer times to grow, the Eddington limit permits

their growth into supermassive sizes. Thus, we look before the first stars for the origins of SMBHs.
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1.1.3 Primordial Black Holes

Primordial black holes (PBHs) were first theorized by Zel’dovitch and Novikov in 1966 [18] and

later by Stephen Hawking in 1971. [2] Soon after the Big Bang, quantum fluctuations led to some

regions in space being more dense than others. It is possible that some of these regions were

sufficiently dense that their mass was within their own Schwarzschild radius. These overdensities

could then collapse into black holes. (There are a few other theories of PBH creation—see Mack

2007 [19] for a well-written review.) PBH creation occurred hundreds of megayears before the first

stars collapsed into stellar black holes.

Because drastic density spikes were less likely than subtle density spikes, less massive PBH

were more likely to form than larger PBHs. Our simulations use single solar mass black holes as

our seeds, but there is a calculable probability that larger PBH could have existed.

Figure 1.3 Timeline of universe from the Big Bang to the present day. Primordial Black
Holes were formed in the “Quantum Fluctuations” region on the far left of the chart.
Picture from NASA / WMAP.
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For a discussion on their detection and evaporation see appendix A.

This thesis investigates whether PBHs could potentially be the progenitors of SMBHs. Since

PBHs existed from the start of the universe, they would have much more time to accrete material

and reach SMBH size. To check this, we run simulations growing single solar mass PBHs to see

whether PBHs could possibly be the progenitors of SMBHs.

1.2 Previous Research

The question of SMBH origins is nearly five decades old, being first discovered in the 1970s. Many

have theorized formation pathways, but none are conclusively correct. Following is a short list of

origin theories, taken from Johnson and Whalen. [17, 20]

1. The collapse of Population III (Pop III) stars into 100–300 M� black holes at ∼180 Myr.1

2. The direct collapse of extremely hydrogen molecule-poor primordial gas in ∼108 M� dark

matter halos into 104–106 M� black holes at ∼480 Myr.

3. The relativistic collapse of dense primeval star clusters into 104–106 M� black holes.

4. The collapse of primordial overdensities (i.e. PBHs) in the immediate aftermath of the Big

Bang (see references [19, 22]).

While all of these models stand as feasible SMBH progenitors, no one theory has sufficient

evidence to prove its accuracy. Each of these theories has its limitations.

As previously mentioned, the collapse of Population III stars (item 1) alone cannot explain the

existence of SMBH at early times, since they’d have to be accreting at the Eddington limit from the

moment of their formation (highly unlikely) to reach SMBH sizes. While more recent work [23]

1Redshifts were turned into years via E. L. Wright’s Cosmology Calculator [21]

http://www.astro.ucla.edu/~wright/CosmoCalc.html
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investigates hyper-Eddington accretion rates in Pop III stars under special circumstances (vis. cold

flows and thermal photons which carries heat away from the growing star). While the growth can

reach early SMBH sizes, it is yet to be determined how common such conditions for Pop III stars

would be.

The direct collapse of H2-poor gas clouds (item 2) requires bypassing supernova formation.

Exploding supernovae loose a lot of mass on explosion, so gas collapsing directly into a black hole

would have a much greater staring mass than other models, allowing for faster growth. Large seed

weights could also come from collapsing star clusters (item 3). These groups of early stars could

merge to form IMBH. Again, it is yet to be determined how often these events would happen, and

whether the resulting spectra would match observed SMBH occurrence rates.

This thesis investigates PBH–SMBH evolution (item 4). At the moment, no observational

evidence definitively confirms this pathway and theoretical evidence is divided as to whether such a

pathway is likely. Following are a few previous studies on PBH–SMBH evolution.

1.2.1 PBH–SMBH Pathways

Quintessence

An alternate theory to an accelerating expanding universe suggests a fifth component of the universe

beyond currently known elements (baryonic matter, hot dark matter, cold dark matter, and spatial

curvature). This fifth element (quinta essentia in Latin) can be thought of as a fluid permeating all

of space. The fluid would have a negative mass density, resulting in a negative pressure—which is

not well-defined. The theory is mainstream but not yet accepted.

Rachel Bean and João Magueijo in 2002 [24] ran simulations of PBHs with accretion of

quintessence included to boost their early growth but shut off at a later time to stymie their growth.

Their simulations modified quintessence levels to achieve a specific SMBH output spectrum to

match observations.
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Domain Walls

Khlopov et al. in 2004 [25] theorized a new mechanism for PBH–SMBH evolution via domain wall

collapse, similar to the mechanism of collapsing overdensities. Domain walls similarly resulted

from a “non-equilibrium distribution” of mass soon after the Big Bang. Khlopov et al. found a

“fractal-like cluster” of PBHs resulted. The paper suggests that SMBHs with primordial origins

would have a spectrum consistent with observations today. This paper is purely mathematical and

uses a simplified model, so it’s just one approach to this complex problem—far from comprehensive.

Input Spectrum Modulation

Düchting in 2004 [26] explains some difficulties in PBH–SMBH evolution. An accurate resulting

distribution of masses (called a spectrum) for SMBHs demands a fine-tuned PBH input spectrum

requiring a jump at a specific value. Current observations favor a power-law distribution of PBHs,

so Düchting’s contrived input spectrum may not reflect reality. Thus, while the paper supports the

possibility of PBH–SMBH evolution, it concludes that such an evolution may not be likely. Still,

this paper made several assumptions, so it doesn’t conclusively prove that PBH–SMBH evolution is

impossible.

My Approach

In contrast to these previously explored methods, I will be running cosmological simulations—

something never done before with PBHs. My study currently abstains from matching observed

SMBH distributions—at the moment, these simulations are a first-order approximation, testing

possibility. This project set up a pipeline to check statistical probability in future work. My

simulations also compare accretion methods, revealing deep differences between Bondi accretion

and viscous accretion.
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1.3 Overview

This thesis explores whether PBHs can feasibly be the progenitors of SMBHs. In Methods, I detail

the two accretion methods used, namely Bondi accretion and viscous accretion. Then I discuss

dark matter halos and their comparison to PBH growth rates. Then I introduce how I seeded black

holes in the open-source cosmology code Enzo2, along with the computational resources used for

its execution. In Results, I discuss the accuracy of the results and show the differences due to choice

of accretion method. Bondi accretion results in near-zero growth, while viscous accretion results in

growth by several orders of magnitude. I also compare the growth of PBHs versus their halos and

extrapolate their growth to compare to observed early SMBHs. In Discussion, I note that the growth

of PBHs supports the possibility of PBH–SMBH evolution, given a sufficiently detailed accretion

method and sufficiently dense seeding points.

2Enzo is available for download from its website, enzo-project.org, and on bitbucket.org.

http://enzo-project.org
https://bitbucket.org/enzo/


Chapter 2

Methods

This section discusses the methods for modeling the growth of primordial black holes (PBHs) in the

early universe, to see if they can evolve into supermassive black holes (SMBHs). Here I outline

different accretion models for black holes, how to know if the PBHs can reach supermassive sizes,

where the PBHs were seeded, and how the simulations were run, including computing resources

used.

2.1 Simulation Accretion Methods

Cosmological simulations require user-defined methods for approximating black hole growth.

The following simulations use two main accretion methods: Bondi1 accretion [27] and viscous

accretion. [28] The biggest difference is that while Bondi accretion assumes spherically symmetric

accretion, viscous accretion takes into account the geometry of the accretion disk.

1Sir Hermann Bondi, Sir Fred Hoyle, and Raymond Arthur Lyttleton all contributed to aspects of this method, so its

name varies in different mixes of the three names. While the Enzo documentation reports it uses “the Eddington-limited

spherical Bondi-Hoyle formula,” the paper it cites was authored only by Bondi and “Bondi accretion” is common

nomenclature in the literature.

11

http://enzo.readthedocs.io/en/latest/parameters/bhform.html
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2.1.1 Bondi Accretion

If a black hole passes through a cloud of dust, it will pick up dust within a certain radius of its path.

This is the core physics of Bondi accretion. Its derivation involves solving gravitational equations

for the more general case of any compact object moving through an unperturbed fluid [29]. The

solution for growth rate is

Ṁ =
4πG2M2ρ∞

(c2
∞ + v2)3/2

v�c∞−−−→ 4πG2M2ρ∞

c3
∞

= r2
Bπρ∞c∞ (2.1)

where G is the gravitational constant; M is the object’s mass; ρ∞ is the density of the surrounding

medium; c∞ is speed of sound in the medium; v is the speed of the object which we assume to

be small in comparison to the surroundings’ sound speed; and rB is the Bondi radius, defined as

rB = 2GM/c2
∞, which determines the boundary between accreted and abandoned matter. The Bondi

radius also defines the boundary between subsonic and supersonic fluid. Therefore, it is critical that

any simulation adequately resolve this radius to get accurate results.

This equation has two important features. First: an object’s accretion rate depends upon its

current mass (squared) and the density of its surroundings. This means that as an object gets larger,

it becomes easier for it to grow faster. Second: the subscript ∞ indicates a measurement distant

from the event—technically infinitely far away—where the medium is unperturbed. This means

that the equation assumes unperturbed density and sound speed.

Many prize Bondi accretion for its simplicity, but it ignores many things.2 While some ignorance

is harmless, several of these points are cardinal sins.

Bondi accretion ignores

1. Self-gravity of the gas (which is mostly negligible).

2. Relativistic effects (which matter especially for black holes).

2See Richard Edgar’s article [29] for a more detailed explanation on several of the following points.

https://ned.ipac.caltech.edu/level5/March09/Edgar/Edgar4.html
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3. Accretion disturbs the matter, possibly in a turbulent manner.

4. The fact that there is no such thing as infinite homogeneous dust clouds.

5. Momentum transfer to the surrounding gas. As momentum of the surrounding gas is central

to accretion rates, its ignorance is fatal.

6. The radius and drag of the compact object. Since black holes are point masses in comparison

to their surrounding gas cloud, this approximation is negligible.34

7. Heating and pressure effects of the gas, resulting in the radiation of light. The luminosity of

the object curbs accretion—see Section 1.1.2 on the Eddington limit.

8. Accretion disks are planar, not spherical! Black holes naturally pull matter into accretion

disks—not spherical clouds. Accretion disks allow for more efficient radiation, perpendicular

to the disk (as seen in the quasar jets of figure 1.2). This allows for much higher accretion

speeds, making the Eddington limit more of a guideline than a solid rule.

The shape of the accretion disk and momentum transfer to the surrounding gas were the primary

motivators for viscous accretion.

2.1.2 Viscous Accretion—Alpha Disk Formalism

DeBuhr et al. 2010 [28] details a different method of accretion than the traditional Bondi accretion,

called viscous accretion. Among other things, the viscous model uses alpha disk formalism, [30]

taking into account the geometry of the accretion disk.

3The largest black holes ever discovered have rs ≈ 10−2 ly, while its accretion disk would be ∼103 ly.
4Accretion disks scale with their black hole as M2/3. Approximately, if a black hole is 1010 M� with an accretion

disk of 1200 ly, when it was 109 M�, its disk was 102 ly, and when it was 1 M�, its disk was 10−3 ly.
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The mass accretion rate is given as

Ṁvisc = 3παΣ
c2

s
Ω
, (2.2)

where Σ is the mean gas surface density, cs is the sound speed of the surrounding gas, Ω is the angular

rotational frequency, and α is ‘the dimensionless viscosity,’ a free parameter in the model which

characterizes efficiency of angular momentum transport and uncertainty related to star formation.

The model includes momentum feedback from the luminosity L, analogous to radiative feedback

in a black hole. This feedback is crucial in calculating accretion rates. Momentum imparted is given

by

ṗ = τ
L
c
, (2.3)

where L = min(ηṀviscc2,LEdd). This ensures the radiative feedback stays below the Eddington

limit, at which point accretion would halt.

2.2 Dark Matter Halos

Our simulations follow back holes from their inception soon after the Big Bang, but to generalize

our findings to any galaxy, we compare PBH sizes to the masses of their surrounding galaxies.

Boundaries in space are nebulous, but we can define compact regions in space called halos.

Halos are clumps of dark matter that draw in normal baryonic matter, including matter that will

become galaxies. This is how our own galaxy formed: dark matter formed a halo which acted as a

nest for baryonic matter. Figure 2.1 shows the rotation speed of matter around the Milky Way galaxy.

Without dark matter, one would observe the red curve, but actually, the blue curve is observed. The

dark matter halo is what gives the curve its unexpected shape.

Simulations have shown [32] that if a black hole reaches a size of 103 M� by the time its

surrounding halo reaches a size of 108 M�, the black hole could grow to supermassive sizes in the
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Figure 2.1 Plot of rotation speed of matter in the Milky Way. The red curve shows what
we’d expect in absence of dark matter. The blue curve shows what we’ve observed. The
discrepancy between observed and expected shows the existence of dark matter surrounding
the galaxy. [31]

short amount of time we’ve observed other SMBHs grow. Thus, if PBHs grow to sufficiently large

sizes alongside their halos, it’s possible for a PBH to grow into a SMBH.

2.3 Seeding the Black Holes

To give the PBHs the greatest chance of growing into SMBHs, they were seeded in regions which

would later host the largest halos. To this end, simulations without PBHs were run from a redshift

of z = 200 (∼6 Myr) until a redshift of z = 2 (∼3 Gyr). The largest halos at z = 2 were then found

using yt’s HOP halo finder method. [33, 34] Black holes were then seeded in a new simulation

with identical initial conditions at a redshift of z = 200. Because previous simulations had shown

low-refinement Bondi accretion resulted in near-zero growth due to insufficient resolution, more

computational resources were directed towards viscous accretion. The simulations used 20 and

1000 black holes for Bondi accretion and viscous accretion respectively.

http://yt-project.org/doc/analyzing/analysis_modules/halo_catalogs.html#hop
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2.4 Computational Methods

2.4.1 Flow Field Specification

Because computers use discrete numbers to describe simulations, the situation must be somehow

quantized. There are three main ways to model fluids. In short, SPH codes track individual particles,

Eulerian codes track regions of space, and Lagrangian codes track regions of particles. Enzo

utilizes a combination of the first two methods. These can all be compared to simulating a river.

Method 1: SPH (smoothed-particle hydrodynamics) Model each molecule of water, describing

its exact position and trajectory at each moment of time. The difficulty with this method is

scale—making the model large enough to give meaningful results. A glass of water alone has

∼1025 molecules of H2O, so approximations are usually used where one ‘particle’ stands for

many molecules of H2O. The 2005 Millennium Simulation (a famous cosmology simulation

looking at large-scale structure of the universe) used ∼1010 ‘particles,’ where each particle massed

∼109M�. [35] Since the scale of the simulation was so large, using smaller particles would have

been too computationally expensive (in time, computer memory, and money), so larger particles

must approximate many smaller particles.

Method 2: Eulerian Monitor each cubic meter region of water, describing its density, pressure,

average velocity, and so forth. The difficulty with this method is resolution—making the simulation

precise enough to give meaningful results. Dividing the river into discrete areas (the cubic meter

cells) excludes small-scale features from surfacing, e.g. minute eddies that form around smaller

rocks. Even if we used cubic centimeter cells, we’d still miss details, e.g. the ripples from a

water strider bug. For example, the 2015 movie The Good Dinosaur used ∼1012 cubic centimeter

cells across a half mile to simulate their rivers but used SPH points for splashes (small-scale

features). [36, 37]
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No supercomputer can model an entire river with perfect accuracy, since this would require

near-infinite refinement. Thus, every Eulerian simulation decides on a passable amount of ignorance

of some scale.5 The balance is that low refinement (larger cells) runs faster but yields less accurate

results, while high refinement (smaller cells) runs slower but yields more accurate results.

Usually, Eulerian simulations use an adaptive mesh. This means that the simulation uses larger

cells where features are simple and smaller cells where features are more complex (small-scale).

The Good Dinosaur’s river could have used large cells in calmer parts of the river and under the

surface while using smaller cells for splashes, spray, and foam. Since the river moves over time, the

mesh would also have to change resolution over time, so where the river becomes more turbulent,

the cells must become smaller to resolve the small-scale features.

Method 3: Lagrangian Monitor sections of water, keeping boundaries between the sections

(perhaps by placing thin, stretchy bags around each section of water). This is similar to SPH in that

groups of particles are tracked, rather than regions of space being tracked. The difficulty with this

method is turbulence. Sections in a Lagrangian simulation (called cells) can become so stretched

and contorted that computational errors arise. This would be like the plastic bags being stretched

and deformed so much that the bag bursts. While this method is good for capturing fine details, it

can also be this method’s Achilles’ Heel.

Method 4: Eulerian with tracer particles Model clumps of molecules of water, but keep a base

grid to do calculations like an Eulerian code. If the cell to the right is more dense, for example,

impart leftwards momentum While the method is flawed, it does have the upside of retaining

small-scale features locally while simplifying calculations on a large scale. For example, to simulate

neutron stars spiraling into each other, one could start with a Lagrangian style, using many particles.

5This can be a problem in some nonlinear (chaotic) systems, such as modeling weather correctly—the smallest

inaccuracies in modeling can cause large-scale problems further along in a simulation.
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Most groups of stars are distant from other galaxies, so we can approximate the distant stars as one

large particle by collecting all the distant stars into a large cell. This cuts down computational costs

greatly–instead of interacting with every other particle, they interact with groups of particles.

Enzo is an Eulerian code, but it uses discrete particles to stand for clusters of matter. The

grid is subdivided with those particles, so while calculations are Eulerian, the code uses tracer

particles (similar an SPH method) to help calculations run faster and avoid computational errors in

low-density areas.

2.4.2 Enzo, Cosmology Simulator

All simulations were run in Enzo, [38] an open-source 3D cosmology code. Enzo has user-set seeds

which randomize the initial matter distribution. As the simulation evolves over time, Enzo allows

space to expand as it did in the early universe.

Enzo is an Eulerian code using a particle-mesh technique. Though the code keeps track of

individual objects (the particles), those objects are grouped into regions (the mesh) to do calculations

en masse. Enzo uses adaptive mesh refinement, meaning the mesh is more dense (subdivided) in

regions where there are more interesting features (like galaxies or black holes). The code uses cyclic

boundary conditions (putting the universe on a hypersphere) to mimic the effects of an infinite

universe.

Enzo was initially coded for studying dark matter, but many packages can be activated to

investigate other physics. Some packages include seeding and growing black holes; star formation

(including Pop III stars) and evolution, including supernovae death; and problem-type parameters

that set the initial state. A full list of parameters can be found in the Enzo Parameter List.

https://enzo.readthedocs.io/en/latest/parameters/index.html#parameters
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Table 2.1 Publicly available capabilities of supercomputers used at Los Alamos National
Laboratory. Rmax measures the maximal performance. Data for Wolf came from lanl.gov
and MachineDesign. Data for Grizzly came from the TOP500 website.

System Nodes / Cores Memory Rmax Power

Wolf 616 / 9856 19.7 TB 205 TF · · ·

Grizzly · · · / 53 352 189.696 TB 1524.72 TF 603.40 kW

2.4.3 Resources Used

All computations were completed at Los Alamos National Laboratory (LANL) using the unclassified

supercomputers Wolf and Grizzly. Capabilities for these computers are shown in Table 2.1. Test

simulations were submitted to Wolf and typically ran on 16 nodes—256 cores—for an hour. After

the first run, the simulations went from z = 200 to about z = 50 (∼15 data dumps in the process).

After three or four runs the simulation would slow down, requiring longer submission times to

produce a single data dump. Full simulations were submitted to Grizzly and typically ran on 32

nodes—512 cores. Time for successive steps increased exponentially, so while z = 200 to z = 50

only took an hour, evolving from z = 50 to z = 20 took roughly eight hours. Moving beyond z = 20

took days for well-refined runs.

www.lanl.gov/asc/tri-lab-resources.php
http://www.machinedesign.com/news/wolf-new-supercomputer-and-running-los-alamos-national-lab
https://www.top500.org/system/178972


Chapter 3

Results

This chapter discusses results from primordial black hole (PBH) growth through accretion using

Enzo. Two main accretion methods were used: Bondi accretion and viscous accretion. A short

discussion of the cause of their differences follows. The goal of these simulations is to see whether

PBHs could grow sufficiently fast to explain the existence of early SMBHs, such as those listed in

table 3.1. To verify this possibility of PBH–SMBH evolution, we use two methods: (1) comparison

between the PBH and its surrounding dark matter halo, and (2) extrapolating their growth and

comparing it to early SMBHs.

Table 3.1 lists some observed supermassive black holes (SMBHs), including our own galaxy’s

Sagittarius A* for reference. Section 3.5 includes these points to compare our growth rate with the

known early SMBHs. If our PBHs grow sufficiently fast, PBH–SMBH evolution will be shown as a

possible pathway for early SMBHs. I extrapolate the black holes’ growth at the same exponential

rate to check feasibility of PBH–SMBH evolution. If PBHs really are the progenitors of SMBHs,

the simulated PBH growth ought to have a trajectory towards observed masses, growing to sufficient

size by their observed epoch.

Alternatively, simulations have shown [32] that if a black hole has grown to ∼103 M� by the

time its surrounding halo has grown to 108 M�, then that black hole could be the seed of observed

20
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Table 3.1 Early SMBHs observed compared to our galaxy’s black hole

SMBH Time (Myr) Mass (M�) Reference

Sagittarius A* 13 772 4.3 ·106 Ghez (2008) [39]

SDSS J010013.02+280225.8 900 1.2 ·1010 Wu (2015) [40]

ULAS J1342+0928 690 7.8 ·108 Bañados (2017) [41]

ULAS J1120+0641 770 2.0 ·109 Mortlock (2011) [42]

early SMBHs. These results are seen in comparative plots between halo sizes and black hole sizes

in section 3.4.

3.1 Grid size

These simulations are currently a first-order approximation of the results, not meant to give a

fully accurate representation of reality. While radiation and alpha disk accretion are turned on,

star formation is not. While the effect is non-trivial, it also shouldn’t drastically change the

simulations I ran. Star formation happened about 200 Myr after my simulation’s start. [43] My

simulations only ran to ∼350 Myr with low-refinement simulations and ∼125 Myr with high-

refinement simulations, so star formation will only minimally affect the low-resolution simulations

and won’t affect the high-resolution simulations at all. A convergence study will be done, testing

whether increasing the refinement incrementally converges on a single solution for any simulation.

These will eventually resolve the accretion disk and the Bondi radius, showing whether Bondi

accretion and viscous accretion converge to a single solution and whether they are valid accretion

methods at low refinements.

Each level of refinement divides the space by two in a single dimension—by eight in three

dimensions. Simulations used a 1 Mpc cube box with a base grid of eight levels of refinement,
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but variation in the levels of refinement beyond that. Figures 3.1 and 3.2 show low-refinement

simulations in red which used three additional levels of refinement and high-refinement simulations

in blue which used 12 additional levels of refinement. The most fine simulation resolution is then

given by equation (3.1).

resolution =
simulation size

(2total levels of refinement)(redshift stretch)
(3.1)

r3 =
1 Mpc

28+3(1+12.9)
≈ 35 pc

r12 =
1 Mpc

28+12(1+26.35)
≈ 0.035 pc

A 1010 M� black hole would have radius ∼0.0003 pc, so even the most refined regions of space

would be hundreds of times larger than the radius of the black hole (which for smaller black holes

is near its Bondi radius). While this is insufficient for Bondi resolution, it is a good first-order

approximation for viscous accretion. More refined simulations will be needed to determine whether

the viscous approximations actually converge.

3.2 Bondi Accretion

Figure 3.1 depicts the growth of 20 PBHs under Bondi accretion. Note that the axis goes from

1.0000 M� to 1.0001 M�—the PBHs barely increased over a single solar mass. The growth is

below zero-order, showing essentially zero growth over the 350 Myr evolution time.

This growth is far below what is expected of a single solar-mass black hole. This is perhaps

due to the low levels of refinement in the simulation—since the Bondi radius (see section 2.1.1) is

ill-refined, the simulations may be giving inaccurate data. More simulations will be run to check

these results for reliability.

Due to the low growth rate of Bondi accretion and the inferiority of its assumptions, I forebear

from referencing this method in the following results.
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Figure 3.1 Low (red) and high (blue) resolution simulations using Bondi accretion for 20
PBHs. Growth rate before 100 Myr is invariant between resolutions. The fastest growing
PBH has an increase of mass of 0.01% over 350 Myr, meaning essentially no growth
occurs with this method.

3.3 Viscous Accretion

Figure 3.2 shows viscous accretion for an unrefined simulation and a deeply refined simulation

for 1000 PBHs. In contrast to the Bondi accretion method, we see here growth of many orders

of magnitude, going from a single solar mass (100 M�) up to 103 M� and 104 M� for the more

refined simulation.

The refined simulation only ran until 120 Myr. Once the simulation hit ∼100 Myr, the simulation

demanded more and more refinement in space and time, grinding output to a halt. At this point, I

increased the resolution from 12 levels of refinement to 16 levels of refinement. This corresponds to

the first hyper-exponential growth seen near 110 Myr. As the simulation ground to a halt again, I

increased resolution from 16 levels of refinement to 20 levels of refinement. This resulted in another

hyper-exponential growth. Thus, adding refinement levels mid-simulation causes severe problems.
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Figure 3.2 Low (red) and high (blue) resolution simulations using viscous accretion. Here
we see differences by many orders of magnitude, where the high-refinement simulation at
120 Myr reaches sizes ten thousand times larger than the low-refinement simulation. Note
that before ∼100 Myr the two simulations are scale invariant.

In future discussion, I ignore the hyper-exponential growth of the high-resolution simulation, since

it stems from computational error.

3.4 Comparison to Halos

Figure 3.3 shows a comparison of PBH growth to the sizes of surrounding halos. Since the PBHs

were seeded where the largest halos form, one may reasonably compare the most massive halos (the

topmost red dots) to the most massive black holes (the topmost blue dots).

In order for the growth of these black holes to explain SMBH origins, they must reach 103 M�

by the time their surrounding halos are 108 M�. Figure 3.3 shows the black holes growing to

103 M� by the time their halos grow to 2 ·107 M�, so these black holes actually can reach the sizes
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Figure 3.3 Comparison of PBH growth with viscous accretion (blue) to all simulation
Halo sizes (red). Here we see PBHs reaching sizes of 103 M� by the time the halos are
just below 108 M�, meaning that the PBHs can potentially reach SMBH size.

of early observed SMBH!

3.5 Comparison to observed SMBHs

As seen in figure 3.4, were the fastest growing PBHs (the highest sloped lines) to maintain their

exponential growth rate, they would come within a few orders of magnitude of observed SMBHs

in the early universe. While only single solar mass black holes were seeded, heavier PBHs could

have existed in the early universe, and these could feasibly reach supermassive sizes by the times

early-universe SMBHs have been observed.
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Figure 3.4 Low-resolution viscous growth with markers for SMBH goals: ULAS
J1120+0641, ULAS J1342+0928 and SDSS J010013.02+280225.8. The PBHs have
a path headed towards the SMBHs, but barely fall short. Were larger PBH seeds used, the
PBHs could potentially evolve to SMBH sizes.



Chapter 4

Discussion

4.1 Mass Accretion

These simulations showed that primordial black holes (PBHs) could grow to supermassive sizes by

early times, but their projected growth falls just short of the few early SMBHs in Table 3.1. This

may simply be due to seed size—using single solar mass PBHs at the simulations’ start. Were larger

seeds used (our choice of a single solar mass was somewhat arbitrary), the observed sizes of SMBH

may have been reached. They did, however, reach sizes of 103 M� by the time their halos reached

sizes on the order of 107 M�, which indicates that they are on-par with other early SMBHs. Thus,

PBHs may be the progenitors of supermassive black holes! Several things warrant our skepticism

though.

At our simulation’s end, we are left with black holes headed towards supermassive sizes, but

we are also left with many stellar mass and intermediate mass black holes (IMBHs) whose growth

plateaued. While our simulations show more IMBHs existing than have been observed, sampling

error is likely to blame (see section 1.1.1). Until IMBHs are observed, the jury is still out.

27
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4.2 Differences in accretion methods

Bondi accretion differs from viscous accretion by many orders of magnitude, so the two methods are

far from interchangeable. The resolution in these simulations hadn’t fully resolved the accretion disk;

the simulation’s highest resolution was 35 pc while the accretion disk would be on order 0.005 pc

(7000 times smaller!). This is equivalent to approximating an HD TV screen with two pixels.

This is perhaps why Bondi accretion didn’t give accurate accretion growth rates. Bondi accretion

crucially depends on accurately resolving the Bondi radius (see section 2.1.1), so insufficiently

refined simulations will yield rubbish, as seen in these simulations where the growth differs by

seven orders of magnitude.

4.3 Future Work

4.3.1 Probabilistic Seeding

This project was a proof of concept, seeing if in any circumstance PBHs could evolve into SMBHs.

I ignored proper PBH abundance in the early universe and seeded as many PBHs as I pleased.

Additionally, I placed the PBHs where the most massive halos would exist. While the latter is not a

bad guess, it does not reflect the quantumly random distribution that truly existed soon after the big

bang. Constraints on formation can be found in figure 9 of Carr 2010. [22]

Future simulations will include these corrections, seeding the proper amount of PBHs randomly

throughout the simulation. Rather than merely investigating whether PBH–SMBH evolution is

possible, I will investigate whether PBH–SMBH evolution is likely. This will require proper seeding.

These simulations can then be compared to observed densities of SMBHs as a reality check.
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4.3.2 Alternate Seed Masses

As mentioned in section 3.5, were heavier PBHs seeded, it’s possible that such seeds could reach

SMBH size by the time of the observed SMBHs.

4.3.3 Flow Field Specification

Enzo is an Eulerian code (see section 2.4.1), so comparing it to a Lagrangian code will be a good

check, since the two work in fundamentally diametric ways. These simulations are already being

investigated with the Lagrangian cosmology code GIZMO. [44]

4.3.4 Radiation

Black holes emit massive amounts of radiation, which could catastrophically slow growth. While

simulations may begin at near-Eddington accretion rates the rates can later fall by many orders of

magnitude due to radiation. For example, the simulations of Alvarez et al. 2009 grew 104 times

slower with radiation than without. [45] This feedback is activated with the MBHFeedback parameter

and will be a simple addition in future simulations.

4.4 Conclusion

Based on simulations of primordial black holes (PBHs) evolving with viscous accretion, PBHs may

be the progenitors of supermassive black holes (SMBHs). Some PBHs grew at rates compatible

(within a few orders of magnitude) with observed SMBH sizes (such as those in table 3.1). Ver-

ification of PBH–SMBH evolution will require finely resolved simulations run for longer, with

proper probabilistic seeding of black holes. As a final check, the resulting black hole spectrum can

then be compared to the observed black hole spectrum (taking into account what we’re capable of
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observing). So while SMBH origins are still in the air (or rather, in space), PBH–SMBH evolution

may well solve the conundrum.



Appendix A

PBH Detection

While no PBHs have been observed to date, this is likely due to their sparsity in higher masses.

Light PBHs would have already evaporated by the times we could observe them today.

Black holes are not immortal; they lose matter due to Hawking radiation. [46, 47] This form of

blackbody radiation arises from quantum effects in a vacuum. Pair creation and annihilation near

the edge of a black hole results in the capture of some particles with their antiparticles escaping,

emanating radiation from the black hole. Black holes continue to release energy in the form of this

radiation until they have withered away to nothing. This is a bit of an exaggeration though.

Enzo neglects Hawking radiation, and for good reason. Hawking radiation is inversely propor-

tional to mass squared, so the effect is usually negligible. A black hole the mass of our sun would

have a Hawking radiation of temperature ∼60 nK, which is about 45 million times colder than the

cosmic microwave background (the ambient temperature of space). Assuming the black hole ac-

creted no matter whatsoever, the 1 M� black hole would take ∼1075 years [48] to evaporate—much

much longer than the age of our universe, 13.8 Gyr (∼1010 years). PBHs of size ∼9 · 10−20 M�

(which formed just after the Big Bang) are just now evaporating. [48] As we’re dealing with 20

orders of magnitude, we can neglect Hawking radiation in our simulations.
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Enzo Setup

Enzo is written in C, C++, Python, and Fortran, and uses the parallel computing message passing

interface (MPI) (see Appendix C). Thus, compiling and running the code requires many modules.

Listed here are the modules I used and their versions.

• Python 3.5, Anaconda 4.1.1 - Enzo’s front-end programming language

• GCC 5.3.0 - a compiler for C, C++, Objective-C, and Fortran (among others)

• Open MPI 1.10.5 - a Message Passing Interface library

• FFTW 3.2 - "The Fastest Fourier Transform in the West"

In the following sections, I explain my choice in key parameters in the setup files. [49, 50]

Initial Conditions File

I used the cosmology constants from Planck 2015, table 4, the last column of the Planck 2015

results, section XIII: Cosmological parameters. The specific seeds used to randomize the initial

conditions can be found on the pastebin copy of the initial conditions file.
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http://arxiv.org/pdf/1502.01589v2.pdf
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[cosmology]

Omega_m = 0.3089

Omega_L = 0.6911

Omega_b = 0.04860

H0 = 67.74

sigma_8 = 0.8159

nspec = 0.9667

Parameter File

The cosmology package is activated with ProblemType = 30, fol-

lowed by many cosmology parameters. The important lines I added

were at the end of the file, listing the most relevant parameters

distinguishing this simulation from other cosmology simulations.

The StarParticleCreation variable uses option 9 (which

is coded as 29 = 512 to combine with other options in a single

integer). This option allows insertion of massive black hole particles

by hand via the file , with user-specified mass, location, and time of insertion (defined in the file

mbh_insert_location.in). The Enzo documentation cites Kim et al. 2010 for this method.

# Simulation Specifics

StarParticleCreation = 512

RadiativeTransfer = 1

RadiativeTransferAdaptiveTimestep = 1

RadiativeTransferHIIRestrictedTimestep = 1

MBHAccretion = 1

The radiative transfer variables have

their documentation in ray tracing

parameters in the Enzo documenta-

tion. Setting RadiativeTransfer to

one turns on the adaptive ray trac-

ing following Abel, Wise & Bryan

2007. Setting RadiativeTransfer-

HIIRestrictedTimestep to 1 turns on adaptive time steps as done in Wise & Abel 2011. Since

this variable is set to 1, so too must RadiativeTransferAdaptiveTimestep, which sets the

timestep to the finest resolution of the simulation grid.

Settings for MBHAccretion can be found on the Enzo documentation. Setting it to 1 uses

Eddington-limited spherical Bondi-Hoyle formula [27] (i.e. Bondi accretion). Setting it to 6 turns

on alpha disk formalism based on DeBuhr et al. 2010 [28] (i.e. viscous accretion).

https://pastebin.com/rmm6AXXf
http://enzo.readthedocs.io/en/latest/parameters/starform.html
http://enzo.readthedocs.io/en/latest/parameters/radiation.html#radiative-transfer-ray-tracing-parameters
http://enzo.readthedocs.io/en/latest/parameters/radiation.html#radiative-transfer-ray-tracing-parameters
http://enzo.readthedocs.io/en/latest/parameters/radiation.html#radiative-transfer-ray-tracing-parameters
http://enzo.readthedocs.io/en/latest/parameters/bhform.html
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Message Passing Interface

The following is a quote from an Enzo manual I co-authored.

Imagine I hand you a list of ten thousand simple arithmetic problems and ask you to solve each

of them within an hour. It’s unlikely that you could do an average of more than two of them in a

second without making any errors along the way (not to mention how tedious the task would be).

How do you get the answers before the hour is up?

Call up a hundred of your closest friends and assign them 100 problems each to solve. Now

they have more than half a minute to solve each problem. Most solve all of their assigned problems

before the ten minutes end. You compile all the answers and present them back to me with plenty of

time to spare.

If you had tried to do it all yourself, it would have taken about a hundred times longer (minus

time spent sending and waiting for emails), but writing, sending, waiting to receive, and compiling

information from emails takes a good amount of times as well—time that could be spent solving

many problems yourself. If you had sent the ten thousand problems out to ten thousand individuals,

while a majority would finish quickly, some may take much longer to respond, and some may not

ever respond. Now, emailing time far exceeds computation time, and there was a lot of wasted

energy and time. Sending ten problems per person would be more efficient, but a thousand problems

34



35

is still a lot of emailing time.

This is essentially how supercomputing works. When we have a massive task that no one

computer could solve (in a reasonable amount of time, or perhaps at all, due to memory restrictions),

we send it to a supercomputer. The supercomputer divvies up the problem between a large number

of processors—mini computers in themselves—which solve their individual problems and report

back their results.

The average laptop is a sort of mini supercomputer. If your computer has a quad-core pro-

cessor, it has four little slaves (processors) inside it to solve problems, all working in the same

workspace (RAM: Random-access memory. Now take a thousand laptops and store them all in a

few bookshelves, then wire them up so they can talk amongst each other—this is essentially how a

supercomputer is structured. Laptops are analogous here to nodes, and each node has some large

number of processors (e.g. 16, 24, 28).

The emailing system we used above is analogous to MPI (Message Passing Interface). When

running astronomically large simulations, we divide space up into smaller sections and assign

each section to a different processor. Objects will span across these divisions, and for that reason,

processors need to talk between each other. While communication between processors on the same

node are much slower than solving their own problems, communication between nodes is much

slower. Therefore, we try to limit this communication as much as possible. MPI is the means by

which all this communication happens: how the problem is divvied up, how processors talk to each

other, and how they compile all their data into one place for the finished product.
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