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ABSTRACT

Effects of Roughness on Reflection of Monochromatic Light

Spencer Thevenin
Department of Physics and Astronomy, BYU

Bachelor of Science

If the scale of surface roughness is on the order of the wavelength of incident light, traditional
optics methods like ray tracing and physical optics fail to adequately model reflectance. In this
project, boundary integral techniques were chosen because they provide direct solutions only lim-
ited by computer memory. Discretizing Maxwell’s equations across a surface yields an Ax = b
matrix equation relating the surface current to electric field over a net of points. Reflectance calcu-
lations for transverse-magnetic (TM) waves on a perfect conductor in two dimensions are analyzed
in depth to model the effects of scattering from surface roughness. Root mean square (rms) furface
roughness more than a hundredth the wavelength of the incident beam is noticeable and anything
larger than a tenth the wavelength dominates the reflectance. These calculations allow for compar-
ison with previous approaches –such as the scalar correction factors of Debye-Waller – at various
spatial frequencies. The Debye-Waller models the smaller roughness but loses precision as rough-
ness increases. The effects of spatial frequencies are also analyzed are compared to the current
work of Stearn in showing additional surface parameters affecting roughness. The results of al-
tering spatial frequency supports the work of stern suggesting additional parameters like spatial
frequency are factors that affect overall reflectance. Optimizing the calculation through generating
and solving the matrix equation are analyzed. Nonsingular, off-diagonal elements of the relation
matrix are relatively slow to calculate in the generation process. A method using the multipole
expansion is theorized to combat this inefficiency.

Keywords: [XUV, EUV, Monochromatic, Reflectance, Mirror, Roughness, Debye, Waller, Debye-
Waller]
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Chapter 1

Introduction

Understanding the extreme ultraviolet (XUV) has been a major part of recent optical studies. One

of these studies is developing mirrors to effectively reflect XUV light. Using XUV in reflectance

present new challenges. These challenges are overcome through using Maxwell’s equation to

generate the Helmholtz equation. Helmholtz equation allow us to solve for a Green’s function

which provides the relationship between the incident light and the current induced on the mirror

during the reflection process. The surface currents are solved by forming a matrix equation of the

Green’s function. The background behind the derivation are given in this chapter to prepare us for

further analysis in later chapters.

1.1 XUV Mirrors

In recent years, technology and innovation have extended the limits in the field of optics through

the use of the extreme ultraviolet (XUV). XUV is a region within the electromagnetic spectrum

between 120 and 10 nm. With shorter wavelengths and greater energy, XUV enhances capacity

and scope of many optical instruments. XUV has improved the precision of a recently developed

desktop microscope created from a compact laser-plasma [1]. This microscope has provided better

3
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resolution and detail than similar microscopes using lower energies. Improved performance was

also found in XUV contact-hole printing [2]. Due to smaller wavelengths there was improved

control and faster etching.

In recent years, NASA has been interested in improving their telescopes to detect and utilize

XUV light. This ability would improve the imaging and detection of stars as well as provide

enhanced analysis of their composition. The telescopes contain mirrors that are vital to control,

reflect, and magnify incoming and outgoing light. The Turley-Allred XUV research group has

been working on developing mirrors that meet this criteria. The group has made progress towards

this goal but have run into a few challenges along the way. One of these problems arises from the

inability to create a perfectly smooth surface.

The smaller wavelengths of XUV present problems in calculating reflectance. The wavelengths

of XUV light approach the size of the roughness on the surface of the mirror. The resulting scatter-

ing of the light is less obvious and more unpredicable. This better understood through an analogy.

The effects of scattering from a rough surface is contrasted to bouncing a ball on the ground.

Suppose you are holding a basketball and the ground you are dribbling the ball on is a bed of

rocks the size of ping-pong balls. The rocks will have a minimal effect of the trajectory of the

ball because the ball is much bigger than the bed of rocks. Now, as the size of the ball decreases

predicting the trajectory of the ball is much harder. Taking a bouncy ball the size of a ping-pong

ball and bouncing if off the bed of rocks yields more complicated to predict trajectories. This

complication is similarly found in waves and surface roughness.

Traditional methods found in most books, like ray tracing and physical optics, fall short in ef-

fectively modeling the reflectance from these surface features because they assume the wavelength

is much larger than the roughness on the surface. Many mirrors that are effective at reflecting visi-

ble and softer ultraviolet light are nearly invisible to XUV due to the shorter wavelengths of XUV

light because the waves pass right through. Recent studies have been undergone to understand
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Figure 1.1 Depiction of the setup used for correction factors. For the specific case of
Debye-Waller, k is the wavevector of the incoming beam, q is the momentum of the
incident beam perpendicular to the mirror, θ is the grazing angle, and h is the rms high of
the roughness, and R is the reflectance of the scatter wave.

reflectance properties in the XUV from surface roughness.

1.2 Prior Work

Different methods for dealing with roughness have been studied. Scalar correction factors have

recently been formulated as a method to correct for roughness on the surface. The two most well-

known of these corrections are the Debye-Waller and Nevot-Croce factors. [3, 4]

Scalar correction factors are the most common way to handle surface factors. Scalar correction

factors are modeled by [5, 6]:

R = R0C (1.1)

where R is the reflected intensity, R0 is the calculated reflected intensity off a flat surface, and C

is the correction factor. Correction factors of this nature are created from a myriad of things: rms
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roughness height, from the surface,h,the angle of the incident beam,θ , and material properties such

as index of refraction. The most common of these are Debye-Waller (DW) and Nevot-Croce (NC).

Debye-Waller is most applicable to this project and is given by:

R = R0e−4q2h2
, (1.2)

where q is the momentum perpendicular to the surface of the incident beam. (see Fig. 1.1) Substi-

tuting for the wavenumber, k, and grazing angle, q is given as

q = k sin(θ) (1.3)

The DW factor uses the wavenumber, incident beam, and rms roughness to correct for the rough-

ness. However, to fully model how light interacts with the surface, these approximations prove

insufficient.

Jedidiah Johnson’s Master’s Thesis [7] outlines these deficiencies and proposes that a direct so-

lution with minimal approximation will improve reflectance calculations from surface roughness.

Johnson’s method provides a direct solution through Maxwell Equations.

1.3 Maxwell Equations and the Wave Equation

The well known Maxwell Equations provide the foundation of electromagnetism. They are given

by

∇ ·E =
ρ

ε0
, (1.4)

∇ ·B = 0, (1.5)

∇×E =−∂B
∂ t

, (1.6)

∇×B = µ0J+µ0ε0
∂E
∂ t

, (1.7)
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where E is the electric field, ρ is the charge density, ε0 is the permittivity of free space, B is the

magnetic field,t is time, µ0 is the permeability of free space, and J is the current density.

From Maxwell’s Equation the wave equation is derived. Taking the curl of Eq. 1.6 gives

∇× (∇×E)+
∂

∂ t
(∇×B) = 0. (1.8)

Using Eq. 1.5, ∇×B from Eq. 1.8 is eliminated through substitution, giving

∇× (∇×E)+µ0ε0
∂ 2E
∂ t2 =−µ0

∂J
∂ t

. (1.9)

The vector identity, ∇× (∇×E) = ∇(∇ ·E)−∇2E, is applied and Eq. 1.4 replaces ∇ ·E which

gives

∇
2E−µ0ε0

∂ 2E
∂ t2 =−µ0

∂J
∂ t

+
∇ρ

ε0
. (1.10)

Removing all sources from the area of interest (ρ → 0 and J→ 0) reduces the right side of the

equation to zero, which produces the more familiar form of the wave equation:

∇
2E−µ0ε0

∂ 2E
∂ t2 = 0. (1.11)

Assuming a solution contain harmonic time dependence, e−iωt , and that the medium is isotropic

and homogeneous, the Helmholtz Equation is obtained:

(∇2 + k2)E = 0, (1.12)

where k is the wavenumber given by:

k2 = µεω
2, (1.13)

where µ is the permeability, ε is the permittivity, and ω is the angular frequency. The Helmholtz

equation prepares us to find the Green’s function.
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1.4 Green’s Function

The Green’s function is the impulse response of an inhomogeneous differential equation with spec-

ified boundary conditions. The scalar Green’s function for the Helmholtz equation in two dimen-

sions free space is:

G(x,x′) =
i
4

H(1)
0 (k|x−x′|), (1.14)

where the primed coordinates are the source points, the unprimed coordinates are the observation

points and H(1)
0 is a Hankel function of the first kind. This Green’s function relates the induced

currents on the surface of the mirror to the electric field in all space. The scalar Green’s function

in integral form is given by the following:

E(x) =
∫

J(x′)G(x,x′), (1.15)

where J(x′) is the induced current on the surface, G(x,x′) is the aforementioned Green’s function

and, E(x) is the observed electric field. The goal is to use the Green’s function to calculate the

currents on the surface. To simplify this calculation, a perfectly conducting surface is used.

1.5 Perfect Conductor

Applying the boundary conditions for the case of a perfect conductor greatly simplifies the problem

of calculating the scattered wave to satisfy the Green’s function. Using Eq. 1.15, the relationship

for a perfectly conducting surface is shown. Focusing solely on scalar fields the total field, Etot, is

a superposition of the incident electric field, Einc, and the outgoing scattered field, Eout:

Etot = Einc +Eout. (1.16)

The total electric field on the surface on a conductor is zero. Focusing only on the conductive

surface reduces Eq. 1.16 to

0 = Einc +Eout. (1.17)



1.6 Matrix Equation 9

Applying the Green’s function to the scatter wave’s electric field by applying Eq. 1.15 gives

Eout(x) =
∫

J(x′)G(x,x′)dx′. (1.18)

Substituting Eq. 1.18 into Eq. 1.17 lead to

0 = Einc(x)+
∫

J(x′)G(x,x′)dx′, (1.19)

which can be simplified to

Einc(x) =−
∫

J(x′)G(x,x′)dx′. (1.20)

Now that the integral equation is formed the next step is to solve for the surface current, J(x′). The

surface current is used to calculate the electric field for all space. Solving for J(x′) cannot be done

using conventional algebra because it is within an integral. Linear algebra and forming a matrix

equation leads to a solution for J(x′).

1.6 Matrix Equation

The resulting integral equation (Eq. 1.20) is modeled as a matrix equation to solve for J(x′).

Taking Eq. 1.20 and specifying the bounds of the integral across the surface of the mirror yields

E(x) =
∮

G(x,x′)J(x′)dx′ (1.21)

where the updated Greene’s function,G(x,x′), is given in 1.14. The integral is then discretized

across the surface of the mirror using numerical integration. The resulting equation is a sum of

discrete current contributions across the surface shown by the following

E(x) = ∑
j

G(x,x j)w(x j)J(x j), (1.22)

where the subscript j are the discretized points on the surface of the mirror and the function w(x j)

is the general weighting function for whichever quadrature rule is used. Nystrom [8] Integration
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is used to line up the region of observation (x) with the discretized points across the surface(x j).

This provides discrete points of observation in the same locations as the current contributions in

the summation from 1.22. This gives

E(xi) = ∑
j

G(xi,x j)w(x j)J(x j), (1.23)

where the subscript i represent the observation point and the subscript j represent the source points

across the surface of the mirror. Next, the following notation changes are made.

E(xi) = Ei (1.24)

G(xi,x j) = Gi j (1.25)

J(x j) = J j (1.26)

w(x j) = w j (1.27)

The Green’s function can be combined into a general function that will be called the impedence

function, Zi j. The following substitution demonstrates this simplification

Zi, j = Gi jw j. (1.28)

This yields the following general equation

Ei = ∑
j

Zi jJ j, (1.29)

where Ei represents the electric field produced from surface currents, J j. This equation models a

matrix equation with rows i’s and columns j’s. It is rewritten as spatial vectors E and J where each

element represents the scalar values across the surface with a relationship matrix Z in the following

manner,

E = ZJ. (1.30)

The surface currents are then solved through inversion. Optimizing the solving process is taken

more in depth in later chapters and is a focal part of this project.
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1.7 Scope of Project

The purpose of this research is to take Johnson’s [7] approach towards calculating surface currents

and use it to analyze the scattering effects of an incident beam of light on a rough surface. The

derived matrix equation (Eq. 1.30 is used as the foundation for this study. The FORTRAN com-

puting language is used to generate surfaces of different roughness in both shape and depth and

analyze the reflectance properties.

Limitations of Eq. 1.30 occur from inefficiencies in generating and solving for the surface

current. Direct and iterative solutions are compared for accuracy and efficiency in this process. By

optimizing the solving mechanism, more efficient results are realized and more realistic problem

sizes can be used to model the effects of roughness from a two-dimensional conducting mirror.

The exploration of the multipole approximation is used to further optimization. Using the

concepts of perturbation and linear algebra future work is proposed in how these simplification

will further the iterative solving approach. These approximations can provide faster calculations

without loss of accuracy for given problem complexities.



Chapter 2

Numerical Methods/Setup

The project’s model is broken in four parts. The model of the incident wave and its features

comes first. Second, the modeled mirror is discretized and generated. The third element consists

of constructing the matrix equation (Eq. 1.30) through the use of the two-dimensional Greene’s

function derived in the previous chapter. The final element of the project is calculating the far-

field approximation of the scattered wave. The far-field approximation calculates the resultant

scattering at different angles far enough away from the surface leaving only angular dependence.

Fig. 2.1 depicts the interaction between all these elements.

2.1 Incident Wave

The incident wave is generalized to handle monochromatic light. The simplest two-dimensional

wave is a uniform plane wave infinitely symmetric in one dimension. Generally a plane wave takes

the form of

Einc = E0ei~k·~r (2.1)

where E0 is the magnitude,~k is the wavenumber and~r is the direction of propagation. Fixing the

problem to two-dimensions, the wave is be contained in the x and y plane. Thus the wavenumber,
12
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Figure 2.1 Setup of incident beam, outgoing spherical wave, and surface current Dia-
gram.

~k, has an x component and a y component and is written

Einc = E0ei(kxx+kyy) (2.2)

The variables for kx and ky are written in terms of the k value defined as k = |~k|, and the grazing

angle θ such that Eq. 2.2 becomes

Einc = E0eik[x cos(θ)+y sin(θ)] (2.3)

In this project, the x direction is parallel to the surface in the noninfinite direction. The y

direction is perpendicular to the surface and depicts the height from the surface. The mirror itself

is contained in the x,z plane. The z direction is unused but symmetric to model a two-dimensional

calculation and the positive z direction comes out of the page. Figure 2.2 shows the relationship

between these directions and the surface as well as the representation of θ in the setup. For simple

normalization, tE0 = 1. For the incident wave, the y component is negative because the wave

travels toward the surface. The incident electric field is thus given by

Einc = eik[x cos(θ)−y sin(θ)] (2.4)

With the incident wave modeled, the next step is to manipulate and model the surface itself.
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Figure 2.2 Orientation of coordinate system. The wavevector, ~k, the grazing angle of
the incident beam, θ , and the grazing angle of the scattered beam, phi, are shown. The x
direction goes across the mirror, the y direction is perpendicular to the mirror, and the z
direction is the unused infinitely symmetric direction and comes out of the page.

2.2 Surface Discretization

Numerical quadrature and discretization of the surface is discussed further, as mentioned, to show

how 1.30 is utilized. In general, numerical integration is the process of changing continuous inte-

grals into a discrete summations. This is represented by

∫
f (x)dx = ∑

i
ci f (xi) (2.5)

where xi represents discrete values at which the function is evaluated. The values ci are the weight-

ing coefficients that depend on the quadrature used.

2.2.1 Quadrature Rules

The more well-known quadrature rules consist of the rectangle and trapezoid methods. These rules

use geometries of constant and linear order, respectively to discretize integrals which approximate

the solution quickly but lacks the precision necessary for this project. Simpson’s rule improves the

order to the quadratic regime. In Fig. 2.3, the resulting precision of the summation improves as the
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Figure 2.3 Common quadrature rules. Part a shows the zeroth order rectangular rule
modeled by constant functions, b shows the first order trapezoid rule modeled by lin-
ear approximations, and c shows the second order Simpson’s rule modeled by quadratic
approximations [9]. The integral approximation is more accurate with higher-order meth-
ods.
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L

h/2 h h h h/2

Figure 2.4 Cell-centered discretization of a patch divided into four discretized points.
The distance L is the length of the patch, and h is the distance between discretized points.

order of the quadrature increases. The order reflect what type of function are used to approximate

the integral. Fig. 2.3a shows the constant function approximation, b show the linear approxima-

tion, and c show the quadratic approximation. The quadratic is of the highest order depicted and

the approximated blue region is closest to the actual function.

For this project, transforming the integral into a smooth summation poses a problem because

of the precision required for a realistic result. The ideal rule is to employ a high-order quadrature

rule. Higher-order quadrature rules are more precise because they converge to the exact answer

quicker. The problem with higher-order rules is the need for a greater number of points.

To best handle and organize the quadrature points, a patch system is implemented, similar to

the process of interpolation. As illustrated in Fig. 2.4, a patch contains four points that are equally

spaced in the region. The length of a patch is given by L, and h is the distance between two

discretized points within a patch. Thus, using a cell-centered approach the four quadrature points

within a patch are located at l
8 ,3l

8 ,5l
8 ,and 7l

8 , and the area under the curve for a given patch is given

by

A = c1 f (
l
8
)+ c2 f (

3l
8
)+ c3 f (

5l
8
)+ c4 f (

7l
8
) (2.6)

Johnson’s thesis [7] provides the derivation for the weighting constants. His resultant derivation

yields

c1 =
13l
48

=
13h
12

(2.7)
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c2 =
11l
48

=
11h
12

(2.8)

c3 =
11l
48

=
11h
12

(2.9)

c4 =
13l
48

=
13h
12

(2.10)

With these constants a general summation formula can be used for most circumstances. A problem

arises, however, when we attempt to use this method on a patch with a singularity.

2.2.2 Handling Singularities

When the patch contains a singularity, the above constants are insufficient in determining the value

of the summation. Johnson provides a thorough derivation, but in this project the results are noted.

The calculate the area under a singular function. The function is divided into the singular part,

ξ (x), and the remaining nonsingular part, f (x).

∫ b

a
ξ (x) f (x)dx = c1 f (

l
8
)+ c2 f (

3l
8
)+ c3 f (

5l
8
)+ c4 f (

7l
8
) (2.11)

where ξ (x) contains the integrable singularity and the numerical constants are given by

c1 =
1
6
[13.125W0−17.75W1 +7.5W2−W3] (2.12)

c2 =
1
2
[−4.375W0 +11.75W1−6.5W2 +W3] (2.13)

c3 =
1
2
[2.625W0−7.75W1 +5.5W2−W3] (2.14)

c4 =
1
6
[−1.875W0 +5.75W1−4.5W2 +W3] (2.15)

The Wn are given by

Wn =
1
hn

∫ b

a
xn

ξ (x)dx, (2.16)

with n = 0,1,2,3. The derived quadrature rules can now be applied to flat surfaces.
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2.3 Path Integrals

The mirrors modeled in this project are not flat but contain contours, thus the above integrals

must be enhanced to integrate over the surface which isn’t one-dimensional. A typical method for

overcoming this problem is to integrate over the surface using a path integral depicted by∫
C

f (x)dx. (2.17)

The summations modeled in the prior section are insufficient in handling two dimensions. How-

ever, a two-dimensional integral can be performed over one variable by incorporating the length

of the path. The length of the path is found through the Pythagorean Theorem with differentials

written in the following manner ∫
C

f (x,y)
√

dx2 +dy2, (2.18)

where dx and dy show the change in x and y across the surface at which values of the function

f (x,y) are evaluated. This integral can be solved through the fundamentals of calculus by multi-

plying a dx
dx in the back and moving the denominator under the radical. Thus the path integral can

be written as a one-dimensional integral:∫ b

a
f (x,y)

√
1+(

dy
dx

)2dx, (2.19)

where the bounds a and b are starting and ending values of x, respectively. This numerical integra-

tion framework now allows us to discretize the surface over contours.

2.4 Generating the Matrix

With the discretization framework intact, the two-dimensional matrix eq can be filled. The matrix

equation is modeled by the following summation. (see sec 1.6 for derivation)

E(xi) = ∑
j

G(xi,x j)w(x j)J(x j) (2.20)
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where x j represents the source points, and xi represents the observation points. Combining Eq.

2.20 with Eq. 1.30 the exact matrix generation function is show. Generating the matrix has two

parts, the singular and nonsingular patches. Singularities arise when calculating the electric field at

the location of the discretized surface current. These situations are found on the diagonal patches

of the matrix. Thus, the diagonal patches are calculated using the singular constants (Eqs. 2.12,

2.13, 2.14, 2.15, and 2.16) mentioned in earlier section of this chapter and the off diagonal patches

are calculated with the nonsingular constants (Eqs. 2.7, 2.8, 2.9, and 2.10). Each element of the

impedance matrix, Z, (see Eq. 1.30) is generated with the following formula

Zi, j = cn

[
1
4

Y0(kr)−
i
4

J0(kr)

]√
1+
(dy

dx

)2
, (2.21)

where

kr = k
√

(xi− x j)2 +(yi− y j)2, (2.22)

and cn is the numerical constant from the quadrature rule. After filling the next step is to model the

surface.

2.5 Surface Generation

Generating the surface contains two main parts, creating discretized values and splicing them to-

gether. Each point on the surface is given an x value representing its location across the surface

and a corresponding y value that show the height of the surface at the location. Different surfaces

can be generated simply by altering the heights (y) across the surface. These discrete points are

then spliced together using splines of cubic polynomial order. These splines take a few points at a

time and fits the data. This is done across the surface and each function is patched together similar

to a piece-wise function. Now the surface model is continuous and better represents a real surface.

The first two surfaces generated were a flat surface and a linear surface of constant slope.

Figure 2.5 shows representations of the surface under these conditions. The flat surface (Fig. 2.5a)
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Figure 2.5 Surface generation of flat and linear surfaces. The graph on the left (a) shows
the flat surface and the graph on the right (b) shows the linear surface for a given incline
angle.

Figure 2.6 Two different surfaces generated with different rms roughness. The surface
have the same spatial frequency and have a surface length of 200 wavelengths. The sur-
faces are practically identical except for the heights are different which can be seen by the
scales of the y-axis

simulates the effects of a smooth surface without roughness, or the ideal surface. The constant

slope (Fig. 2.5b) is also void of roughness and can be used as the ideal case to compare against

different generated surfaces of varying roughness. As seen in the figure there is no roughness or

noise across the surface modeling an ideal mirror.
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Figure 2.7 Two different surfaces generated with different spatial frequencies. The sur-
faces have the same rms roughness and have a surface length of 200 wavelengths.
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Figure 2.8 Two different surfaces generated with different spatial frequencies. The sur-
faces have the same rms roughness and have a surface length of 200 wavelengths.
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Figure 2.9 A mirror used in the lab used for extreme ultraviolet reflectance along with
the power spectrum. The power spectrum shows discrete frequencies across the surface.
The overall spectrum is similar in shape to a Gaussian.
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A more realistic surface is random in nature. However, picking a random seed and generating

random values for the y vector falls short of modeling realistic surfaces. A power spectral density

of an actual mirror designed by the research group is give in Figure 2.9. This diagram shows the

frequency spectrum of the surface of the mirror. The figure show that discrete frequencies are good

models for matching the structure of real mirrors. Thus to model these mirror more realistically,

two parameters will be considered, mean height and spatial frequency. To do this we begin with a

frequency vector generated from random numbers. This vector is run through a high pass filter to

eliminate the low, unrealistic, frequencies. Then, by taking a Fourier transform a random surface

is generated with random frequencies rather than random values. Two surfaces are given in Fig.

2.6 of varying rms roughness. The graph on the left show 0.001λ rms roughness and the one on

the right shows .01λ rms roughness. The shape of the surface is practically unchanged except for

the y scale on the graph shows thicker average roughness. These values were chosen becuase the

resemble typical roughness found on actual mirrors. Altering the spatial frequency is represented

in Fig. 2.8. The graph on the left shows high spatial frequency while the graph on the right shows

small spatial frequency. Notice the rms high in both cases in the same however the number of

bumps per length across the surface is much smaller in the graph on the right than on the one on

the left. These two parameters will be tested for their effects on roughness.

2.6 Solving the Matrix Equation

Solving the matrix equation efficiently poses a challenge due to memory requirements and timing

due mostly from the size of the problem. To map the surface with realistic precision, we hypothe-

size that a surface needs around 106 discretized points. This yields 106 ·106 = 1012 elements in the

impedence matrix. Using complex, double precision numbers of 16 bytes each, to store the matrix

requires 16 Terabytes of memory. For the proof of principle of this project, the surfaces used in
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this project were the most a four processor server could solve efficiently. Due to the immense size

of the matrix the solving process of the problem need be efficient in both timing and memory. To

do this we explored two types of methods, direct and iterative solvers.

Direct matrix solver provide easy-to-code solutions but are costly in both memory and com-

putational time. Direct methods such as inversion and lower upper decomposition (LUD) [10] are

very costly but given enough time solve the problem directly. Most optimized routines provide

a "Big Oh" [11] notation of n3, which is computationally expensive for the task it is to perform.

Another big downside to LUD is difficulty of parallelizing the code. The process requires all the

information be accessed and operated on at the same computational location restricting it to one

processor. Due to these disadvantages, another approach was sought.

Iterative solvers are more complicated to code but can cut time on memory and computation

time. Iterative solver depend on a well conditioned initial guess that is multiplied and compared

against the actual matrix product. The desired vector is then altered and multiplied again. This is

repeated until the vector is within the desired precision allowing for major speedup due to a couple

of key elements in this project. First, the flat surface can be calculated quickly and can be used as a

very good initial guess towards finding the effects of roughness. Second, surface roughness can be

viewed as a pertubation from the smooth case. The solver would take the smooth surface and used

perturbative corrections until within the range of precision. This provides a speedup by exiting the

program earlier which is more optimal than a direct method searching for exact answers. The "Big

Oh" notation for these methods are n2log(n). The iterative solver utilized in this program was the

general minimal residual method [12] (GMRES).
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2.7 Far-Field Calculation

The effects of roughness are obtained through a far-field calculation of the scattered wave. When

the scattered beam is "far-enough" away from the beam the radial dependence is much smaller

than the angular dependence of the electric field. Johnson [7] provides a detailed derivation for a

far-field approximation. Applying his equation to this project’s parameters yields

E(φ) =
∫

C
J(x′,y′)e−ik(cos(φ)x′+sin(φ)y′)ds′, (2.23)

where φ is the observation angle measured from grazing as see in Fig. 2.2. This equation is used

to calculate the result for multiple oberservation angles, φ , to analyze the scattering of the wave.

The far-field calculation is then used to determine overall reflectance and reveal relative extrema

in the reflectance at angles away from the incident grazing angle. This calculation thus reveals

the relative effect surface roughness has on the intensity of scattered wave at different observed

angles. The far-field calculation of the scattered electric field for a flat surface is given in Fig. 2.10.

This flat surface calculation is used as the baseline result to identify the effects of altering the rms

roughness and spatial frequency of the mirror.
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Figure 2.10 The effects reflection of 40 Degree grazing angle on a flat surface 200 wave-
lengths long. The main peak is matches the incident as the law of reflection suggest. The
secondary peak suggests scattering even for a flat surface.



Chapter 3

Results

Reflectance calculations are given for randomly generated surfaces. Two key surface parameters

are adjusted to show their overall effect on roughness (see Sec. 2.5), namely, rms roughness

and spatial frequency. The optimization of the solving process is given through the speed-up from

transitioning from LUD to GMRES. Relative computational times for filling and solving the matrix

equation are given for different sized problems.

3.1 Effects of surface roughness

The process to create the surface takes in two key parameters, rms roughness and spatial frequency.

When studying the effects of one the other is held constant to isolate the influence of one indepen-

dently. The rms roughness is the root mean square of the height and acts like the surface is being

stretched. The spatial frequency is the number of completed period per wavelength across the

mirror.

28
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Figure 3.1 Reflection from different rms roughness of an incident beam of grazing angle
40 Degrees. Each surface has same surface length and spatial frequency as labeled in the
figure. The left graph shows a Logarithmic plot of the intensity and the right show the
unaltered intensity.

3.1.1 rms Roughness

The program model described in chapter 2 is used to generate multiple surfaces of varying rms

roughness. The differing rms roughness can be see in Fig. 2.6. Looking at this figure, you can see

in both cases the surface shape looks almost entirely the same. The y-axis scaling shows the the

surface on the right has greater rms height. For these graphs, the length of the mirror was chosen to

be 200 wavelengths because it approaches the maximum number points that can be used efficiently

on a lab computer. Longer mirrors that better model realistic surfaces can be analyzed using higher

memory machines as is outlined in the optimization section of the chapter.

As seen in Fig. 3.1, the effects of rms roughness have a direct impact on the reflectance. The

roughness used in these graphs range from 0.01λ to 0.05λ . Figure3.1a displays the log of the

reflectance of the different outgoing angles and fig. 3.1b resembles the raw observed intensity. In

both graphs the spatial frequency was held constant at 1
4λ−1 and the incident angle was chosen to

be 40 Degrees. These graphs show the at 0.03λ the intensity of the main peak loses about 10%,
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Figure 3.2 Reflection from different extreme rms roughness of an incident beam of graz-
ing angle 40 Degrees. Each surface has same surface length and spatial frequency as
labeled in the figure. The left graph shows a Logarithmic plot of the intensity and the
right show the unaltered intensity.

and as the rms roughness reaches 0.05λ , the peak reflectance is reduced by 20%. Looking at the

logarithmic plot on the left, as the rms roughness increased the secondary peaks gained intensity.

Thus, as the main peak reflectance decreases, light is not lost but simply scattered at different

angles.

Increasing the rms roughness to more extreme cases led to intriguing results. As seen in

Fig. 3.2, surfaces are generated with roughness of 0.1λ and 0.3λ . The graph show the decrease in

peak reflectance in each case. With 0.1λ rms roughness, the peak reflectance was reduced by 40%

and at .3λ , the peak reflectance was reduced by more than 98%. Thus, with these extreme levels
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Figure 3.3 Reflection from different spatial frequencies of an incident beam of grazing
angle 40 Degrees. Each surface has same surface length and rms roughness as labeled in
the figure. The left graph shows a Logarithmic plot of the intensity and the right show the
unaltered intensity.

of roughness, the reflection drops off quickly.

3.1.2 Spatial Frequency

The spatial frequency of the surface is a parameter to used determine it effects on reflectance. The

effects of altering the spatial frequency can be seen in Fig. 2.8. These graphs are taken with surface

length of 200 wavelengths and an incident angle of 40 Degrees.

The reflection from altering spatial frequency has a similar effect as rms roughness. Figure ??
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shows that as the spatial frequency decreases the peak reflectance likewise decreased. In the graph

on the left the secondary peak increased which shows that light was not lost but simply scattered

to further angles. Thus, greater spatial frequency minimizes the effects of roughness for a given

rms roughness.

3.2 Optimization

A major struggle in these reflectance calculations is the rate at which the program produces results.

The strain is mostly due with finding the surface current through filling and solving the matrix

equation (see 1.30). In this section, the solving times for different problems are given and the

iterative method is shown to be more efficient than the direct solver. The newly optimized solve

time is compared against the fill time. The fill time is broken down into singular and nonsingular

portions and their relative time contributions are provided.

3.3 Direct vs iterative

The matrix equation (Eq. 1.30 was solved using direct and iterative techniques to show the advan-

tages. Direct solutions are much easier to code, however, due to the nature of the problem, iterative

solutions provided a much improved efficiency. The optimal direct solver used was lower upper

decomposition (LUD) and the optimal iterative solve was the general minimal residual method

(GMRES). The timing of each is taken for different sized surfaces. Figure 3.4 shows a log plot

of the runtimes with a linear regression given for each case. The slope of LUD was 2.966 and

for GMRES 2.36. These slopes show how LUD is O(n3) and GMRES is O(n2 logn). Thus, the

iterative solver is more efficient for this project.
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Figure 3.4 Results from running calculation of different surface lengths under different
solving techniques. The equation represents the linear fit for the log plot. Lower upper
decomposition (LUD) is a direct method and general minimal residual method (GMRES)
is a iterative technique.

3.4 Fill vs solve

Times to fill the matrix are broken down into two parts the singular patches and the nonsingular

patches. The program is run for different sized surface lengths on same seeded random surface

with the iterative solver. The results are given in Table 3.1. The table suggests the nonsingular fill

time is much larger than the singular time and the solve time. This piece of data is further discussed

in the next chapter on how it can be improved.
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Table 3.1 Comparison of the computational times for different processes in the reflection
calculation. The majority of the computational time is found in the solving portion. The
fill time is monopolized by the nonsingular patches of the matrix.

Surface length (wavelengths) Non-singular Fill (s) Singular Fill (s) Total Fill (s) Solve Time (s)

200 0.928 0.076 1.008 1.34

500 6.084 .228 6.312 10.364

1000 25.332 0.412 25.756 59.816

1250 45.376 .496 45.892 93.068

1500 61.956 0.66 62.62 150.612
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Conclusions and future work

I propose a threshold that defines the range of roughness whose effects on reflection are so sig-

nificant they can’t be ignored. Reflection calculations from randomly generated mirrors compare

well with the conclusions made by Debye-Waller. The effects of reflection from spatial frequency

constrast with prior work, specifically, the work of Stearn. A method known as the multipole ap-

proximation is explained and theorized to combat the slow timing of the matrix generation stage

of the calculation.

4.1 Roughness threshold

The effects of rms roughness are provided by Fig. 3.1. Using the flat surface as a baseline com-

parison, the magnitude of the peak shows the loss of reflection due to increasing rms roughness.

The curve showing 0.01λ depicts a subtle alteration to the peak reflectance. After increasing the

roughness to 0.05λ , a greater dip in peak reflectance is seen. The loss of peak reflectance at this

wavelength hangs around 20%, which is quite substantial in most experiments. Thus, the threshold

where roughness effects are seen falls between 0.01λ to 0.05λ .

In extreme rms roughness situations as depicted in Fig. 3.2, there is a threshold in which all

35
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materials lose the ability to reflect. The figure shows that at 0.1λ there is a loss of reflection close

to 50%. Taking the roughness further to 0.3λ scatters nearly all of the incoming beam. Thus,

the threshold when a material loses the majority of its reflectance, diminishing their mirror-like

properties, occurs on the range of rms roughness between 0.1λ to 0.3λ

4.2 Comparison to Debye-Waller

Collecting reflectance data over multiple incident angles and rms roughness of randomly generated

surfaces provides a comparison to the Debye-Waller (DW) correction factor. The DW correction

factor (Eq. 1.2) proposes the key characteristic of surface roughness is the qh value. This value is

comprised of the perpendicular moment transfer, q, and the rms roughness height, h. To make an

effective comparison, the qh value is used as the plotting parameter. The results are found in Fig.

4.1.

Figure 4.1 provides insight into the accuracy of the DW correction factor. The organized clus-

tering of the data suggest the qh value is an accurate parameter to characterize mirrors. The data

was generated using random incident angles and rms roughness but all seem to follow according

to the qh value. My data supports the accuracy of the qh value as a defining characteristic of the ef-

fects of roughness. The DW model matches the data at small values of qh, however, as qh increase

the model deviates from the data. The error bars suggest greater variance as qh increases.

Fitting the experimental data suggests additional correction terms beyond the quadratic. The

DW correction factor solely uses the quadratic term to model reflectance. The weighted fit of our

data suggests the following correction:

R = R0eαqh+βq2h2+γq3h3
(4.1)

where
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Figure 4.1 Comparison of data to Debye-Waller correction factor. The qh value is the
momentum transfer multiplied by the rms roughness height. Random height and incident
angles were chosen and the resulting reflectance is recorded. The data is fitted using a
linear model and the equation is given in Eq. 4.1.

α = .0146± .0046, (4.2)

β =−1.06± .0464, (4.3)

γ = .223± .0944 (4.4)

The values of α , β , and γ represent the linear, quadratic, and cubic terms respectively. The DW

model proposes the quadratic term is the sole contributor to roughness. The value of the quadratic

term of the DW correction factor is negative one. My model supports DW in the precision of

the quadratic term especially since the error is small relative to the parameter value. The linear

and cubic terms in my fit help account for the data at higher qh values. In the absence of these

two terms the precision falls off quickly as the qh value increases suggesting that more terms are

needed to model the effects of reflectance. The relative small errors of all three terms validate their

contribution.
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Figure 4.2 Reflectance calculstions from three different spatial frequencies. The error
bar(a) and the fits(b) are depicted for the same set of data. The Debye-Waller correction
is also plotted for comparison. The spacing between fit lines suggest spatial frequency is
an important parameter to consider in determining reflectance from roughness

4.3 Spatial frequency implications

Collecting similar data for different spatial frequencies reveals its contribution as a parameter to

characterize surfaces. Figure 3.3 shows a change in peak reflectance as the spatial frequency

is adjusted. Figure 4.2 shows the results of calculating reflectance from three different spatial

frequencies, 2
5λ−1, 1λ−1, and 1

50λ−1. The incident angle and rms roughness height was also

adjusted to provide a range of qh values.
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Figure 4.2a shows the error bars of the data points and 4.2b depicts the fits for each frequency.

The 1
50λ−1 is the low frequency extreme case. The error bars of this frequency are relatively

large. This suggests an increase in variance as the frequency decreases. The 1λ−1 frequency, on

the contrary, is the high frequency extreme. The error bars in this case are relatively small thus

suggesting minimal variance. The fit lines in Fig. 4.2b depict the effects of adjusting the spatial

frequency, and the disparity in each curve emphasizes the accuracy of spatial frequency as a surface

characteristic.

The spatial frequency results show there are more parameters besides rms roughness that affect

reflection. Thus, correction factors like DW and others who similarily limit the included param-

eters in their correction fall short of accurately modeling the effects of roughness. Other current

studies make similar assertions in developing proper correction factors. Stearn [13] used different

geometries of similar rms roughness and found equivalent results. They propose the index of re-

fraction, incident momentum, rms roughness, and spatial geometry of the surface all contribute in

correcting for roughness. More specifically, they created a linear surface, an exponential surface,

and a sinusoidal surface. The lower frequency distributions had the steepest trend lines which

matches the results in Fig. 4.2. Thus, rms roughness is not the sole parameter to formulate an

accurate correction factor.

4.4 Multipole expansion

The slow timing of the matrix generation stage in the calculation can be combatted through the

use of the multipole moment approximation [14]. Table 3.1 shows that generating the nonsingular

elements of the impedance matrix monopolized the computation time. The nonsingular portion of

the calculation is comprised of all the off diagonal elements of the matrix. Equation 2.21 shows

the relative size of each element. This information reveals the matrix will be diagonally dominant,
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Figure 4.3 Each of the first four pole in the multipole are given. The spatial depedence
is provided in the middle row, and a physical depiction of each is provided in the bottom
row.

and each off-diagonal element will get progressively smaller the further they are from the diagonal.

This is the ideal setup for the multipole expansion.

The multipole expansion takes the Green’s function and expands it into a power series. Thus,

each term in the series is a correction to the overall electric field. Figure 4.3 depicts each pole and

corresponding radial dependence. Each term of this power series increases its radial dependence

by a factor of 1
r . The first few terms are named: monopole, dipole, quadrupole, and octupole. The

elements of the impedance matrix can be modeled into poles to simplify the nonsingular fill time.
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The slow computational time of the nonsingular fill is due to the immense amount of terms

off the diagonal. The numbers of operations can be reduced by grouping terms of similar values

together into poles. The elements close to the diagonal would be calculated directly and as you got

further away from the diagonal less and less terms in the series would be needed to approximate

the field to the desired precision, thus minimizing the number of calculations and reducing the fill

time for the nonsingular elements.
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