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ABSTRACT

Relativistic Magnetohydrodynamics on Graphics Processing Units

Forrest Wolfgang Glines
Department of Physics and Astronomy, BYU

Bachelor of Science

Simulating binary star mergers in full relativistic magnetohydrodynamics with general relativ-
ity is computationally expensive, with production level simulations taking up to two months using
traditional algorithms. These speeds are insufficient to explore the parameter space of binary star
mergers. Following recent trends in chip manufacture, CPU speeds are unlikely to increase and
speed up simulation times. In order to shorten simulation times new algorithms that take advantage
of newer, faster computing architectures such as GPUs are required. This thesis presents GMHD,
a relativistic magnetohydrodynamics code that runs on NVIDIA GPUs faster than other codes on
CPUs. It implements a high-resolution shock-capturing algorithm using the piecewise-parabolic
method and a total variation bounded method based on the Osher-Chakrabarthy method. The accu-
racy of the fluid methods are tested simulating the shock tube problem and the Kelvin-Helmholtz
instability. Both methods accurately mode solution. This thesis also presents tests demonstrating
the weak and strong scalability of the code tests to hundreds of GPUs. GMHD shows the viabil-
ity and usefulness of using GPUs and forms a basis for future work on large scale simulations of
binary mergers.
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Chapter 1

Introduction

1.1 Neutron Star Mergers

Neutron stars are dense dead stars. They are the remnants of supernovae explosions after main-

sequence stars with masses between 8-25 M� have exhausted their nuclear fuel [1]. During the

supernova explosion, the core of the star is compressed to a radius of 10–15 km while still retaining

up to 2.9 M�, its density limited only by the neutron degeneracy pressure [2]. The star can be

rapidly spinning and may also be extremely magnetized, making them energetic in every way.

The merger of two neutron stars is likely to be very hot and energetic. The energies and

masses involved will usually lead to the formation of a black hole [3]. The merger and subsequent

formation of a black hole that cuts off further radiation would appear as a quick, high intensity

burst of light observable by space telescopes. These properties of the burst make neutron star

merger prime candidates for the progenitors of short-hard gamma ray bursts (SGRBs).

In recent years space telescopes such as Swift and Fermi have observed SGRBs constantly

occurring throughout the universe. Gamma-ray bursts are divided into two different types: short

bursts, which last less than two seconds; and longs bursts, which are observed for longer than two

1



2 Chapter 1 Introduction

seconds. While it is accepted that longer and lower energy gamma ray bursts are probably caused

by supernovae, the progenitors of these short-hard gamma ray bursts (SGRBs) are unconfirmed.

The leading candidates are binary mergers of compact objects, either a neutron star binary merger

or a black hole-neutron star merger. However, the high energy of these mergers and the quick

formation of a black hole to end the flash make neutron star mergers probable progenitors of

SGRBs.

The binary merger model for SGRBs can be explored through simulations. The evolution of

the mergers lack analytical solutions, but numerical fluid simulations can model these systems. If

SGRB-like radiation profiles can be calculated in computer simulations, then it would justify these

mergers as SGRB progenitors. However, these simulations would require complex fluid models to

capture all essential characteristics of the merger.

1.2 Relativistic Magnetohydrodynamics Simulations

Neutron stars can be modeled as a fluid of relativistic particles, making relativistic magnetohydro-

dynamics (RMHD) the ideal model. Because neutron stars are extremely dense and magnetized,

they need to be modeled using RMHD. Due to the masses involved and possible formation of

a black hole, simulations of neutron star mergers require general relativity for the gravitational

model. Neutron stars are typically magnetized with magnetic field strengths on that vary be-

tween 104–108 G , the magnetic fields must be integrated in time with the fluid variables such

as density and pressure. This requires the use of a magnetohydrodynamics fluid simulation. With

these pieces together, the most basic simulation of a neutron star merger would be a relativistic

magnetohydrodynamics simulation. Even without the addition of extra physical effects, such as

neutrino radiation, radiation, and nuclear chemistry effects, the code has a heavy workload with

just RMHD. Production level runs of binary mergers may take up to two months, which makes it
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difficult explore many scenarios. For example, production simulations of binary mergers using the

RMHD code HAD can take two months [4]. Faster codes are needed to more thoroughly study the

parameter space of neutron star mergers.

The fluid equations can be solved in either a Lagrangian or Eulerian formulation. We use the

Eulerian form, where the fluid equations are solved on a fixed coordinate system. A grid is first

chosen to span the domain, and fluid variables such as pressure, density, and fluid velocity are

initialized and tracked at each point. The relevant fluid equations are then evolved using typical

numerical methods such as finite difference, finite volume, or pseudospectral methods. The formu-

lation of the equations and the numerical methods are chosen based on the needs of the problem.

1.3 Graphical Processing Units

Due to increasing physical limitations on chip manufacture, traditional computing speeds will

likely plateau in coming years. Central processing unit (CPU) clock rates, the number of opera-

tions a CPU can do in a second, have stagnated in the past decade because of power constraints.

Past trends such as Moore’s law, the doubling of transistor density every two years for the past

50 years, will likely end as the feature sizes of chips approach lengths of only a few atoms wide.

As die sizes become smaller, these problems will become insurmountable, making future gains for

traditional CPUs either too expensive or impossible. Instead, chip manufacturers increasing pro-

cessor capability by creating dedicated many cored supplements to the CPU called coprocessors.

These coprocessors save cost and power by packaging hundreds of parallel cores together.

Graphical Processing Units (GPUs) provide more processing power at a lower cost, higher

density, and lower power consumption. GPUs are special coprocessors designed for graphics pro-

cessing with hundreds more cores than traditional CPUs. Although they were originally made for
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graphics, the large number of floating point cores makes them well suited for scientific computing.

Recently the GPU manufacturers developed GPU like coprocessors specifically designed for high

performance computing, with larger core counts and memory storage.

New supercomputers will use GPUs or other co-processors extensively. Titan at Oak Ridge

National Lab, one of the largest supercomputers in the US for academic use, uses GPUs for a

large portion of it’s computer power. US initiatives for future supercomputers, such as the CORAL

Collaboration, plan even larger machines using NVIDIA GPUs or Intel Xeon Phis. Moreover,

these initiatives also include substantial efforts to migrate existing codes onto GPUs.

GPU programming can be more difficult compared to traditional programming due to limita-

tions of the GPUs. As will be discussed, GPUs have very specific constraints on the parallelization

of the algorithm to be effective. They also have optimal memory access patterns which require

careful programming to utilize efficiently. Poor implementations can lead to nearly serial execu-

tion, leading to idle cores on the GPU and wasted processing power. While GPUs have more raw

processing power, their limitations can make some algorithms nearly impossible to implement on

GPUs. Fortunately, finite-difference-like methods like those used in this paper work well with the

constraints of GPUs.

1.4 Overview

This paper will present the algorithm, performance, and results of the relativistic magnetohydrody-

namics code GMHD implemented on GPUs [5]. Chapter 2 will discuss the RMHD fluid equations,

the methods used to solve them, and their implementation on GPUs. In particular, Sections 2.2 and

2.3 present a Godunov type method and an Osher-Chakravarthy method for solving the RMHD

fluid equations. Then in Section 2.4 the implementation of these methods will detailed. Chapter

3 presents results for fluid instability tests and scalability tests for the code. Specifically, Section
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3.2 will present simulation results for the Riemann problem for both methods. Finally, Sections

3.5-3.7 present results of scaling tests and compare the performance of GMHD versus a traditional

CPU code.



6 Chapter 1 Introduction



Chapter 2

Numerical Methods

This chapter presents the RMHD fluid equations, the fluid methods we use to solve them, and

their implementation on GPUs. First the RMHD conservation equations and the variables involved

will be described in Section 2.1. The two methods used to evolve the fluid equations will then

be presented, the Godunov method in Section 2.2 and the Osher-Chakravarthy method in Section

2.3. Lastly, these methods and their implementation on GPUs are discussed in Section 2.4 and the

communication strategy parallel execution is presented in Section 2.5.

2.1 Fluid Equations

The RMHD fluid equations express the conservation of mass, energy, and momentum for a magne-

tized relativistic fluid with perfect conductivity. Derivations of the RMHD equations are abundant

in the literature, so we will only present the equations here. A more detailed presentation can be

found in [6].

The fluid equations can be written as a conservation law as

∂tu+∂k f k(u) = 0, (2.1)

7
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where u is the state vector consisting of the conserved variables and f k is the flux in the k direction.

Here ∂t and ∂k denote time and spatial partial derivatives respectively.

In our formulation of the RMHD equations, the conserved variables are the relativistic density

D, the momentum in each coordinate direction Si, the magnetic field in each direction Bk, and the

energy τ . These are defined in terms of another set of variables called the primitive variables: the

rest mass density ρ0, the coordinate velocities vi, and the pressure P. The magnetic field is included

in both sets of conserved and primitive variables. The conserved variables are then defined, using

the Einstein index convention, as

D =Wρ0

Si = (heW 2 +B2)vi− (B jv j)Bi

τ = heW 2 +B2−P− 1
2

[
(Biv j)

2 +
B2

W 2

]
−Wρ0.

(2.2)

Here B2 ≡ BiB j and the Lorentz factor W and fluid enthalpy he are defined as

W =
1

1− vivi

he = ρ0(1+ ε)+P,
(2.3)

and ε is the specific internal energy.

The fluid equations in flay space and Cartesian coordinates can be written in conservation form
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as

∂tD+∂i(Dvi) = 0

∂tτ +∂i(Si−Dvi) = 0

∂tSx +∂i((⊥ T )i
x) = 0

∂tSy +∂i((⊥ T )i
y) = 0

∂tSz +∂i((⊥ T )i
z) = 0

∂tBy +∂i(Bxvi−Bivx) = 0

∂tBx +∂i(Byvi−Bivy) = 0

∂tBz +∂i(Bzvi−Bivz) = 0.

(2.4)

The projected stress tensor (⊥ T )i
b is

(⊥ T )i
b = viSb +P ·hi

b−
1

W 2

[
BiBb−

1
2

hi
b ·B2

]
− (Bv)

[
Bivb−

1
2

hi
b · (Bv)

]
,

where hi
b denotes the spacetime metric.

The fluid equations are first discretized using the method of lines. The spatial derivatives of the

flux functions are calculated using high-resolution shock-capturing methods. The resulting set of

ODEs are integrated in time using a 3rd order Runge-Kutta (RK3)integrator [7]:

u∗ = un +∆t(∂tu)

u∗∗ =
3
4

un +
1
4
[u∗∆t(∂tu∗)]

un+1 =
1
3

un +
2
3
[u∗∗∆t(∂tu∗∗)] .

(2.5)

Where u∗ and u∗∗ are temporary variables which can be be overlaid physically in memory, leading

to efficient memory usage for this RK3 integrator.

As mentioned above, high-resolution shock-capturing (HRSC) methods are use to compute

the spatial derivative of f(u). Simple finite difference approximations of the derivative will often
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produce spurious oscillations around shocks, which are discontinuous solutions of the fluid equa-

tions [8]. Simple methods may also diffuse and dampen important features in the fluid evolution

[9]. The two methods used here, a finite volume and a finite difference scheme, suppress these

oscillations while still accurately modeling the shock.

Both methods place conditions on the total variation TV (u), which is defined on a one dimen-

sional grid as

TV (u) = ∑
j
|u j−u j−1|,

where the sum over j is over all of space. The total variation is a simple measure of the variance

between adjacent points. Regulating TV (u), as many fluid methods do, can help regulate spurious

oscillations that form. Fig. 2.1 demonstrates different conditions on regulating TV (u). For exam-

ple, Godunov based methods are total variation diminishing (TVD) methods. They guarantee that

TV (u) will never increase but can only decrease, or that

d
dt

TV (u)≤ 0.

This automatically kills any spurious oscillations but at the cost of accuracy. Osher-Chakravarthy

methods are total variation bounded (TVB) methods. They loosen the condition to guarantee that

TV (u) has an upper bound b which may depend on time.

TV (u(t))≤ b(t).

The looser condition allows higher order methods with greater computational efficiency compared

to TVD methods. TVD methods suppress most spurious oscillations, but some oscillations can

still blow up. These methods and their advantageous will be presented below.
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−1.0 −0.5 0.0 0.5 1.0
0
2
4
6
8

10
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16

TVD

−1.0 −0.5 0.0 0.5 1.0

TVB

−1.0 −0.5 0.0 0.5 1.0

Centered Difference

Figure 2.1 Here the different conditions on the total variation for each fluid method are
demonstrated. All figures show the density of the evolution of the Riemann problem,
specifically case I as is explained in section 3.2. The left figure shows the solution from
a Godunov-like total variation diminishing method (TVD), the middle figure shows a
Osher-Chakravarthy total variation bounded method (TVB), and the right figure show
a simple central difference method without total variation preserving properties. The
TVB method, having the strictest constraint on the total variation, has the least spurious
oscillations. The TVD method has oscillations but still keeps them small. The central
difference scheme, since it does not consider the total variation at all, lets the oscillations
grow uncontrollably.

2.2 Godunov-type Method

Neutron star mergers are very dynamic with highly nonlinear fluid flows and strong shocks. Shocks

can be problematic for fluid solvers as they cause numerical instabilities in the form of spurious

oscillations. HRSC methods based on Godunov’s method are well suited for modelling shock

because they are TVD methods. They suppress the oscillations that would otherwise form at the

discontinuities around shocks.

To achieve higher order accuracy than Godunov’s method, we use reconstruction to compute

fluid variables at cell interfaces. In a finite volume method, the fluid values are reconstructed at the

grid cell interfaces, one reconstruction for the left hand side and another for the right hand side.

Then the Riemann problem is solved at each interface for a flux of each fluid variable through the

cell interface [10]. The resulting flux is integrated, here using a Runge-Kutta 3 (RK3) integrator,
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to obtain new values for the fluid variables at the center of the cell.

We use the Parabolic Piecewise Method (PPM) [11] for the reconstruction step. Reconstruc-

tion is similar to careful interpolation to avoid spurious oscillations due to shocks. The method

first performs a quartic polynomial interpolation at each cell boundary using the fourth-order La-

grangian interpolation formula. We set the left and right side values u`i+1/2 and ur
i+1 of the interface

to be

u`i+1/2 = ui+1/2 and ur
i+1 = ui+1/2.

We then apply monotonicity conditions [11] so that the interpolating parabola is monotone. The

entire PPM process is illustrated in Fig. 2.2.

The Riemann problem’s solution is approximated using these fluid values to get a flux across

cells using the Harten, Lax, van Leer and Einfeldt (HLLE) solver [12], which simplifies the struc-

ture of the solution and is based on conservation properties of the equations. The Riemann problem

is a well studied problem in fluid dynamics consisting of two fluid regions of differing pressures,

densities, and velocities separated by discontinuity. The HLLE solver gives an approximate solu-

tion to the flux of fluid variables through the interface. If u` and ur are the fluid state variables on

the left and right hand sides respectively, the numerical flux vector is given by

f̂ =
λ+

r f (u`)−λ
−
` f (ur)+λ+

r λ
−
`

(
ur−u`

)
λ
+
r −λ

−
`

, (2.6)

where λ
−
` and λ+

r are the fastest left and right moving characteristic speeds, respectively. As

explained above this flux is used to compute ∂tu used in the RK3 integrator in 2.5 to evolve u.

The PPM method guarantees that TV (u) is always diminishing. It also attempts to limit the

dissipation inherent to TVD methods. However, in some cases it can add too much dissipation

the solution, which can blur out interesting features from the real solution. Additionally, with a

seven point stencil it is also only 2nd order accurate for smooth solutions. This is much more

computationally expensive than the naive centered difference scheme. The Osher-Chakravarthy

method has a much higher accuracy as it is a 5th order accurate scheme for the same stencil.
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xi-1 xi xi+1

ui

ui-1

ui+1

ul
i-1/2

ur
i-1/2

ur
i+1/2

ul
i+1/2

Figure 2.2 This illustrates the reconstruction of the fluid variable u. The average value
of u of the ith cell is ui, which is indicated by the dot-dashed line (red). The variable
u is reconstructed using piecewise parabolic functions, as indicated by the solid lines
(green). The reconstructed values u`i+1/2 and ur

i+1/2 at the interface between xi and xi+1

are obtained from the piecewise functions at the interface on both sides. In Godunov-like
methods, the Riemann problem is solved at each interface using u`i+1/2 and ur

i+1/2.
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2.3 Osher-Chakravarthy Finite Difference Method

Osher-Chakravarthy methods are a class of high order and accuracy TVB methods [13]. They ap-

proximate the spatial derivative of the flux using a simple centered derivative with a dissipation cor-

rection term to suppress numerical instabilities. It is shown in [14] that the centered 2m−1 order

Osher-Chakravarthy scheme can be written as finite difference scheme. In the Osher-Chakravarthy

finite difference (OCFD), The time derivate ∂tu j used for updating can be written as

∂tu j =−C2m f j +(−1)m−1
β (δx)2m−2Dm

+Dm−1
− (λ j−1D−u j),

where C2m is the 2m th order centered difference operator, Dm
+ is the m th order forward difference

operator, and Dm−1
− the backward difference operator, with 2m+ 1, m, and m− 1 point stencils

respectively. Here λ j is the spectral radius of the eigenvalues of the flux function. The positive

coefficient β controls the strength of the dissipation term. In [14] it is also shown that for a

fifth-order accurate scheme with m = 2, the coefficient β has an optimal value of 2/75.

Both the HLLE and OCFD methods use seven point stencils, meaning to evolve one point the

algorithm needs 3 points on either side in each of the x, y, and z directions. The larger the stencil

the more computation will be required. Although both use seven point stencils, the HLLE method

is only 2nd order accurate while the OCFD method is 5th order accurate, giving much better results

away from the shock for the same stencil. The simple finite difference operators are also much

simpler to compute than the PPM algorithm (see Fig. 2.3). This in part allows the OCFD method

to run much faster than the HLLE method.

Since both the Godunov and OCFD methods heavily use finite difference like operations, they

are well suited for GPU programming. The OCFD method only needs simple stenciled derivative

methods. The Godunov method builds on these methods with just a few modifications in the PPM

algorithm to handle the monotonicity conditions. Both are able to vectorize well on the massively

parallel GPU architectures, as will be discussed in the next section.



2.3 Osher-Chakravarthy Finite Difference Method 15

u0,0
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u0,-2

u0,-3

u0,1

u0,2

u0,3

u1,0 u2,0 u3,0u-1,0u-2,0u-3,0

Figure 2.3 The seven point stencil used for both the HLLE and OCFD methods. The
point in the center, u0,0, is updated using the nearest three points in each direction. For
example, in the OCFD method, to compute the central difference derivative in the x-
direction at u0,0) the blue values in the row of u−2,0 through u2,0 are summed using the
appropriate weight. To compute the derivative in the y- direction the red values in the
column through u0,−2 through u0,2 are used.
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2.4 Implementation on GPUs

Programming for GPUs can be very different then programming for CPUs because of inherent

differences in their architecture. Performance gains by GPUs over CPUs are achieved by putting

hundreds of multiprocessors on the GPU while sacrificing their ability to operate completely in-

dependently like a CPU. Kernels, or functions to run on the GPU, must be written to perform the

same function on hundreds of data points simultaneously or any performance advantage will be

lost. GPUs also have very specific memory access constraints for optimal performance, both for

memory access on the GPU and between the GPU and CPU. Memory stores on the GPU are very

limited, which is the biggest constraint for the code. It is key to properly use the GPU memory

hierarchy to fully exploit the GPU.

Fig. 2.4 details the memory for NVIDIA’s Kepler architecture. We chose to work with NVIDIA’s

CUDA C to interface with the GPUs. Programming for other GPUs and many-cored processors

uses the same principles discussed here. However, we will use CUDA terminology for some of the

memory structures and details specific to NVIDIA’s GPUs.

The main persistent memory of the GPU is limited to several GB of Dynamic Random Access

Memory (DRAM), referred to as global memory. Fluid state variables and intermediary variables

such as du/dt and the fluxes are stored in global memory. Since these variables are not needed

at each step of the fluid method, several variables are overlaid in memory. Without resorting to

expensive paging algorithms to store memory on the host, the grid computed by each GPU is

limited by the size of global memory. For the Godunov-type method, this allows for about a 1623

grid. DRAM is also very slow, both for memory operations between the host and device and also

on the device itself. It is also optimized for memory accesses of adjacent points in blocks of 32

threads. For this reason the GPU provides various levels of memory caches.

Above DRAM in the GPU memory sits the 64KB L1 Cache for each multiprocessor, normally

used for shared memory, which is the memory shared by blocks of 32 threads. Recent CUDA com-
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L2 Cache

Global Memory

(Local Memory)

D
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Constant

L1 Cache

Shared
Memory

Registers

SMX 1
Cores

Constant

L1 Cache

Shared
Memory

Registers

SMX 13
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...
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Memory

Figure 2.4 Here the memory hierarchy of GPU memory is illustrated are well as the
general programming architecture. The GPU splits the DRAM space into global memory
for persistent data and the L2 cache. Each streaming multiprocessor (SMX, the Tesla K20
has 13) has a small data storage split between shared memory for sharing data between
threads on the SMX; the L1 cache; and constant memory for variables constant through
kernel execution, such as function arguments. The GPU transfers memory to the host
through global memory, which is a time-consuming operation.
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pilers also provide the option to use the DRAM for extra shared memory if needed. However, this

is undesirable as the DRAM is orders of magnitude slower than the L1 Cache. The shared mem-

ory’s small size often limits the number of threads that can run concurrently. The main purpose of

shared memory is to serve as a cache between global memory and the registers on the processor,

where computation actual occurs.

Each multiprocessor on a GPU has a small memory space called the registers. Processor op-

erations such as multiplication and addition work directly on data in this memory space. CUDA

automatically handles data transfers to and from the registers. However, if too many registers are

needed for a particular kernel, the registers spill into what is called local memory, which is stored

in DRAM. Too many of these spill stores can severely limit performance. This can be avoided by

splitting kernels and instructions into several simpler pieces. GMHD achieves this by performing

functions such as reconstruction, computing the numerical flux, and spatial derivatives in separate

kernels.

Memory transfer between host memory, or CPU memory, and DRAM is time consuming. In

order to reduce these memory transfers, all steps of the algorithm are performed on the GPU. Data

are only transferred to host memory to write to disk and to send to other processors. This is in

contrast to many other GPU codes which use the CPU to perform a limited number of numeri-

cally intensive calculations such as root finding. Each of these limitations are addressed in the

implementation of the fluid methods in order to fully exploit the GPU.

In finite difference or similar methods data points are used multiple times to compute deriva-

tives and interpolations. Rather than load these points from global memory every time, they are

first cached into shared memory. Threads within a block can then efficiently load points into the

registers for computation. In order to meet these restrictions and maximize performance, a system

of tiling is used, which is based on a tiling scheme for finite difference derivatives [15]. Within a

tile, data are first loaded from DRAM into the shared memory cache on the chip. The threads in
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128 x128 x

y

128 x 8

Figure 2.5 This figure illustrates the tiling scheme for a five point stencil in the x direction
on a 1283 grid. The purple region represents the derivatives that will be computed using
a single block of shared memory. Unlike the tiling for y and z directions, tiling in the x
direction will load each point into shared memory exactly once.

the tile are then synchronized. Data are then loaded from the shared memory cache into the local

registers for computation. Because data are arranged on the GPU along the x-direction, tiling is

different for y- and z-derivatives than for x-derivatives, as shown in Fig. 2.5 and Fig. 2.6.

For reconstruction and derivatives in the x-direction, blocks of threads span the width of the

domain and have a height subject to the 1024 thread limit and to the size of the shared cache. For

example, a domain 128 points wide blocks would be 1024/128 = 8 tall. The domain width is also

fixed to be a multiple of 32 to ensure arithmetic and memory operations are in blocks of 32. These

blocks are contiguous in the x-direction and so also in memory, allowing optimal access. Each

point in global memory is only accessed once.
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Figure 2.6 This figures illustrates the tiling scheme for a five point stencil in the y direc-
tion on a 1283 point grid. The purple region represents the points for which the derivative
is computed. The yellow region represents points which must be loaded into memory to
compute the derivative for points on the boundary. These data points will be loaded in
twice, once here and again to compute the blocks adjacent in the y- direction. Tiling in
the z- direction also uses the same scheme, only transposed into the x-z plane.

For reconstruction and derivatives in the y- and z-directions, blocks are 32 wide with a height

that is constrained by the 1024 thread limit and the size of the shared cache. Because the tile in

the y- (or z) direction doesn’t span the entire domain, extra points on the borders of the tile have

to be loaded in. These points get loaded from DRAM twice into two different tiles. An alternative

would be for threads to compute more than one point along y or z, surpassing the 1024 thread

limit, so a block can span the entire y- or z-direction. However, for grid domains larger than 64, the

data cache is often too small to fit the entire y- or z-dimension, limiting it to one point per thread.

Because the block is 32 wide in the x-direction, memory accesses are contiguous blocks of 32.
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The Godunov method and RMHD equation implementation is split across 96 kernels. Within

the kernels themselves, apart from the detailed memory treatment described above, GMHD largely

matches the CPU implementation thereby minimizing the code porting effort. The entire evolution

of the fluid, with the exception of the MPI ghostzone communication, is performed on the GPU.

This avoids the low bandwidth transfer of data to the CPU and host RAM. The only data transfer

between the device and host is for output and to communicate grid ghostzones between nodes. The

parallelization details and the performance benchmark test problem are discussed in the following

section.

2.5 Communication Using MPI

Problem sizes are often too large for a single processor or node. In this case we need to run on

several distributed nodes, each with a separate GPU. Dividing a problem over multiple compute

nodes can speed up run times. A single compute node is extremely limited in power and memory

capacity. Using multiple compute nodes in a supercomputing setting gives much more comput-

ing power and allows larger simulations to be run. However, it requires careful programming to

efficiently utilize these resources.

GMHD uses the Message Passing Interface (MPI) to communicate between compute nodes and

GPUs. MPI is a standard and well established message passing system for high performance com-

puting environments. It allows data to be transferred directly between RAM stores on different

hosts. Recent implementations such as OpenMPI and MPICH have even included optimized mes-

sage passing between GPUs on different hosts. Previously data needed to be transferred first from

the device to the host, transferred to the other host (which involves an extra buffering step on the

host), and then finally onto the other GPU. Now data can be directly buffered directly from the GPU

into host memory, then transferred onto the other GPU. Overall this gives a small improvement for
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GPU to GPU memory transfer times.

Currently GMHD only supports a static, uniform grid defined at run time. The large uniform

grid is split into many smaller grids, one for each compute node with a GPU. However, in order

to evolve points on the edge of the grid, the stencils require points outside of the grid. In order to

accommodate the stencil, extra points called ghostzones are added to the grid borders. The number

of ghostzones depends on the fluid method. For example, the OCFD scheme requires a seven point

stencil, so three ghostzones are needed, as is shown in Fig. 2.7. Because the ghostzones now lie

on the grid boundaries they are not evolved but are updated through other means. Ghostzones that

lie on the domain boundaries are updated by applying boundaries conditions, such as periodic,

vacuum, and outflow boundary conditions. Ghostzones on grid borders that touch other grids in

the MPI layout are set up to overlap real points on the bordering grid. These points are updated by

retrieving the evolved values from the other grid. Since the other grid will also require ghostzones,

each grid overlaps its neighbor by twice the number of ghostzones, which is shown in Fig. 2.8.

Because MPI can only transfer contiguous blocks of memory, exporting and importing func-

tions are used to prepare and unload blocks of boundary data. Since memory is already adjacent

in the x direction, this is simple for the y and z boundaries. For a 1623 grid with 3 ghostzones

on each boundary, the y and z boundaries are 156× 3× 156 and 156× 156× 3 blocks. However,

in the x direction, the border is 3× 156× 156, which is strided in memory. We also cannot force

memory accesses of 32 adjacent points since only three are needed. The inefficiency is inherit to

the border dimensions, but realistically has little effect on performance since the exporting and im-

porting functions take relatively little time. The extra overhead from communication does detract

from performance gains. However, GMHD demonstrates good scaling properties, as will be shown

in the next chapter.
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Figure 2.7 This figure illustrates the ghostzones for a grid using a method with a seven
point stencil. The cells within the dotted lines grid comprise the active grid and have com-
plete stencils and can be updated locally. The three cell borders for each grid represent
the grids’ ghostzones, which must be updated by either applying boundary conditions or
retrieving data from another grid.
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Figure 2.8 This figure illustrates the setup of two grids, outlined in red and blue, and
their overlapping ghostzones for a method with a seven point stencil. The shaded region
in the center represents data which will be transferred between the two grids using MPI.
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Results

This chapter presents tests of the fluid methods and the scalability of the code. After a brief

overview of fluid tests in Section 3.1 below, I will present results for both numerical methods

for solving the Riemann problem in Section 3.2 and the Kelvin-Helmholtz instability in Section

3.3. The parallel performance of the code is demonstrated for strong and weak scaling tests in

Sections 3.5 and 3.6 and with a comparison to an existing CPU code, HAD, in Section 3.7.

Finally, implications and future work using GMHDwill be discussed in Sections 3.8 and 3.9.

3.1 Fluid instability tests

Fluid codes need to be validated by checking their convergence and verifying that they reproduce

well-known solutions. Some well-known instabilities are good test solutions because they have

very dynamic fluid flows. The accuracy of solutions obtained using different methods can reveal

strengths and weaknesses of the methods. For example, the HLLE method is a high-resolution

shock-capturing algorithm that is very robust and can handle strong shocks, but it is also very

dissipative. The OCFD method, conversely, is well suited for modeling smooth flows with high

precision, such as required to study turbulence, but it performs less well at shock discontinuities.

25
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3.2 Shock tube Riemann Problem

The Riemann problem in fluid dynamics is one of the few nonlinear problems in fluid dynamics

with an analytical solution [16]. Thus it is a standard test to gauge how well a fluid method can

model shocks. The initial configuration for the Riemann problem consists of two arbitrary constant

states that are joined at a discontinuity. The solution general consists of difference constant states

that are joined by shock waves, rarefaction waves, or a contact discontinuity. We can gauge the

accuracy of a shock capturing method by how well it models the velocity and high pressure of the

shock.

We tested both methods for several shock tube conditions. Table 3.1 shows the initial condi-

tions for each test case. In all cases the fluid was evolved on a 300 one-dimensional point grid with

physical dimensions x ∈ [−1,1] out to time t = 0.8. A Courant-Friedrichs-Lewy (CFL) condition

of .25 was used to determine the time step. The adiabatic gas constant γ for all cases is 4/3.

Figures 3.1– 3.5 compare the performance of the HLLE and OCFD methods for the shock

tubes shown in Table 3.1. Overall the HLLE method is very robust, it suppresses spurious oscil-

lations about the discontinuities, but it is more dissipative. The OCFD method has faster conver-

gence, but there are spurious oscillations near the discontinuities. These oscillations do not grow

in time, but they can introduce numerical problems. In testing, the OCFD method is less robust

than the HLLE method.

3.3 Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability is an instability of the shearing interface between two regions of

fluid that move at different speeds. We perturb the boundary to initiate the instability. The velocity

shear at the interface causes turbulent flow in both regions. This test can be useful for determining

how well a fluid method can model turbulent flows. Because the OCFD method is a higher order
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Case v ρ P

I x < 0 0 10 13.33

x > 0 0 1 10−6

II x < 0 0 1 10−6

x > 0 0 10 13.33

III x < 0 0.2 .1 0.05

x > 0 −0.2 .1 0.05

IV x < 0 0.99999 0.001 3.333×10−9

x > 0 −0.99999 0.001 3.333×10−9

V x < 0 0 1 1000

x > 0 0 1 0.01

Table 3.1 Initial conditions for the velocity v, density ρ , and pressure P for the four
Riemann problem test cases. Case I tests two initial at rest regions with differing densities
and pressures. Case II is identical to case I but reversed. It serves as a sanity check on
the code to show that it is symmetric. Case III has two regions of equal pressure and
density but that have opposing velocities. Case IV is similar but tests two regions of
higher velocity moving towards each other. Case V is similar is case I except the regions
only differ in pressure by not density, which produces a difficult shock to capture. All
units are relative except for v, which is in terms of the speed of light c.



28 Chapter 3 Results

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

v

−1.0 −0.5 0.0 0.5 1.0
0
2
4
6
8

10
12
14
16

ρ

−1.0 −0.5 0.0 0.5 1.0
0
2
4
6
8

10
12
14

P

(a) HLLE

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

v

−1.0 −0.5 0.0 0.5 1.0
0
2
4
6
8

10
12
14
16

ρ

−1.0 −0.5 0.0 0.5 1.0
0
2
4
6
8

10
12
14

P

(b) OCFD

Figure 3.1 The solution of the Riemann problem for case I. The thin line represents the
solution given by each method while the thick line represents the exact solution. Velocity
is in terms of c while density and pressure are in relative units. Case I initially has two
stationary regions of differing pressures and densities. As time advances a shock should
propagate through the lower pressure fluid with a sharp peak in density behind it. Both
methods perform well. The HLLE method has no spurious oscillations at the shock. The
OCFD method overestimates the density behind the shock and oscillations are evident
behind both the shock and around the contact discontinuity.
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Figure 3.2 The solution of the Riemann problem for case II. The thin line represents the
solution given by each method while the thick line represents the exact solution. Velocity
is in terms of c while density and pressure are in relative units.Case II is identical to case
I, except spatially reversed. Since the methods are symmetric this should give reversed
solutions to case I. Both methods perform as expected.
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Figure 3.3 The solution of the Riemann problem for case III. The thin line represents the
solution given by each method while the thick line represents the exact solution. Case
III has the two regions initially with opposite velocities. A high pressure shock should
form in the middle. Both methods are able to model this, although with oscillations
around the shocks. The HLLE method manages to dampen many of these while the
OCFD experiences larger oscillations.
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Figure 3.4 Results for case IV. The thin line represents the solution given by each method
while the thick line represents the exact solution. Case IV is similar to case III but with
higher velocities. Here the oscillations in OCFD cause the method to completely fail after
several iterations, as shown in 3.4b. The HLLE method reaches t = 0.8 albeit with small
oscillations in 3.4a.
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Figure 3.5 Results for case V. The thin line represents the solution given by the HLLE
method while the thick line represents the exact solution. The lower graph shows a
zoomed in view of the shock. The TVB solution is not shown because it fails during
the first time step. Case V is similar to case I that it begins with stationary regions how-
ever they differ in pressure instead of density. In the correct solution a well defined shock
should move through the lower pressure fluid. However, the highly dissipative HLLE
method smears the high pressure behind the shock and overestimates its value.
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method for the same stencil as the HLLE method, we expect it to better model the instability.

We used both methods to produce solutions to the Kelvin Helmholtz instability. The test was

run on a two dimensional [−0.5,0.5]× [−1.0,1.0] domain with periodic boundary conditions,

meaning the top and bottom edges were connected as well as the left and right. This gave 2

regions, an outer and inner region, with 2 interfaces. The regions were given equal pressures,

slightly differing densities, and an equal but opposing vx. A small perturbation was introduced at

the boundary with a small sine wave in vy. The tanh function was used in place of a step func-

tion to give a smoother transition between the two regions. The initial conditions for interfaces at

y =±0.5 are described as follows:

If y≤ 0

ρ(x,y) = ρ0−ρ1 tanh
(

y+0.5
w

)
vx(x,y) =−vs tanh

(
y+0.5

w

)
vy(x,y) =−a0vs sin(2πx)exp

(
(y+0.5)2

σ

) (3.1)

If y≤ 0

ρ(x,y) = ρ0 +ρ1 tanh
(

y−0.5
w

)
vx(x,y) = vs tanh

(
y−0.5

w

)
vy(x,y) = a0vs sin(2πx)exp

(
(y−0.5)2

σ

)
,

(3.2)

where ρ0 and ρ1 are the densities of the two regions, w is the shear layer width, vs is the veloc-

ity shear, a0 is the amplitude of the perturbation, and σ controls the width of the perturbation.

Table 3.2 gives values for each of these constants.

Figure 3.6 shows the solutions given by each method. Both methods were able to capture some

of the turbulent flow at the fluid interface. The OCFD method produced unphysical swirls between

the physical curls of the turbulent flow, which is characteristic of higher order methods. However,
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ρ0 0.505

ρ1 0.495

w 0.01

vs 0.5

a0 0.1

σ 0.1

Table 3.2 Values for constants used in the initial conditions for the Kelvin-Helmholtz
instability from Eq. 3.1 and 3.2.

the OCFD method captured the smooth flow near the end of the curl of the turbulent flow better

than the HLLE method.

3.4 Timing Benchmarks

We investigated the scalability of the code with strong and weak scaling tests. Strong scaling

measures the ability to split a problem up between processors. Weak scaling measures how well

the code can handle larger problem sizes and the number of compute nodes is increased. In both

aspects the code scaled well. We also compared the GPU code to the mature CPU-based code

HAD [4]. The GMHD code outperformed the HAD code by a factor of 2.5. The details of these tests

follow.

In all timing tests we used a Gaussian pulse, analogous to an explosion in space, as the initial

conditions. The Gaussian pulse provides a simple test case that gives a roughly equal workload for

all processors within the blast radius. Table 3.3 gives the dimensions and parameters for the initial

Gaussian pulse used for each scaling test.

Indiana University’s Big Red II super computer with 676 Tesla K20 GPU nodes was used for

scaling tests. NVIDIA’s Tesla K20 GPU is a Kepler architecture GPU coprocessor specifically
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Figure 3.6 Density of the solutions of the Kelvin-Helmholtz instability given by the
HLLE and OCFD methods. Both methods capture the large curl across the periodic
bounds of the domain but the OCFD method resolves the flow better. The OCFD so-
lution also has the unphysical curls near x ≈ 0.1 that are typical of higher-order fluid
methods.
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Figure 3.7 The velocity component vx and density of an evolved Gaussian pulse plotted
along the x direction. The initial Gaussian has spread out into two advancing blast fronts.
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Parameters GPU Weak Scaling GPU Strong Scaling HAD Scaling

Num. of points 160×162×160 160×162×160 1613

x,y,z ∈ [−50, 50] [−50, 50] [−5, 5]

A 100 10 10−3

σ 5 1 1

κ 1 1 0.1

δ 10−7 10−7 10−9

Table 3.3 The grid sizes and the parameters for the initial Gaussian pulse used for the
scaling tests. The grid sizes define the dimensions per node for the strong scaling test
and the dimensions for the entire domain for the weak scaling and HAD tests. x, y and z
specify the physical size of the domain. The parameters σ and A give the deviation and
mean of the Gaussian pulse for the density. The pressure is proportional to the density by
κ while δ sets a floor value for the density.

built for scientific computing. Table 3.4 show the specifications for the NVIDIA Tesla K20 GPU.

The most relevant value is the 5GB DRAM, which determined the 160×162×160 grid size as the

largest that could fit in memory.

3.5 Strong Scaling test

Strong scaling demonstrates how much faster a code can run when given more resources. If a

particular job takes too long to finish, a code with good strong scaling can use more nodes to finish

the job much faster. Typically only strong scaling out to about 10 times as many nodes is important,

since computing resources are usually too constrained to allow for more nodes.

In a strong scaling test a fixed problem is divided over an increasing number of processors.

The problem size is chosen such that the grid size can be evenly divided in each dimension several

times. The simulation is then run on an increasing number of compute nodes with smaller work
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Number of processor cores 2496

Number of multiprocessors 13

Processor core clock 706 MHz

Memory clock 2.6 GHz

DRAM size 5 GB

Max Shared Memory Size per block 48 KB

Memory bandwidth 208 GB/sec

Max CUDA blocks per kernel 2,147,483,647

Max CUDA threads per kernel 1,024

Max CUDA threads per multiprocessor 2,048

Max 32 bit registers per thread 255

Memory I/O 320-bit GDDR5

Memory configuration 20 pieces of 128M × 16 GDDR5 SDRAM

System interface PCI Express Gen2 × 16

Table 3.4 Specifications for the NVIDIA Tesla K20 GPU used for all scaling tests.
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Figure 3.8 This figure shows the average execution time per iteration of the GPU code
in a weak scaling test. Times are calculated from the average run time of five runs, each
with 150 iterations and 160×162×160 points per GPU. Error bars are calculated as 2σ .
Simulations were performed on Indiana University’s Cray XE6/XK7 (Big Red II).

loads per node. Ideally, the runtime will be inversely proportional to the number of nodes: doubling

the node count should halve the runtime. Communication overhead and the increased number

of ghostzones, however, impede these speed ups. Beyond some node count, the grids on each

node become small enough that all points can be computed nearly simultaneously on the GPU’s

multiprocessors. At this point, smaller grid sizes would only cause cores on the GPU to be wasted

for the iteration. For a code to exhibit good strong scaling the runtimes should follow the inverse

curve as closely as possible.

GMHD exhibited good strong scaling, with diminished returns for node counts larger than 40.

The strong scaling test, shown in Figure 3.9, used the largest problem size that could fit on a single

GPU node. The performance improvement asymptotes at slightly more than 40 GPU nodes with
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Figure 3.9 This figure shows the average execution time for a single iteration of the fluid
code in a strong scaling test. Times are calculated from the average run time of five runs,
each with 150 iterations and 1603 points. Error bars are calculated as 2σ .

a 20 times speed up compared to one node. For runs with 40 or more GPUs, the communication

overhead overshadows the return of distributing the work. The ratio of the size of the boundaries

that are transferred through communication to the size of the grid per node grows, meaning a larger

percentage of time is spent in communication rather than computation. However, the speed ups for

node counts below 40 are sufficient to show that increasing the node count by a factor of 10 will

reduce runtimes, if the resources are available.

3.6 Weak Scaling Test

Weak Scaling shows how well a code can handle larger problem sizes in the same amount of time

given more computing resources. This allows simulations on larger and more refined grids. It is
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Figure 3.10 Results of the weak scaling test showing the time taken per iteration of the
algorithm vs. number of GPU’s in the test. In this test the simulation work load per GPU
remains constant while the total problem size increase with the total number of GPU’s.
Ideally, the time per iteration should remain constant as the GPU’s count is increased, but
communication overhead interrupts this. Because runtimes stay relatively constant, the
code exhibits good weak scaling. The data was produced by running a 1623 grid on each
processor using a Gaussian pulse as the initial conditions. For each GPU count the test
was run five times for an average. The error bars are calculated as 2σ . Simulations were
performed on Indiana University’s Cray XE6/XK7 (Big Red II)
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also more representative of normal use since limited computing resources are usually used at full

memory capacity.

In a weak scaling test, the same amount of work is given to an increasing number of processors,

increasing the total problem size. A work load per node is first chosen, usually at the maximum

memory capacity of the node. The simulation is then run for increasing number of processors.

Given perfect scaling, the runtime will be constant as the number of processors and problem size

are increased. However, the overhead of communicating between nodes inevitably slows down the

simulations for high processor counts. If the runtimes remain relatively constant, the code is said

to have good weak scaling.

The results for the weak scaling test are shown in Figure 3.10. GMHD showed very good weak

scaling, running at 1.5× total run time for 676 nodes compared to 1 node. The result is nearly

optimal with a slight positive slope in the scaling curve as anticipated due to the serialization of

communication for edges and corners. The runtime stays relatively constant as more nodes are

added. Due to these results, GMHD can run larger problem sizes without much longer turn around

times.

3.7 CPU Comparison Test

The code was also compared to an established traditional CPU code HAD [4]. HAD is a grid based

AMR code that implements the same HLLE and PPM algorithm presented here. It scales well up

to hundreds of CPU nodes but suffers slow downs around one thousand nodes.

The GPU code ran 2.5× times faster on a single node compared to HAD on a single node with

32 CPU cores. Figure 3.11 compares a CPU-based HAD implementation [4] of the HLLE method

with the GPU implementation explored here. The comparison is a weak scaling test using one

to four nodes of a Cray XE6 (32 cores/node) with one to four nodes of a Cray XK7 (16 cores
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and 1 Kepler GPU / node). The GPU implementation easily outperforms the optimized CPU

implementation by over a factor of two, although this is much less than the order of magnitude

improvements reported by Wang et al. [17]. This may be due, in part, to the very small CPU core

counts that were available for comparison testing in that research.
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Figure 3.11 This figure compares the performance for the HAD code (optimized for
CPUs) and our code optimized for GPUs. The plot shows the average execution time
per iteration in a weak scaling test on four nodes. The HAD code was run on CPU-
only compute nodes of Indiana University’s Cray XE6/XK7 (Big Red II) with dual AMD
Opteron 16-core Abu Dhabi x86_64 CPUs, or 32 CPU cores per node. The GPU code ran
on CPU/GPU compute nodes of Big Red II, with one NVIDIA Tesla K20 GPU accelera-
tor per node. Times are calculated from the average run time of five runs, each with 150
iterations and 160×162×160 points per node. Error bars are calculated as 2σ .
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3.8 Conclusion

I developed a new hydrodynamics code for compressible fluids that runs efficiently on GPUs. This

code, which is designed for relativistic astrophysics applications, can use two different numerical

methods. The HLLE scheme is very robust and can evolve strong shocks. The OCFD method is

a higher-order method that can be used in simulations with smooth flows, such as turbulent fluid

flows. The numerical methods were verified using exact solutions of the Riemann problem and a

calculation of the Kelvin-Helmholtz instability.

The performance of the GMHD code was tested by timing the evolution of a Gaussian pulse

on Indiana’s University’s Big Red II. The code displayed very good weak and strong scaling. It

also outperformed the established CPU based code HAD with 2.5× faster runtimes. Overall the

code demonstrates that GPUs can significantly accelerate calculations such as the HRSC algo-

rithms considered here. Several month long runtimes for simulations of binary star mergers can be

reduced to weeks. As GPUs improve the performance gap between GPUs and CPUs is likely to

increase. GPUs will be a vital component to exploit for future codes.

3.9 Future Work

The GMHD code was developed to test numerical methods and strategies for large scale simula-

tions of problems in relativistic astrophysics. These simulations require adaptive mesh refinement

(AMR) to resolve the many different length scales, from the neutron star interior to the gravita-

tional wavezone. To use the GMHD code for these computations, an efficient AMR algorithm will

need to be added to GMHD.

This work also investigated the OCFD algorithm for relativistic fluid simulations. This method

is not appropriate for strong shocks, but it gives 5th order accuracy for very little computational

cost. Future work will explore coming the HLLE and OCFD methods to efficiently provide high
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accuracy in regions with smooth flow and robust HRSC for strong shocks.

One limitation running GMHD was the small 5GB DRAM on the GPU that restricted grid sizes

per node. However future GPUs will very likely have more DRAM onboard. For example, the

latest NVIDIA Tesla P100 GPU has 16GB of memory, while the NVIDIA Pascal architecture will

allow up to 32GB per GPU. Future machines with these GPUs will allow the GMHD code to run

on larger problem sizes without slowing down computation. Supercomputers will also implement

faster communication links, such as NVIDIA’s NVLink, to transfer memory from the GPU to

the CPU at a much higher bandwidth than is currently possible, minimizing the time penalty for

transferring data off the GPU. This will allow us to use the CPU for calculations that tune poorly to

the GPUs. It would also make using the CPU memory for swap space feasible, meaning we could

store and transfer grids off the GPU to the CPU, allowing several grids to functionally occupy one

GPU.

Overall the GMHD code demonstrated the viability of using GPUs for RMHD. Future additions

to the code will allow the full simulation of binary neutron star mergers much faster than existing

codes. From these simulations possible gamma ray burst light curves paired with gravitational

wave chirps can be computed. If these match gamma ray bursts and gravitational waves observed,

then binaries would be confirmed as short hard gamma ray burst sources.
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