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ABSTRACT 

 

Analyzing the Dynamics of Coupled 

Quantum Harmonic Oscillators 

 

Christina Cook Horne 

Department of Physics and Astronomy, BYU 

Bachelor of Science 

 

 The dynamics of a coupled ground and coherent state are explored. The approach is 

focused on solving for the time evolution operator and then applying it to a tensor product of a 

ground and coherent state representing a physical system and environment respectively. The 

coherent state is then partially traced to extract the dynamics of the ground state.  The time 

evolution operator is found by solving a series of eleven coupled differential equations. The 

results demonstrate that a change in coupling results in a change in the evolution of the ground 

state.  
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Chapter 1  

 

Introduction 

 
 

1.1  Overview 
 

Quantum mechanics helps us understand nature at the most fundamental level. Everything is 

composed of atoms and quantum particles and, as we delve deeper into the quantum world, we 

uncover more of the mysteries of the universe. My project approaches a small part of the 

workings of quantum mechanics by attempting to understand more about the dynamics of a 

quantum system. There are several approaches to understand the dynamics of a system within 

classical mechanics. The Newtonian, Lagrangian, and Hamiltonian approaches to classical 

mechanics predict where a ball will fall and how a spaceship will fly in space. However, 

quantum mechanics does not currently have a simple method for solving for the time-

dependence of any system. Many time-independent approaches are available for simple systems, 

but our research group has aimed at using an approach to solve for the time-dependence of more 

intricate systems, such as systems depending on time-dependent parameters, for example, time-

dependent harmonic oscillators. The simple harmonic oscillator is commonly known in a 

classical sense as a mass m on a spring with a specific spring constant k or a swinging pendulum 
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as represented in Fig. (1.1). The importance of the simple harmonic oscillator (SHO) follows 

from the fact that any system with a local minimum can be approximated by it. The time-

dependence of the SHO with constant m and k has been worked out in introductory quantum 

physics courses [1] and will not be addressed here. 

 

(a) (b)     

Figure 1.1   Examples of Simple Harmonic Oscillators. (a) A mass on a spring and (b) a swinging 

pendulum.  
 

Within the research group students have succeeded in approaching topics such as simple 

harmonic oscillators with a time-dependent mass, a time-dependent parametric oscillator, or a 

time-dependent driving force [2][3].  My specific project builds upon this previous work by 

coupling two simple harmonic oscillators and attempting to solve for their time-dependence. In 

my research, I create a time-dependent model of a quantum system interacting with its 

environment and by so doing, gain new insight into the effect of an environment on a quantum 

system. This effect of the environment on a quantum system is termed decoherence. 

Decoherence occurs as multiple quantum systems interact. This phenomenon can thus greatly 

hinder the ability to control a quantum system and, as needed, in the creation of a quantum 

computer.  
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1.2 Background 

As mentioned, other students within the research group have approached topics related to the 

SHO. The results of this work have shown that quantum control is possible. Squeezing of a 

coherent state has been shown to be possible through varying both the mass and the oscillation of 

the system [4]. Research conducted by another group has also shown that analysis of the coupled 

quantum oscillator can lead to squeezing [5]. This previous research, conducted on analyzing the 

coupled quantum oscillator, similarly approached coupling a ground and coherent state but 

solved for the evolution by using the normal mode coordinates. This technique demonstrates that 

when the oscillators are in resonance squeezing is observed. They found that the position 

uncertainty decreases while the momentum uncertainty increases in the equal-mass and equal-

spring constant case [5].  

I use coupled harmonic oscillators to model the coupling of the environment to a physical 

system. As the coupling increases, the connection between the state and the environment around 

it strengthens and, as the coupling disappears, we expect to see a decrease in the influence of the 

environment. Interestingly, it may be possible to observe the disappearance of the environment, 

without a complete disappearance of the effects of the coupling. This concept of removing 

coupling while yet still observing a connection can help us learn more about how the 

environment affects a system. We hope to be able to establish control over the state through the 

strength, length, or time-dependence of the coupling. This control can give us power to create 

new states, but also teach us more about how an environment can influence a quantum state.  

A major difficulty when working with quantum states is maintaining coherence. It is 

difficult both mathematically and technically to observe a state for very long. Mathematically, 

due to the uncertainty principle and, technically due to complications creating instruments that 
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work at that level. Decoherence is the term used to describe the breakdown of information that 

occurs as you get further from the original quantum state. A typical example is Schrödinger’s 

cat. The experiment is set up where you have a cat in a box with a Geiger counter and a box of 

poison. The question comes when you ask what part of the experiment is no longer “quantum.” 

Can you describe a cat as being in a superposition state? Where does the ability to describe a 

state in a quantum sense disappear? This is a question I hope to explore through my model. By 

expanding my model to include the ability to adjust the mechanics of the system and 

environment we can adjust the “mass” of one of the two oscillators and continuously increase it 

until we reach a point where the dynamics no longer make sense. This point becomes our 

breaking point for “coherence” and the beginning of decoherence.   

The wide applicability of the harmonic oscillator makes it an easy choice for this model. 

Almost every system can be approximated by the harmonic oscillator at a minimum. The 

potential energy well of a SHO is a simple curve and can fit into any local minimum. Also, the 

dynamics of the SHO are well understood and covered in the undergraduate curriculum [1]. 

These characteristics make it an approachable problem. My rough model uses the idea of two 

masses connected to springs coupled together as described in Fig. (2.1) in the next chapter. This 

model allows us to utilize the known and researched coupled oscillator and extrapolate by 

varying the parameters [1].  

 

1.3    Lie algebra approach 

The Lie algebra approach to solving complex differential equations has been used since 1963 [6]. 

This approach utilizes the idea that if a set of operators and their commutators generates a Lie 

algebra then the time evolution operator can be factorized into exponentials of the Lie algebra 
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basis operators multiplied by time-dependent functions [3]. Using this approach, we can take a 

very complicated partial differential operator equation and turn it into a coupled set of nonlinear 

ordinary differential equations. We can turn a time-dependent operator problem into a time-

independent series of operator equations and a time-dependent algebraic formulation.  
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Chapter 2 

 

Methods 

 
2.1    System Overview 

 
The system used throughout this thesis is a set of two coupled harmonic oscillators. I am using 

the most straightforward formulation where the two masses are constant and equal, the two outer 

spring constants are equal whereas the coupling spring constant is time-dependent and not equal 

to the outer spring constants. Throughout, I denote m for the mass, k(t) for the outer spring 

constants and k3(t) for the coupling spring constant.  A graphical representation of the system can 

be seen in Fig. (2.1). 

Figure 2.1 This is a representation of the model of two coupled harmonic oscillators. The simple approach has  

m1=m2=m and k1=k2=k(t) 

 

m m 

k(t) k
3
(t) k(t) 
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To describe the configuration mathematically we write down the Hamiltonian H(t) for the 

system. Eq. (2.1) describes the Hamiltonian in terms of the position operators, x1 and x2, and 

momentum operators, p1 and p2, 

                  �̂�(𝑡) =
(𝑝1)2

2𝑚1
+

(𝑝2)2

2𝑚2
+

1

2
𝑘1(�̂�1)2 +

1

2
𝑘2(�̂�2)2 +

1

2
𝑘3(�̂�2 − �̂�1)2,                            (2.1) 

while Eq. (2.2) describes the Hamiltonian in terms of the raising and lowering operators, a and a†,  

�̂�(𝑡) = ℏ𝜔 (�̂�†�̂� +
1

2
) + ℏ𝜔 (�̂�†�̂� +

1

2
) +

𝑘3ℏ

4𝑚𝜔
(�̂�2 + �̂�†2

+ �̂�2 + �̂�†2
+ 2(�̂�†�̂� − �̂��̂� − �̂��̂�† −

 �̂�†�̂� − �̂�†�̂�† + �̂�†�̂� + 1))                                                                            (2.2) 

if 𝑚1 = 𝑚2 and  𝑘1 = 𝑘2where 𝜔 = √
𝑘

𝑚
 .  In Eq. (2.2) a and a† are related to x1 through  

𝑥1 = √
ℏ

2𝑚𝜔
(�̂�† + �̂�)  similarly 𝑥2 = √

ℏ

2𝑚𝜔
(�̂�† + �̂�) [1]. We will impose later that a and a† 

describe the system and b and b† describe the environment degrees of freedom. We are then able 

to insert this Hamiltonian into Schrödinger’s equation for the time evolution operator U(t), 

                     𝑖ћ
𝜕𝑈(𝑡)

𝜕𝑡
= �̂�(𝑡)�̂�(𝑡).                                 (2.3) 

Here 𝑖 is the imaginary number, ћ is Plank’s constant, and U(t) is the time evolution operator 

which evolves states such that �̂�(𝑡1, 𝑡2)|𝜓(𝑡1)⟩ = |𝜓(𝑡2)⟩. Following [6], the time evolution 

operator U(t) can further be written as a product of exponentials, 

�̂�(𝑡) = ∏ 𝑒𝑠𝑛(𝑡)�̂�𝑛11
𝑛=1 .                    (2.4)  

The eleven operators An that comprise the time evolution operator can be found in the 

Hamiltonian and are: �̂��̂�, �̂��̂�, �̂��̂�, �̂�†�̂�, �̂�†�̂�, �̂��̂�†, �̂�†�̂�†, �̂�†�̂�, �̂�†�̂�†, �̂�†�̂�†, 1̂, while the eleven 

functions sn(t) are functions associated with each operator and will be plotted in Chapter 3. To 

ensure that we can use the Lie algebra approach explained in Chapter 1 we evaluated the 

commutation between all operators. A table comprising all the commutations between each 
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operator is found in the Appendix. The table demonstrates that the Lie algebra is closed since 

there are no new operators contained in the table. Since the system forms a Lie algebra basis we 

know we can move forward in solving for the dynamics. 

 

2.2   Mathematical Approach 

The ultimate goal is to solve Schrödinger’s equation, Eq. (2.3) above. By solving this equation 

we will be able to observe the time evolution of our system. We can then apply the evolution 

operator to specific states.  

We begin by re-writing Eq. (2.3) as 

   𝑖ћ
𝜕𝑈(𝑡)

𝜕𝑡
�̂�(𝑡)−1 = �̂�(𝑡).               (2.5) 

From here we can substitute the time evolution operator from Eq. (2.4) and the Hamiltonian from 

Eq. (2.2). Using a Mathematica program written by Ty Beus, a member of the research group, 

we can then solve Eq. (2.5). The program solves for the unknown sn(t) equations within the time 

evolution operator. Once these equations are known, we can input them back into Eq. (2.4), the 

time evolution operator, and subsequently apply this operator to different states.  

We chose to apply the time evolution operator to a tensor product of two coherent states, 

specifically the ground state (system) and a general coherent state (environment) to compare our 

method to the method described above found in Ref. [5]. The application to this tensor product of 

states can be written as  

       ⟨𝑥1|⨂⟨𝑥2|(1̂⨂1̂) �̂� |𝛼⟩⨂|𝛽⟩,                   (2.6) 

where |𝛼⟩ is the system, |𝛽⟩ is the coherent state (environment), and  ⟨𝑥1| and ⟨𝑥2| are the 

coordinate eigenstates so as to obtain a position representation of the evolved state. We insert the 

completeness relation for coherent states found in Ref. [7] as, 
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1̂⨂1̂ = 1/𝜋2 ∫ 𝑑𝛾 𝑑𝛿 |𝛾⟩ ⨂|𝛿⟩⟨𝛾|⨂⟨𝛿|,         (2.7) 

to allow us to solve for the position representation of the evolved state. Here γ and δ are both 

coherent states. The application of the time evolution operator on a tensor product of a ground 

and coherent state written in coordinate representation is 

                 1/𝜋2 ∬ 𝑑𝛾 𝑑𝛿 ⟨𝑥1|𝛾⟩ ⋅ ⟨𝑥2|𝛿⟩ ⟨𝛾|⨂⟨𝛿|�̂�|𝛼⟩ ⨂|𝛽⟩,                 (2.8)           

again found in Ref. [7]. Once we complete this double integral we have a position representation 

of the time evolved ground and coherent state.  

 

2.3 Partial Tracing 

In order to visualize the time evolution of the states we apply partial tracing. Partial tracing is a 

mathematical technique used with matrices. This technique allows you to integrate over the 

portion of the function you wish to ignore or trace over. In our case we will integrate over the 

position of the second oscillator x2 (the environment in a coherent state) to be able to observe the 

dynamics of the first oscillator x1 (the ground state). This will allow us to observe the system in 

the ground state that has interacted with the environment, while choosing to ignore the 

environment itself. Upon completing this integration, we can plot the time-evolved ground state 

and observe its dynamics. These plots are included in Chapter 3. 
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Chapter 3 

Results 

3.1 Time Evolution Operator 

The time evolution operator is composed of a product of exponentials raised to a time-dependent 

function multiplied by an operator, see Eq. (2.4). For the coupled harmonic oscillator, the time 

evolution operator is composed of 11 operators and 11 exponentials. Each time-dependent 

function is a solution to a coupled differential equation. Mathematica was unable to solve for 

these functions analytically so after inputting specific values for the system such as the mass, and 

spring constants k(t) and k3(t), and ћ, we found solutions to the differential equations 

numerically. Plots of these functions are included below. The real part of each function is 0, so 

the imaginary part is plotted. The input values for the plotted functions are: 𝜔 = 3.29𝑥1015, 

𝑚 = 9.1𝑥10−31, ћ =  1.0545718𝑥10−34, and multiple values were used for the coupling 

constant k3(t).  

When using a coupling constant 𝑘3(𝑡) = 0, or no coupling as seen in Fig. (3.1), we 

observe what would be expected for a non-coupled simple harmonic oscillator. The Hamiltonian 

for this situation simplifies to �̂�(𝑡) = ℏ𝜔 (�̂�†�̂� +
1

2
) + ℏ𝜔 (�̂�†�̂� +

1

2
) therefore, the functions 

associated with any of the coupling operators are zero while the functions associated with 1,  

�̂�†�̂�, and �̂�†�̂� have a constant slope as seen in Figs. (3.2) – (3.3), representing the energy. This 
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matches our expectations for two uncoupled SHO’s with a lack of dissipation and unitary 

evolution. The evolution will be explained in the next section. 

  

Figure 3.1 Graph of k3(t)=0 associated with no coupling 

  

Figure 3.2 Graph of the function associated with the operator a†a. The graphs associated with operators 1 

and b†b are identical 

 

 

Figure 3.3 Graph associated with the operator (a†)2. The graphs associated with operators ab, a2, b2, (b†)2, 

a†b†, ab†, and a†b are identical 
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When using a permanent coupling, represented as a constant 𝑘3(𝑡) = 5 , Fig. (3.4), we 

observe two different functions associated with the 11 operators. For the 4 operators associated 

with a combination of the two oscillators, ab, a†b, ab†, and a†b† there is a positively sloped 

function as seen in Fig. (3.5). While, for the 7 operators associated with the individual 

oscillators, (b†)2, (a†)2, a†a, b†b, b2, a2, and 1, there is a negatively sloped function as seen in Fig. 

(3.6). Again, these functions and the resulting evolution will be described in the next chapter.  

 

Figure 3.4 The graph of the coupling function k3(t) with a permanent coupling. 

 

 

Figure 3.5 Graph of the function associated with the operator a†b†. The functions associated with the 

operators ab, a†b, and ab† are identical. 
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Figure 3.6 Graph of the function associated with the operator (b†)2. The functions associated with the 

operators (a†)2, a†a, b†b, b2, a2, and 1 are identical. 

 

Next, we chose a coupling that represents a disappearance of the coupling over time. We 

used a Gaussian distribution centered at 𝑡 = 0 described by the function, 𝑘3(𝑡) =
2.5

√2𝜋
𝑒−

(𝑡)2

20  and 

seen in Fig. (3.7). When using this disappearing coupling, we observe a peak in the functions 

associated with the coupling when there is an inflection point in the coupling function itself, as 

seen in Figs. (3.8) – (3.9). Similar to the previous two situations a negatively sloped function is 

associated with the non-coupled operators a†a, b†b and 1, as seen in Fig. (3.10). 

 
Figure 3.7 Coupling function k3(t) for a situation where the coupling begins strongest then gradually 

decreases to zero.  
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Figure 3.8 Graph of the function associated with the operator a†b†. Graphs associated with the operators 

ab†, a†b, and ab are identical.  

 

 
Figure 3.9 Graph of the function associated with the operator (b†)2. Functions associated with the operators 

(a†)2, b2, and a2 are identical. 
 

 
Figure 3.10 Graph of the function associated with the operator a†a. Graphs of the functions associated with 

the operators 1 and b†b are identical.  
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Finally, we chose a coupling that represents beginning with no coupling, introducing 

coupling, then removing it to see if we observe similar evolution compared to the previous 

results from uncoupled oscillators and a disappearing coupling. We represented this coupling 

with a Gaussian distribution centered at 𝑡 = 50 using the function  𝑘3(𝑡) =
2.5

√2𝜋
𝑒−

(𝑡−50)2

20  , and 

seen in Fig. (3.11). When comparing with previous results we do see many similarities as with 

the peaks associated with a decrease in the coupling, Figs. (3.12) and (3.13), and an identical 

function associated with the non-coupled operators, a†a, b†b and 1 as seen in Fig. (3.14) and 

observed in every coupling previous Figs. (3.10), (3.6), and (3.2). 

 
Figure 3.11 Graph of the coupling function k3(t) where the coupling begins zero, increases to a maximum, 

then decreases back to zero according to a Gaussian distribution. 

 

 

 
Figure 3.12 This figure represents the imaginary part of the function associated with the operator a2 

within the time evolution operator when the coupling is a Gaussian distribution centered at 50. The 

functions associated with (a†)2, b2, and (b†)2 are identical. 
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Figure 3.13 This figure represents the imaginary part of the function associated with the operator ab 

within the time evolution operator when the coupling is a Gaussian distribution centered at 50. The 

functions associated with a†b†, a†b, and ab† are identical.  

 

Figure 3.14 This figure represents the imaginary part of the function associated with the operator 

a†a within the time evolution operator when the coupling is a Gaussian distribution centered at 50. The 

functions associated with b†b and 1 are identical.  

 

Again, the complete time evolution operator is composed of a product of exponentials raised to 

the power of the plotted function multiplied by its associated operator, as seen in Eq. (2.4). 

 

3.2 Dynamics of single oscillator 

To observe the dynamics of the coupled oscillator, we partially trace over the coherent state (the 

environment in which we are not interested) to observe the changes to the ground state (the 

system). To see what happens under different coupling situations I chose various values of k3(t) 

as explained above and plotted in Figs. (3.1), (3.4), (3.7), and (3.11). The following are images 

of the wave function of a ground state coupled with an arbitrary coherent state with the coherent 
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state traced over. The results show any changes that occur in the ground state as a result of being 

coupled with a coherent state. I could not obtain valid results when leaving the equations in 

analytic form so I input values for the time and took multiple times to better understand the 

results.  

All the different iterations of coupling, at all times, results in the same plot for the real 

part of the expression as seen in Fig. (3.15).  

 

Figure 3.15 This figure is a plot of the real part of the wave function of the ground state after being 

coupled with an arbitrary coherent state, then having the coherent state traced over. The figure did not 

change when the coupling was changed. Every time produced the exact same plot so every time is 

represented in the same line. 

 

Different coupling does result in slight changes to the imaginary part of the wave function. Figs. 

(3.16) – (3.19) represent the resulting wave function due to the four different values of k3(t) 

described in the previous section.  Fig. (3.16) represents the wave function when no coupling is 

present. The different curves represent different times 𝑡 = 0, 𝑡 = 1, 𝑡 = 5, 𝑡 = 50, 𝑡 = 100. 

 

1. 10 9 5. 10 10 5. 10 10 1. 10 9

0.5

1.0

1.5

2.0

2.5 t 0

t 1

t 5

t 50

t 100
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Figure 3.16 The evolution of the ground state with no coupling to the coherent state. The imaginary 

part of the wave function is plotted against x1, the real part can be seen in Fig. (3.15).  

 
Fig. (3.17) represents the imaginary part of the wave function, at times 𝑡 = 0, 𝑡 = 1, 𝑡 = 5, 𝑡 =

50, 𝑡 = 100, of a permanent coupling between the ground and arbitrary coherent state.  

 

 
Figure 3.17 The imaginary part of the wave function of a ground state permanently coupled to an arbitrary 

coherent state plotted against x1 at five different times. The real part of the wave function can be seen in Fig. (3.15).  

 

 

Fig. (3.18) represents the wave function at times 𝑡 = 0, 𝑡 = 1, 𝑡 = 5, 𝑡 = 50, 𝑡 = 100 of a ground 

state and coherent state with a Gaussian distribution as the coupling. The distribution is centered 

at zero (meaning the system begins with maximum coupling) then the coupling disappears over 

time. 

1. 10 9 5. 10 10 5. 10 10 1. 10 9

1.2 10 16
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Figure 3.18 The imaginary part of the wave function of a ground state coupled to an 

arbitrary coherent state plotted versus position x1. The coupling gradually decreases after t=0 

to disappear by t=15. The real part of the wave function can be seen in Fig. (3.15). 

 

Finally, Fig. (3.19) demonstrates the evolution of the ground state as it begins uncoupled, slowly 

becomes coupled to a maximum coupling at 𝑡 = 50, then slowly becomes uncoupled according 

to a Gaussian distribution. Again, the different lines represent different times 𝑡 = 0, 𝑡 = 1, 𝑡 =

5, 𝑡 = 50, 𝑡 = 100. 

 

  

Figure 3.19 The imaginary part of the wave function of a ground state as it begins 

uncoupled, becomes coupled to an arbitrary coherent state with maximum coupling at t=50, 

then the coupling disappears to be gone by t=100. The wave function is plotted against 

position x1 on the horizontal axis. The real part of the function can be seen in Fig. (3.15).  

 

This figures will be analyzed in the following chapter.  
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Chapter 4 

Conclusion and Outlook 

4.1 Conclusion 

From the results described in Chapter 3 it is shown that we have been able to solve for the 

dynamics of the coupled quantum harmonic oscillator with a time-dependent coupling term, 

when the two masses are constant and equal and the outer spring constants are time-independent, 

constant and equal. To compare our results against previous results recorded by Ref. [5] we 

applied our time evolution operator to a tensor product of a ground state and coherent state. By 

observing the evolution of the ground state, which is the most “classical” quantum state, we can 

observe if it remains coherent after being coupled with the coherent state. By analyzing both the 

functions within the time evolution operator and the final dynamics seen in Figs. (3.16) – (3.19) 

we can come to the following conclusions.  

First, by analyzing the time evolution operator we see that different coupling does yield 

different time evolution operators. This result was expected and matches our hypothesis and 

previous research. It is interesting to note that identical functions within the time evolution 

operator can be grouped depending on the coupling. With no coupling, we have two separate 

groups of operators and associated functions: coupling operators, those found in the Hamiltonian 
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that multiply the coupling function k3(t), and non-coupling operators, those found in the 

Hamiltonian that do not multiply the coupling function k3(t) and can be found in the equation for 

a simple harmonic oscillator without any coupling. This split in the 11 operators into two 

separate groups demonstrates the symmetry of the equation.  

When looking at the time evolution operator with coupling we see a similar situation of 

identical functions associated with different groups of operators. With constant coupling, the 11 

operators are split into two separate groups. The first group includes operators associated with 

one oscillator, a2, b2, a†a, b†b, (a†)2, (b†)2, and 1. While the second group includes operators 

associated with a combination of the two oscillators, ab, a†b, ab† and a†b†.  In both situations of 

Gaussian coupling identical functions are seen associated with the non-coupling operators (a†a, 

b†b, and 1), the coupling operators associated with one oscillator (a2, b2 (a†)2, (b†)2), and the 

coupling operators associated with a combination of two oscillators (ab, a†b, ab† and a†b†). This 

result is expected. The associated functions are found by solving a series of differential equations 

and it is expected that the functions associated with each separate oscillator, “a” and “b,” should 

be identical. Thus, identical functions should be seen associated with the non-coupling operators 

1, a†a and b†b. Further, each equation associated with the coupling operators, should result in 

similar results without consideration to which oscillator is being operated on. That is to say, the 

functions associated with an “a” operator should be identical to those associated with the same 

“b” operator as seen in the fact that each function associated with the operator a2 is identical to 

each function associated with the operator b2. Again, this result is expected and shows that the 

coupling acts as would be expected in a classical sense.  

We also see what we can term a memory effect. In situations where the coupling does not 

exist we consistently see a negative sloped function associated with operators a†a, b†b, and 1. We 
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also observe in functions associated with all the other operators that when coupling does not 

exist the function is constant, when coupling is zero the function is zero, but when coupling 

returns to zero after being transient we see that the function remains constant but at a new value. 

This ability for the function to “remember” that there was once coupling even though it now does 

not exist is what we mean by having a memory effect.  

Second, we see through analyzing the final time-dependent wave functions that changes 

in coupling results in minimal changes in the imaginary part. When there is no coupling, the 

wave function grows from a minimum at 𝑡 = 0 to a maximum at 𝑡 = 100. With a constant 

coupling the wave function begins at a value equal to that of no coupling, drops to near zero then 

grows to a maximum at 𝑡 = 100. The maximum with constant coupling is greater than the 

maximum in the no coupling situation. Fig. (3.18) associated with the Gaussian coupling 

centered at zero, shows a wave function that begins at the same value as when no coupling is 

present, drops near zero, then grows to a value less than both no coupling and constant coupling. 

The wave function associated with a Gaussian coupling centered at 𝑡 = 50 produces a very 

similar evolution compared to the function associated with Gaussian coupling centered at 𝑡 = 0. 

The differences are so small compared to the real part of the wave function plotted in Fig. (3.15), 

a ratio of 1:10-16, that they seem insignificant. We conclude that changes in the coupling do not 

produce squeezing and our results do not confirm the results found in Ref. [5]. 

 

4.2 Outlook 

Looking forward, we hope to be able to compare more closely our results with those found in 

Ref. [5] and find where the differences lie. We assume there are no coding errors, but further 

research can re-check my work, and compare more closely with Ref. [5]. To avoid numerical 
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error, we also can work toward dimensionless quantities by redefining ħ=1. Further research can 

build from these results and investigate the dynamics of coupled oscillators with unequal mass or 

unequal spring constants. The approach used here of utilizing the Mathematica integrate function 

does not seem strong enough to tackle such complex integration. Further research can also 

attempt application of the time evolution operator on different states to see if further information 

can be gleaned.  

 

 

 

 



24 
 

 

Appendix A 

1                0 0 0 0 0 0 0 0 0 0 0
𝑎𝑎†           0 0 0 −𝑎𝑏 −𝑎𝑏† 𝑏𝑎† 𝑎†𝑏† −2𝑎2 0 2(𝑎†)2 0

𝑏𝑏†           0 0 0 −𝑎𝑏 𝑎𝑏† −𝑏𝑎† 𝑎†𝑏† 0 −2𝑏2 0 2(𝑏†)2

𝑎𝑏             0 𝑎𝑏 𝑎𝑏 0 𝑎2 𝑏2 1 + 𝑎𝑎† + 𝑏𝑏† 0 0 2𝑏𝑎† 2𝑎𝑏†

𝑎𝑏†          0 𝑎𝑏† −𝑎𝑏† −𝑎2 0 −𝑎𝑎† + 𝑏𝑏† (𝑏†)2 0 −2𝑎𝑏 2𝑎†𝑏† 0

𝑏𝑎†          0 −𝑏𝑎† 𝑏𝑎† −𝑏2 𝑎𝑎† − 𝑏𝑏† 0 (𝑎†)2 −2𝑎𝑏 0 0 2𝑎†𝑏†

𝑎†𝑏†        0 −𝑎†𝑏† −𝑎†𝑏† −1 − 𝑎𝑎† − 𝑏𝑏† −(𝑏†)2 −(𝑎†)2 0 −2𝑎𝑏† −2𝑏𝑎† 0 0

𝑎2            0 2𝑎2 0 0 0 2𝑎𝑏 2𝑎𝑏† 0 0 2(1 + 2𝑎𝑎†) 0

𝑏2            0 0 2𝑏2 0 2𝑎𝑏 0 2𝑏𝑎† 0 0 0 2(1 + 2𝑏𝑏†)

(𝑎†)2      0 −2(𝑎†)2 0 −2𝑏𝑎† −2𝑎†𝑏† 0 0 −2(1 + 2𝑎𝑎†) 0 0 0

(𝑏†)2      0 0 −2(𝑏†)2 −2𝑎𝑏† 0 −2𝑎†𝑏† 0 0 −2(1 + 2𝑏𝑏†) 0 0

 

Figure A.1 This table shows the commutation relations between all 11 operators and demonstrates that there are no new operators formed when performing the 

commutation, thus making the operators in this Hamiltonian form a Lie algebra basis. The operators are listed along the top and left of each row and column.  

 

 

 

1 𝑎𝑎† 𝑏𝑏† 𝑎𝑏 𝑎𝑏† 𝑏𝑎† 𝑎†𝑏† 𝑎2 𝑏2 (𝑎†)2 (𝑏†)2 



25 
 

Appendix B 
Included below are my Mathematica documents. 
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