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ABSTRACT

X-ray Studies and Magnetic Ordering Modeling of Chains of Magnetite Nanoparticles

Dallin Smith
Department of Physics and Astronomy, BYU

Bachelor of Science

The study of magnetic nanoparticles has attracted attention for biomedical and nanotechnology
research. Magnetite Fe3O4 is a ferrimagnetic nanoparticle carrying a macro-magnetic spin. When
the nanoparticles self-assemble on a membrane, they interact with each other and demonstrate
a superparamagnetic behavior. To understand these properties, we use several x-ray techniques:
x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray mag-
netic resonant scattering (XRMS). With these procedures we can study the electronic structure
and obtain a magnetic profile for the nanoparticles. Having acquired such data at the SLAC syn-
chrotron, we examined different nanoparticles sizes and concentrations, at different x-ray energies
and various temperatures and under the application of different magnetic field strengths. Models
were made to fit the experimental data to outline the physical structure and the magnetic order
from the XMCD and XRMS experiments. More importantly, the modeling concluded about the
magnetic order of the specific magnetic spin configuration of the nanoparticle assembly, under the
application of a given magnetic field at a given temperature.

Keywords: Magnetite (Fe3O4), Superparamagnetism, Magnetic Order, Dichroic Effect, Modeling
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Chapter 1

Introduction

1.1 Background

Nanotechnology is playing an important role in today’s world. Its applications are endless and

they continue to improve our living conditions around the world. Magnetite (Fe3O4) nanoparticles

have the capacity to be instrumental in various biomedical treatments such as magnetic resonance

imaging (MRI) techniques, drug delivery, specifically cancer magnetic nanotherapy, and magnetic

hyperthermia. (Akbarzadeh et al. 2012) Magnetite is non-toxic to humans and can flow in the

blood stream for operative purposes. (Ito et al. 2005)

We want to measure the magnetic behavior of Fe3O4 nanoparticles when assembled on a mem-

brane for different nanoparticle sizes. We fabricated various samples of different nanoparticles

sizes and used a transmission electron microscopy (TEM) to study the size and concentration of

the nanoparticle assembly in each batch. We want to know if the structure of the nanoparticle

samples influences its magnetic order. As the nanoparticles interact with each other, they produce

the magnetic effect called superparamagnetism. (Bean & Livingston 1959) We used various tech-

niques to study our magnetite nanoparticles assemblies. Three synchrotron techniques were used

1
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to obtain a magnetic signal and further our understanding of the sample structure. These techniques

are: x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and x-ray

magnetic resonant scattering (XRMS). Many variables may affect the magnetic ordering, there-

fore, in the noted experiments, the temperature and external magnetic field were changed giving a

large sampling range of data to analyze for comparison. Modeling functions were constructed to

compare with the experimental results to bring further knowledge; from it we learned the magnetic

behavior and the physical structure of the nanoparticles.

1.2 Fabrication

In collaboration with Dr. Harrison in the Chemistry department of Brigham Young University, we

fabricated three different nanoparticle batches: NP16, NP17, and NP18. Three nanoparticles were

synthesized using an organic method. The size of the nanoparticles was controlled by the thermal

decomposition of an iron precursor. (Sun* et al. 2002) The temperature of the nanoparticle solution

was the determining factor of particles sizes. For the smallest nanoparticle (NP18), the solution

was set at 260 C, for NP17, it was set at 290 C, and for the largest (NP16) it was set at 320 C. (Cai

et al. 2014)

Each of the three different batches of Fe3O4 nanoparticles (NP16), (NP17), (NP18) were de-

posited onto 50 nm Si3O4 membrane with various concentrations. With the different concentra-

tions, we produced a set of nine samples. All of the membranes had a window size of 100 x 100

µm. The nanoparticles on the membrane self-assembled a hexagonal lattice. (Cai et al. 2014) The

concentration was carefully controlled in an attempt to achieve a monolayer of these nanoparticles.

By varying the nanoparticle concentration, we obtained some variance in the interparticle distance.

Once deposited on the membrane, images were taken with a transmission electron microscopy

(TEM) as shown in Figure 1.1, to assess the average size of the nanoparticles. The results from
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Figure 1.1 Nanoparticles placed on a Si3N4 membrane at three different concentrations
were used. From the left to right the first picture is NP16 with the average size of 11 nm.
The middle image is NP17 with the average size of 8 nm and the right picture is NP18
with the average of 5 nm (Cai et al. 2014)

these measurements gave an estimate of the nanoparticles sizes between 5 and 11 nm, specifically

for NP16: 11.3 nm ± 2.5 nm, for NP17: 8.1 nm ± 1.7 nm, and for NP18: 5.6 nm ± 1 nm.

1.3 Magnetic Behavior of Magnetite Nanoparticles

Before we start defining the magnetic behavior of magnetite nanoparticles, several magnetic char-

acteristics need to be defined. Ferromagnetic ordering is the strongest form of magnetism and oc-

curs because the strongly coupled electron spins align parallel with each other. Anti-ferromagnetism

occurs when the strongly coupled electrons align antiparallel, thus the net magnetization is zero. In

paramagnetism the intrinsic spin are not strongly coupled so they do not align, unless a magnetic

field is applied. The individual spins in the material begin to align when an external magnetic

field is applied. Ferrimagnetic materials are very similar to antiferromagnetic materials except that

the opposing spins are unequal in magnitude and a spontaneous magnetization remains. (Spaldin

2010) Our Fe3O4 nanoparticles are ferrimagnetic as they contain three different types of magnetic

spins carried by the Fe2+ and Fe3+ ions. These different magnetic spins were studied in XMCD
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experiments and will be will be further explained in detail in Chapter 2.

The thousands of these Fe2+ and Fe3+ atomic spins, ordering ferrimagnetically, which com-

prises these nanoparticles create an overall macro-spin for the individual nanoparticles. As the

nanoparticles assemble together on a membrane, the orientation of the macro-spin are oriented in a

chaotic manner by pointing in different directions. Thus, in the absence of external field, the over-

all magnetization of a nanoparticle assembly is close to zero. However, when an external magnetic

field is applied to the nanoparticle assembly, the macro-spin of each nanoparticle begins to align

with the external field. Depending on the strength of the external magnetic field, more macro-spins

tend to align. When all of the macro spins align with the external field, the net magnetization

Nanoparticle assembly in the absence 

of a magnetic field  

External magnetic field applied to a 

nanoparticle assembly  

(a) (b) 

Nanoparticle assembly in the absence 

of a magnetic field  

External magnetic field applied to a 

nanoparticle assembly  

(a) (b) 

Figure 1.2
a) sketch of anoparticle assembly consisting of ferrimagnetic particles, here represented in
the absence of a magnetic field. The small one-dimensional arrows are the ferrimagnetic
domains exhibited by Fe3 and Fe2 of each particle. The overall nanoparticle contains
a magnetic moment which is symbolized as the big yellow arrows. (b) phenomenon of
superparamagnetism is illustrated as each nanoparticle’s magnetic moment is aligned with
an external magnetic field thus creating a macro magnetic moment of the entire system.
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reaches a maximum called saturation.

This overall behavior, occurring at the nano scale is called superparamagnetism. In Figure 1.2,

the illustration demonstrates the phenomenon of superparamagnetism. The superparamagnetic

behavior of the nanoparticle assembly was studied in our synchrotron x-ray experiments to find the

magnetic ordering in the nanoparticle assembly. Using x-ray absorption spectroscopy (XAS), x-ray

magnetic circular dichroism (XMCD), and x-ray magnetic resonant scattering (XRMS) techniques

we could extract the magnetic signal of the nanoparticles to give a large sample size of data.

Conclusions about the nanoparticles were made possible by the models that were fitted to the

experimental data about the nanoparticle sizes and the magnetic ordering.



Chapter 2

Synchrotron X-ray Studies

2.1 Synchrotron Setup

Our x-ray experiments were carried out at Stanford Linear Accelerator Center (SLAC) at the Stan-

ford Synchrotron Radiation Lightsource (SSRL), at beam line 13-3. Soft monochromatic x-rays

were finely tuned to perform x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichro-

ism (XMCD), and x-ray magnetic resonant scattering (XRMS) measurements. Through an ellipti-

cal polarization undulator (EPU), the x-rays were circular polarized with a degree of polarization

of 98 %. A vacuum of 10−5 Torr was needed to avoid absorption of x-rays by air. Our membranes

were then mounted on a cryogenic sample holder that was placed inside the vacuum chamber.

An electromagnet with copper wiring created a magnetic field and was placed parallel to the

direction of the x-ray beam. An extra permanent magnet provided a stronger magnetic field in

order for the Fe3O4 particles to reach their magnetization saturation. The extra magnetic field

produced up to 6.3 kOe. The x-ray beam cross-section had a size of 200 × 80 µm, which nearly

covered the entire window size of a nanoparticle membrane of 100 x 100 µm. Figure 2.1 shows

the inside of the vacuum chamber.

6
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X-rays 

Sample Holder 

Magnetic Pole Photodiode 

Figure 2.1 Inside of the vacuum scattering chamber. On the left side, the monochromatic
x-rays enter the chamber. The sample and external magnetic is placed in the middle of
the image on a table. On the right side, a the photodiode and other detectors are placed to
capture the transmitted and scattering x-rays.

2.2 X-ray Absorption Spectroscopy (XAS)

X-ray absorption spectroscopy (XAS) is a technique that gives information about the electronic

structure of materials. A beam of x-rays illuminates the membrane and passes through the sample

window. Downstream of the sample was placed a photodiode to detect the transmitted x-rays

through the sample. Figure 2.2 shows a diagram to illustrate the setup to obtain the absorption

signal.

The intensity of the transmitted light was recorded as a function of the x-ray energy E. The
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X-ray Absorption Spectroscopy (XAS) Setup 

 

Nanoparticle Sample 

Transmitted x-rays (I) 

Circular Polarized X-rays Photo Diode 

o Incident x-rays (I  ) 

X-ray Absorption Spectroscopy (XAS) Setup 

 

Nanoparticle Sample 

Transmitted x-rays (I) 

Circular Polarized X-rays Photo Diode 

o Incident x-rays (I  ) 

Figure 2.2 This diagram displays the setup used to obtain the x-ray absorption spectrum
in the vacuum chamber. Circular polarized x-rays shine onto the nanoparticle sample and
the transmitted light is directed towards the photodiode.

range of photon energy E covered 690–735 eV. The energy range was chosen to include the iron

L2,3 edge, which is at 708 eV. When the photon is at this energy, it excites the dipole transition

from the 2p state to the 3d band. Since Fe3O4 contains Fe, a peak in the XAS signal is detected

at the resonant frequency. From the transmitted light, we can calculate the absorption intensity.

We obtain the XAS signal by normalizing the transmitted signal I by the incoming initial x-rays

Io. The transmission signal T = I/I0 was converted to an absorption intensity A = −ln(T ) and is

displayed in Figure 2.3 .

After acquiring the absorption spectrum, further normalization took place to subtract the back-

ground signal. In Figure 2.3, the observed background slope is caused by charge absorption. We

use a linear fit to subtract this slope from the spectrum. The subtraction begins at E = 690 eV and

end just below the first peak at E = 708 eV . Another linear fit, was applied from just above the

second peak at E = 720 eV until the end, at E = 735 eV . Afterwards, the gap between low E level

and high E level was normalized to the value of one, as shown in Figure 2.4.
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Figure 2.3 XAS spectrum It is a function of intensity versus the energy. We identify the
resonant energy of Fe3O4 is around 708 eV.

2.3 X-ray Magnetic Circular Dichroism (XMCD)

X-ray magnetic circular dichroism (XMCD) is an extension of XAS. Like in XAS, the photons at

the L2,3 edge of Fe excites a magnetic resonance material. As the x-rays transfer energy into the

system by the angular momentum of the photon, a magnetic transition occurs in the material. Using

different helicities of x-rays, namely positive and negative for either left and right circular polarized

x-rays, the XMCD is performed by measuring the XAS at opposite helicities. The opposite helicity

absorption is plotted in Figure 2.4. An XMCD signal is then extracted by normalizing each of the

XAS spectra and taking the difference of those polarized intensity plots. This procedure gives

access to magnetic signal. XMCD is an essential tool for measuring the spin and orbital magnetic

moments of magnetite. (Cai et al. 2014)
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Positive Helicity 

Negative Helicity 

XMCD Signal . 
. 

Positive Helicity 

Negative Helicity 

XMCD Signal . 
. 

Figure 2.4 X-ray absorption spectrum of NP 17 at 300 K with positive and negative
helicity of x-ray. The difference of the absorption is the residual line showing the XMCD
spectrum. The W shape is evidence of the three magnetic moments. The three peaks in
the “W“ shape are three resonant energies.

The shape of the XMCD signal shown in Figure 2.4 indicates a non-zero signal, arising from

the ferrimagnetic spins being excited from a core state into a valence state by the different helicity

of x-rays. We notice a “W“ shape at the first peak around the L3 edge in the spectrum at 708

eV. The three peaks forming this “W“ shape is a signature of the different spins for the Fe2+ and

Fe3+ ions. From XMCD we noted the three energies of the three ferrimagnetic spins of magnetite,

which are the three peaks in the “W“ shape, are E = 706, 707, 708 eV. We call these energies E1,

E2, E3. We later measured the XRMS signal at these specific energies.
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X-ray Magnetic Resonant Scattering (XRMS) Setup 

Nanoparticle Sample Circular Polarized X-rays XRMS Image 

Magnetic Field (H) 

Scattered 

X-rays 

X-ray Magnetic Resonant Scattering (XRMS) Setup 

Nanoparticle Sample Circular Polarized X-rays XRMS Image 

Magnetic Field (H) 

Scattered 

X-rays 

Figure 2.5 Setup for x-ray Resonant Magnetic Scattering experiment. The x-ray energy
is set to either E1,E2, or E3 to illuminate the nanoparticle membrane. A magnetic field is
also applied to the sample to influence the magnetic ordering in the nanoparticles. The
x-rays are scattered and captured on a CCD camera.

2.4 X-ray Resonant Magnetic Scattering (XRMS)

X-ray Resonant Magnetic Scattering (XRMS) is complementary to XMCD in the sense that we

can extract spatial electronic and magnetic information from the sample. In order to use XRMS,

we needed to first measure the three resonant energies E1, E2, E3 that we found in the XMCD

signal. As discussed, the magnetic signal is enhanced at these frequencies. Magnetic scattering

occurs when photon spins interact with electrons. The x-ray scattered light arises from the spatial

variation in the electronic structure of the nanoparticle assembly, with the rest remaining from

the magnetic spatial variation. Thus, XRMS provides information about spatial structure such

as the inter-particle distance and more importantly, the magnetic ordering within the nanoparticle

assembly.

To collect the XRMS signal, we replaced the photodiode with a 2048 x 2048 pixel CCD camera

and captured the scattered light. Instead of sweeping the energy and producing plots as a function
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of energy, the x-rays energy was fixed, at either of the three different resonant energies that were

found in XMCD. In Figure 2.5, a simple diagram outlays how scattering images were produced

by the soft circular polarized x-rays passing through the nanoparticle assemblies. An external

magnetic field was applied during this experiment. The field values recorded from H = -3000 to

3000 Oe. At H = 3000 Oe the magnetization in the nanoparticles reaches its saturation. Liquid

helium was used to cool the nanoparticle sample down to various temperatures such as 20 K, 80 K,

150 K. With different field values and temperatures, the scattering pattern captured on the camera

changed. We studied these changes to understand the magnetic ordering.

XRMS Image XRMS Profile 
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Figure 2.6 Image (a) is an image of x-ray resonant magnetic scattering. The ring is
significant as it indicates the nanoparticle structure and the magnetic signal based on the
position and width. The image (b) is the XRMS image converted into one dimensional
profile. The line in between the peak is the full width half maximum which is the thickness
of the ring.

An example of XRMS image is shown in Figure 2.6. The color indicates the amount of scat-

tering intensity. In order to extract more quantitative information, we transformed the image into
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a one dimensional profile. We do so by the following: We first subtracted the backgound image

from the scattering image to eliminate any unwanted data. Next, in Figure 2.6 we notice a large

blocker in the center. This is to block the direct x-rays damaging the camera. We first want to

mask this part of the image because the intensity encompassed by the blocker is not meaningful.

We remove this region by simulating a zero-blocker to multiply with the scattering image. That

way, the data within the blocker region will not be included in the profile. Time and spatial normal-

izations were then applied. The camera was able to capture the scattering x-ray for a duration of

time thus averaging the intensity over time. We then generated a ring set. As we can see in Figure

2.6, rings form on the XMRS images indicating the an isotropic signal. We located the center of

these rings and used it as the origin. We then performed an angular integration of the scattering

intensity using a set of concentric rings of increasing radius. The integration process produces an

intensity profile I(q) and the resulting profile is shown in Figure 2.6. From these one-dimensional

intensity plots we extracted information about the sample structure and the magnetic ordering. The

program and process is explained in more detail in Appendix A. The variable q from the Intensity

function I(q) represents the scattering vector, or the distance to the center and is in units of inverse

nanometers. In order to calculate q, the distance between the sample and the detector needed to be

first evaluated.

2.5 Finding the Distance to Detector

Hundreds of profiles were created. Each profile was created at different energies, temperatures,

helicity of light, and at different magnetic field strengths. These profiles are what we will later

model to extract information about the magnetic ordering. In order to compare the experimental

data with a model we need to convert the pixel position of the scattering signal on the CCD into

scattering vector q expressed in nm−1, the conversion from pixel to SI units is one pixel =13.5µm.
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d 1 d 2 

r 1 

r 2 

Finding D 

 

d 1 d 2 

r 1 

r 2 

Finding D 

Figure 2.7 Diagram demonstrating how the distance D was found in the vacuum chamber.
We used a simple ratio relationship to acquire the distance from the nanoparticle distance
to the camera. The is distance was critical to know the radius on the ring in the XRMS
images.

Other features including the distance from the sample to the camera needed to be calculated. We

call this distance D. These parameters are useful to calculate the scattering vector q in nm−1 as

q is inversely proportional to D shown in equation 2.4. Measuring D required a complex process

because the vacuum chamber prevented us from measuring the distance directly using calipers.

We determined D by comparing scattering profiles collected at different distances. As shown

in Figure 2.7, we captured two images, one at distance d1 and another at distance d2. From the

sample we note the difference between the two positions as ∆d. It turns out that ∆r is proportional

to ∆d according to equations 2.1-3. At d1, we measured the peak at r1 and at distance d2, we

measured the peak at r2. The equation 2.1, shows the ratio used to deduce D. The values of R and

D were at the position of r2 and d2. We did this estimation multiple times with three images at

different locations. The estimated value for D is 105.5 mm.



2.6 XRMS Profiles 15

∆d = d1−d2 (2.1)

∆r = r1− r2 (2.2)

D = R(
∆d
∆r

) (2.3)

For the rest of the XRMS measurements, the camera was placed at distance D from the sample.

Knowing the distance D, we now can calculate the q value that corresponds to the pixel positioning

on the CCD camera. To begin, we first needed to know the energy E of the x-rays that scattered

from the sample. The energy E was recorded at E = 708 eV, with an associated wavelength λ of

the x-rays λ = 1.76 nm. Next, we measured the pixel number of the peak position R by finding the

maximum value and converted into SI units. By knowing R and D values we determined sin(θ)

using equation 2.4, from which we could evaluate q. The q value is the positions peak in the inverse

space and has the units of nm−1.

q =
2pi
λ
∗ sin(θ) where λ =

hc
E

and sin(θ ) =
R
D

(2.4)

We then use Bragg’s diffraction law in equation 2.5 to transform the q value into the real space.

This transformation declares the average size of the nanoparticles along with the interparticles

spacing P of the nanoparticle assembly and is recorded in table 2.1.

P =
λ

sin(θ)
=

2π

q
(2.5)

2.6 XRMS Profiles

After plotting the intensity I(q) of the scattering profiles and performing some calculations, we

were able to make some conclusions about each of the nanoparticle samples. By finding the dis-
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tance D to detector we were able to obtain the peaks position in each sample’s profiles. The

peaks position is produce by the charge intensity scattering by the x-rays and indicates the average

nanoparticle size and interparticle distance of the nanoparticle assembly. The width of the peak

is also of interest, the full width half maximum (FWHM) of each sample was determined, the

distance is represented in Figure 2.6. The FWHM indicates the distribution of the nanoparticles

assembled on the membrane. The bigger the value for the FWHM, the larger the distribution of

nanoparticles. The values for the FWHM were then used to find the correlation length CL for

each sample. As the FWHM is measured in the inverse q space, the value is inverted to know the

correlation length. If the distribution is large, the correlation length will be short. The equation for

correlation length is CL = 2π/FWHM. The table 2.1 below shows our results from our findings.

XRMS Approximate NP Sizes Table

Sample NP Size(nm) qp (nm−1) P (nm) FWHM (nm−1) CL (nm) CL/P

Sample 1 NP16 11 0.32 19.77 0.102 61.3 3.1

Sample 2 NP16 11 0.30 20.54 0.113 55.3 2.7

Sample 3 NP16 11 0.38 16.57 0.128 49.0 2.9

Sample 4 NP17 8 - - - - -

Sample 5 NP17 8 - - - - -

Sample 6 NP17 8 - - - - -

Sample 7 NP18 5 1.02 6.11 0.253 24.83 4.0

Sample 8 NP18 5 1.00 6.31 0.256 24.51 3.9

Sample 9 NP18 5 1.01 6.18 0.278 22.58 3.7

Table 2.1 A quick analysis was done of the each of the samples to find the particles
diameter and the interparticle distance. These numbers are just estimates to assist us with
the modeling that occurs in chapter two. Sample 4 through 6 are not included because of
the weak signal in their XRMS profiles.
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When the nanoparticle are sparsely distributed on the membrane, the interparticle distance is

significantly larger than the diameter of the average nanoparticle. For samples 1 through 3 the

interparticle distances are about twice as big as the particle diameter, whereas for sample 7-9, the

interparticle distances are only slightly bigger than the particle diameter. The numbers found in

Table 2.1 are preliminary estimates and will be useful for modeling purposes. We should find a

strong correlation between these results and the models.

2.7 Dichroic Signal

A magnetic signal was extracted from the XRMS measurements by exploiting the polarization. In

Figure 2.8, we present the XRMS profiles of NP16 at 80 K and at a field value of H = 1000 Oe.

We observe that the intensity is much higher for the positive helicity compared to the negative.

The difference in the intensity is proof of the magnetization component of these nanoparticles.

Though the charge scattering signal dominates the magnetic signal in these scattering profiles, the

difference in the intensities of the scattered x-rays is proportional to the net magnetization of the

nanoparticle assembly. To only study the magnetic signal from these XRMS profiles, we subtract

the intensities from one another. This is called the dichroic effect. We use two ratios to obtain our

magnetic signal, called the dichroic ratio Rd and the magnetic ratio Rm, defined in equations 2.6

and 2.10. Figure 4.5 shows the magnetic ratio at different external magnetic field values. I+ and

I− are the intensities from the positive and negative helicity.

Rd =
I+− I−

I++ I−
(2.6)

Rm =
I+− I−√
I++ I−

(2.7)
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Figure 2.8 The plot (a) shows the intensity from the positive and negative helicity of
x-rays on the nanoparticle sample. The positive intensity is greater than the negative
because of the stronger interaction of the x-rays and the nanoparticles. The difference of
these helicities is given as the green line and is call the dichroic effect. Plot (b) is the
magnetic and dichroic ratios plotted.

Based on the helicity of the x-rays and the external magnetic field, the magnetic ratio accounts

for the interaction of these two changes. We notice that at higher field value, the magnetic ratio

of x-rays has a stronger magnitude. The intensity of the magnetic ratio is porprotional to the mag-

netization of the nanoparticles. As the field value decreases and even goes negative, the magnetic

ratio also changes sign. This flipping occurring indicates a flipping in magnetization opposite as

the external magnetic field begins to change its sign. The position of the peak occurring in Figure

2.9 indicates the magnetic period in the nanoparticle assembly. We notice that individual peaks are

moving closer to the q = 0 as the external magnetic field gets weaker in magnitude. Therefore, the

magnetic period in the sample is changing due to the external magnetic field.

If all of the nanoparticles’ spin configurations are aligned in the same direction, then we call

this ferromagnetic ordering and is presumed to be present when the external magnetic field is

strong. This ferromagnetic ordering is visible in the blue and green curve in Figure 2.9 for sample
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Figure 2.9 The dichroic effect technique was used on sample 3 at room temperature T =
300 K as it experienced different magnetic field values (H) through a magnetization loop.
The magnetic ratio was then calculated, normalized, and then plotted as seen. The line
asterisk indicates where the maximum point is on the plot. We can see as the field value
decreases the maximum is moving toward the center.

3. Notice that these peaks are are exactly at the location of the charge scattering peak seen in the

XRMS profiles. When the external magnetic field is smaller, the magnetic ordering has less of a

ferromagnetic component and more of the other orders such as antiferromagnetic order which is

comprised of a spin-up spin-down orientation. The magnetic ordering of these dichroic effect plots

will be discussed more in chapter 4 as it plays an important role in deciphering the magnetic signal.
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2.8 Conclusion

In conclusion, chapter 2 outlined the experimental work for gathering information of the magnetic

ordering of these nanoparticle samples. For the XAS and XMCD we scanned a range of x-ray

energy to find the L2,3 resonant edges of Fe. We presented the data for positive and negative

helicity in Figure 2.4 and displayed the XMCD signal from it. The three resonance energies were

detected in Fe3O4 due to the three ferrimagnetic spins of the iron ions.

In the XRMS experiment, we tuned the x-ray energy to the resonant edges of Fe3O4 and pro-

duced scattering intensity images. We found the distance D from the camera to the samples and

used spatial and time normalization to convert these images into a one dimensional plot. From there

we extracted information of the interparticle distance and the correlation length of the nanoparti-

cles. Towards the end, we discussed the importance of the dichroic effect technique and how it

characterizes the magnetic ordering based on the external magnetic field. We introduced the im-

portance of ferromagnetic and antiferromagnetic ordering to describe the position of the dichroic

peak. In summary, these nanoparticle samples display a strong magnetic signal and by modeling

these XRMS and dichroic effect profiles we can find more information of the magnetic orientation

in the nanoparticle assembly.



Chapter 3

Structural Modeling of the Nanoparticle

Chain

3.1 Introduction

We constructed models of chains of nanoparticles to fit the XRMS profiles and the dichroic effect

results. The purpose of modeling is to explain what is occurring in the real space. The XRMS data

is measured in the inverse q space (or Fourier space). By creating a function with several parame-

ters, we hope to fit the scattering profiles in order to understand the ordering in the real space. From

the model, we determine structured parameters of each sample including the interparticle distances

and correlation length. We used MATLAB to generate these models of magnetic nanoparticles. We

began creating a charge density function and then later on added the magnetic components for each

of the nanoparticles spin as described in chapter 4. The actual samples were deposited onto two-

dimensional membranes with millions of nanoparticles in the illuminated region. For simplicity,

we use a one dimensional model, being a chain of nanoparticles.

21
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3.2 Charge Density Function

The charge density function required several parameters to represent the actual chain. We started

with a few parameters such as: 1) the radius R, 2) the interparticle spacing L, 3) the number of

nanoparticles N, and 4) The total number of pixels per chain. The number of nanoparticles N

was set to a value around 100, as we needed enough nanoparticles to provide statistical sampling

to represent our entire nanoparticle sample. The resulting period in the particle chain was set as

P = 2R+L. In Figure 3.1, a diagram illustrates our the nanoparticle chain model.

R L 

Nanoparticle Chain 

P=2R + L 

w 

θ X - Axis  

R L 

Nanoparticle Chain 

P=2R + L 

w 

θ X - Axis  

R L 

Nanoparticle Chain 

P=2R + L 

w 

θ X - Axis  

Figure 3.1 Chain of nanoparticles used for our model. The resulting charge density
function included a few parameters such as the radius R and interparticle distance L,
having a period of P = 2R+L. The density function was expressed as a function of w on
the x-axis.

Figure 3.2 shows the MATLAB code we used to generate a nanoparticle chain along with a

output function. The charge density function Y (w) is expressed as a function of the position w

on the x-axis, where w = Rcos(θ). The Y (w) function is a basic projection of a slice through the

nanoparticle onto the x-axis. This is done by integrating the volume of a disk of a radius Rsin(θ)

and the thickness dw of the disk. Equations 3.1 shows the sequence to show how the charge density

function was obtained to represent the actual nanoparticles in assembly.
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Y (w)dw = π[Rsin(θ)]2dw (3.1)

Y (w) = πR2[1− cos2(θ)] (3.2)

Y (w) = π(R2−w2) (3.3)

w 

(a) (b) 

w 

(a) (b) 

Figure 3.2 (a) Actual code to formulate the charge density function. We can see the
parameters such as the radius R, interparticle distance L, the number of particles N are
embedded into the function. (b) Plot of the output of the charge density function Y (w).

3.3 Nanoparticle Size Distribution

After creating a basic charge density function with a unique given period P, we incorporated a

distribution of various periods P±∆P. On the physical membrane, not all the nanoparticles have

the same size and distance from each other. In Figure 3.3, we see again the TEM images for the
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three NP16, NP17, and NP18 showing the variance in the sizes and interparticle distances. The

histogram below each image show the distribution of particle sizes. These histograms indicate that

the size distribution is narrower for smaller particles. In order to replicate this distribution in the

code, we added a distribution σR for the radius R and σL for the interparticle distance L. Rc and

Lc were introduced to represent the average radius and interparticle distance. These parameters

symbolize how much variance would occur to the radius or interparticle distance.

Figure 3.3 TEM images of sample NP16, NP17, NP18. Below these images are his-
tograms to of the size distribution. We can see that as the nanoparticles are bigger the
distribution widens as well. (Cai et al. 2014)
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A new parameter called Sets was then introduced. Sets is a collection of function Y (w) with

the different ranges of L and R. The variable R varied from R−σR/2 to R+σR/2 and similarly for

the L, varying from L−σL/2 to L+σL/2. Each function created in Sets was first summed together

in equal weight and generated an average value for the radius and interparticle distances. Later

on, it will be summed together following with a Gaussian distribution to reproduce the actual size

distribution in our samples.

3.4 Scattering Intensity

After creating a function in the real space, we needed to transform the function into the inverse

space to simulate the scattering signal. We ultimately needed to produce a plot of the scattering

intensity, I(q). The simulation is then used to fit the profiles produced in the XRMS data. The

individual nanoparticles assembly creates a “lattice“ structure and the placement of each particle

within the lattice has a period P that depends on the size and distance between each particle. The

Fourier transform of the charge density function converts the function into the inverse space and

create peaks based on the periods in real space. The scattering intensity that was used to convert

the charge density function into the inverse space is given by the following.

I(q) = |
∫

∞

−∞

I(w)ei2πqwdw|2 (3.4)

The peaks created in the inverse space tells us the periods occurring in the real space. For each

summed function, the peak position in the inverse space should occur around the average period

which should be around PC = 2RC +LC. The width of the peak was determined by how wide the

values of σR and σL were combined. For the model to be on the same scale as the experimental

data, the chosen range for q was crucial. In the experimental data, the intensity peaks have a

seemingly Gaussian shape and the model needs to replicate that shape as well. In the summed
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charged density function where we added all of the functions of different periods, we convolved

to each Y (w) function by a Gaussian function to replicate the scattering peaks. Normalization was

applied to the model function and the first order peak of the experimental data was set to the value

of one.

w 

(a) (b) 

w 

(a) (b) 

Figure 3.4 (a) Summed charge density function with the following parameters LC = 6.5,
σL = 2, RC = 5.35, σR = 2, N = 100, and Sets = 100. (b) Fourier transform of the charge
density function.

3.5 Results of Model Fits

After optimizing the charge density function we were ready to fit the XRMS profiles. We started

to fit each of the nine samples. We knew from the XRMS data that since the charge scattering

dominates the magnetic signal, we could fit one profile from each sample to obtain the sizes and

the interparticle distances of the nanoparticles. We ended up only adjusting parameters L and σL.

R and σR were already determined in the TEM results. These values were put into the function as
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fixed parameters. While fitting the experimental data, an optimization code was implemented into

the script. This was used to find the best results to satisfy this criterion by still having the peak

position and width match up. Results are displayed in Figure 3.5 to show the experimental data

with the model.

Residual: 1.3% 

Residual: 1.3% 

Figure 3.5 Fit of the XRMS profiles with the charge density function along with the
residual signal. The residual percentage ε for this fit is about 1.3 %.

PC = 2RC +LC (3.5)

σP = 2σR +σL (3.6)

The difference between the charge density function and experimental data was calculated for

each model fit. This difference is called the residual signal and is shown in Figure 3.5. The

average value of the residual signal is called the residual percentage ε . A criterion was set for a

good modeling fit to have ε < 5%. All the plots came fairly close and gave a residual percentage

between 0.5 to 1.3 %. After fitting each of the nine samples, we assembled a table 3.1 to show
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Model Fitting Table

Sample NP R σR L σL P±σP ε (%)

Sample 1 NP16 5.35 1.35 8.21 2.71 18.91 ± 5.41 1.2

Sample 2 NP16 5.35 1.35 7.76 1.46 17.63 ± 4.16 1.1

Sample 3 NP16 5.35 1.35 6.01 1.05 16.71 ± 3.75 1.3

Sample 4 NP17 3.78 0.85 3.15 0.48 10.71 ± 0.77 4.9

Sample 6 NP17 3.78 0.85 3.00 0.51 10.56 ± 1.7 4.5

Sample 7 NP18 2.75 0.5 0.63 0.21 6.13 ± 1.21 0.7

Sample 8 NP18 2.75 0.5 0.81 0.21 6.31 ± 1.21 1.3

Sample 9 NP18 2.75 0.5 0.73 0.18 6.23 ± 1.18 0.8

Table 3.1 Model fitting table for the nanoparticle assembly. The radius R and σR were
already known values from the TEM results. The L and σL were values taken from model
to fit the data. The fitted period is the average period for each sample with a variance
constant. The last column ε is the residual percentage value and tells how good the fit is
for each sample. All results except the last column are in nanometers.

the fitted values of L and σL. All of the fits for eight of the samples are presented in the appendix

B, only one fit is shown in Figure 3.5. Sample five is missing from the table due to the lack of an

intensity peak in the XRMS profiles. As mentioned above, the particles radius R and variance σR

were already determined and thus were fixed values in the code. The fitted interparticle distance L

and variance σL were obtained from the code. The fitted period gives the overall average period for

each nanoparticle sample, as indicated by equation 3.5. and the total variance is given by equation

3.7.

When we will alter develop the magnetic ordering and start to draw conclusions about magnetic

properties, we will want to correlated the magnetic signal to the average size of the nanoparticles
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on a membrane. In essence, we will be referring to this table for future use.

3.6 Temperature Dependence Study

While making these models for the nanoparticle samples, we wanted to test if the temperature

affected the structural properties. It’s possible that under cooling, these nanoparticles would con-

tract or expand. If the nanoparticle changed sizes, it would change the location of the XRMS

peak because of the change in the average period of the nanoparticle lattice. If the temperature did

affect the nanoparticle assembly structure, we would need to account for that displacement. Ulti-

mately the fitting the XRMS is to characterize the magnetic macro-spins of the nanoparticles. If

the nanoparticle structure is changing, the change in the XRMS peak positions need to be accred-

ited to both the charge density function and the magnetic spin function. In Figure 3.6, we plotted

two samples at two extreme temperatures, both at (zero field value) H=0. If the experimental data

was shifted, it would indicate that the structure of the nanoparticles was contracted or expanded

under the presence of temperature. In Figure 3.6, we plot two XRMS profiles at 15 K and at room

temperature 300 K for samples 3 and for sample 9. We concluded that the temperature does not

significantly change lattice structure of the nanoparticle assembly in none of these two samples.
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Figure 3.6 Comparison of scattering profiles collected at 300 K and 20 K for sample 3
and at 300 K and 15 K for sample 9. The difference is almost imperceptible as it only
changed by a tenth of a nanometer. Changing the temperature did not have an impact
on the structure of the nanoparticles and thus not affecting the scattered pattern in the
profiles. The residual percentages for given for each profile at different temperatures.

Temperature Effect on Sample 3 and 9

Sample Temp (K) Pc (nm) ε (%)

Sample 3 20 16.81 1.3 %

Sample 3 300 16.76 1.4 %

Sample 9 15 6.17 0.6 %

Sample 9 300 6.18 0.6 %

Table 3.2 The table shows the comparison of sample 3 and 9 at two different temperatures.
The model fit was able to obtain the average period P and then the residual percentage
value is given as well.



Chapter 4

Modeling of the Magnetic Ordering

4.1 Magnetic Spin Function

Using the charge density function to model the XRMS profiles allowed us to make conclusions

about the sizes and distributions. Next, we incorporate the magnetic spin function into the charge

density function. There are two origins for the scattering signal: first, the charge scattering due

to the structure of the sample and second, the magnetic scattering due to the magnetic ordering.

We now look at the magnetic signal, which is basically given by exploiting the dichroic effect as

described in Chapter 2. Figure 4.1 show a series of dichroic signal recorded at different field values

for sample 3. We notice that the intensity of the magnetic signal decreases when the external field

decreases. More importantly, the peak position is shifting towards the center as this process occurs.

We want to model this shift in the peak.

To account for the magnetic ordering in the nanoparticles, a sketch is included to illustrate the

behavior of what we want to model. In Figure 4.2, four types of magnetic ordering are represented,

as well as their respective Fourier transforms. The Fourier transforms show a peak shifting based

on different periods in the magnetic ordering. The first magnetic ordering is called the parallel

31
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Figure 4.1 Series of dichroic signals recorded of sample 3 at T= 300 K as it experience
at different external magnetic field values of decreasing magnitude.

ordering v1. The Fourier transform of the parallel order is the blue line. We observe that the period

in the parallel ordering creates a peak at the location q∗ of the charge scattering peak. The sketch

below the parallel order is called the anti-parallel ordering v2. In this order, the spin direction is

flipped every other nanoparticle. Since the period is twice as long as the ferromagnetic ordering

the peak in the Fourier transform appears halfway in between the origin and the ferromagnetic

peak at q∗/2 . Two other orderings are included called the triple ordering v3, which has the spin

configuration of (↑, ↑, ↓), and the quadrupole ordering v4, which has the spin configuration of (↑,

↑, ↑, ↓). The first order peak in the Fourier transform are at q∗/3 and q∗/4 respectively of these

orders come closer to q = 0 due to the larger period in their order.
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Figure 4.2 (a) Diagram showing the different magnetic orderings: parallel v1, anti-
parallel v2, triple v3, and quadruple v4. Below each magnetic ordering shows the length
of the period. (b) Fourier transform of the different magnetic ordering. We can see the
peak shifts toward the center as the period is extended.

This observed peaks shifting is based on the spin configuration and is what we need to incor-

porate into the magnetic spin function. In the magnetic spin function, we make combinations of

these four orderings to account for different magnetizations of the nanoparticle assemblies. For the

four different magnetic orderings, we created weight coefficients to make this linear combination

such as c1, c2, c3, c4. A function, Order was created by the combination of the weights and the

magnetic ordering as follows:

Order = c1 ∗v1 + c2 ∗v2 + c3 ∗v3 + c4 ∗v4

Next, we included this magnetic spin function into the charge density function and called it

the “charge spin function“. we must incorporate both the magnetic spin function and the charge

density function in order to reproduce the entire XRMS signal.
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Figure 4.3 Image (a) displays the code written to incorporate the magnetic ordering to
the charge density function. Image (b) is the output of the code and we can see each
particle has a spin with different magnitudes in opposite directions.

4.2 Setting Constraints

Before we started to model the experimental data, two conditions needed to be considered. The first

condition was the normalization and second was adding constraints to the function for optimizing

the charge spin function to find the best fit. The magnitude of the XRMS signal varied with

applied field, but we decided to normalize the experimental data by setting the maximum value of

the magnetic order peak in the dichroic effect plots to one. In our analysis, the peak formed in the

charge spin function is normalized to a value of one. We went to ease comparision of the model fit

to the magnetic ratio by generating magnetization loops that were measured by a vibrating sample

magnetometer (VSM) and shown in Figure 4.4 .

The magnetization loops are useful because they indicate the actual net magnetization of the

sample is for a given external magnetic field. In the magnetization loop Figure 4.4, we see the
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saturation occurring about Hs = 3000 Oe. We normalize the magnetization at saturation to Ms = 1.

This allowed us to refer to the magnetization as a percentage.
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Figure 4.4 Magnetization loops measured via VSM. The y-axis was normalized and
gives the percentage of the magnetization. The right images is just a zoomed image of the
right as the external magnetic field only reached H= 3000 Oe at the synchrotron . These
images were data collected from a vibrating sample magnetometer (VSM).

A couple constraints were made to ease the process of what values to use for the weights of the

different magnetic ordering. The first constraint that was set, was that the magnetization is sym-

metrical across the origin. There was no purpose in modeling the negative magnetization compared

to the positive magnetization assuming it is symmetrical. Figure 4.4 shows the magnetization loop

and its symmetry allowing the magnetization occurring from 0 < M < Ms

In the model, we wanted to calculate the net magnetization M and match it to the measured

magnetization percentage M/Ms. To accomplish this M = ΣOrder/N. We call this value M short

for the calculated magnetization. Since the values in v1, v2, v3, v4 are either ↑ or ↓ and if we con-

strain the sum values for our weight coefficients c1,c2,c3,c4 to the value of one then the magnetic

order will produce a value from zero to one. Therefore, the first constraint in the model as well is:
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Σici = 1 (4.1)

Different magnetic orderings give different amounts for the overall magnetization thus altering

the value of Mc. For example, if c2 has the value of one and equation 4.1 is applied then c1,c3,c4

must be zero. When we run our code to produce a magnetic ordering a value of Mc then it will sum

the anti-parallel array, v2. This ordering of v2 looks like ↑, ↓,↑,↓ and so on. The summed value

of this array is zero and gives no contribution to the Mc value. A equation 4.2 below shows the

contribution of each magnetic ordering to the overall magnetization of the nanoparticles and the

overall equation for the Mc based on absolute weights of each ordering.

Mc = c1 +
1
3

c3 +
1
2

c4 (4.2)

4.3 Magnetic Spin Function Results

Using the above constraints, we combined with the other equations, we have four unknowns and

two basic equations, leaving us with two unknowns. This greatly diminishes the amount of guess-

ing that would occur if there were still four unknowns. We are now ready to start modeling the

dichroic effect plots with the charge spin function. For the experimental data, the dichroic effect

plots were already made using the magnetic ratio back in equation 3.4 and then normalized to one.

Like the charge density function, the charge spin function underwent a Fourier transform and then

we took the absolute value of it and squared it as shown in Figure 4.5. After incorporating these

conditions the charge-spin function was applied to the experimental data, the dichroic effect plots.

The magnetic spin constants such as the parallel, anti-parallel, triple, and the quadruple order-

ing coefficients were determined as models were made for all of the dichroic effect plots. The

model provides information about the specific magnetic configuration in the nanoparticle assem-
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Figure 4.5 Magnetic ratio profiles fitted with chrage spin function. The models were
performed on a Sample 2 through a magnetization loop starting at H = 3000 to H = -3000
Oe. Other model fits are shown in appendix B.

blies for each sample. The coefficients and the distribution of the magnetic ordering chosen in the

model determined this specifc configuration. All models used some linear combination of these

four coefficients to reenact this magnetic signal. From this combination and distribution we made

conclusions about how the magnetic ordering changes as it experiences an external magnetic field.

Table 4.1 lists all the magnetic ordering coefficients in the nanoparticle chains as well the M/Ms

value from the magnetization loop. The Mc calculated by coefficients using equation 4.2 and the

distribution of magnetic orderings. A residual percentage is also given ranging, from 0 to 3 per-

cents. The information for the table 4.1 and 4.2 come from the model fits presented in appendix

B.

Looking at Figure 4.6, it is clear that at high external magnetic fields, the parallel coefficient

c1 has the highest value, while the other coefficients descend close to zero. We conclude that

the nanoparticle assembly forms a ferromagnetic order, at high field values. Looking the other
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Model Fitting for Dichroic Effect: Sample 2

Field (H) M/Ms C1 C2 C3 C4 Mc ε (%)

3000 0.89 0.78 0.10 0.00 0.12 0.84 0.90

1000 0.70 0.60 0.20 0.10 0.10 0.68 0.89

600 0.62 0.50 0.20 0.15 0.15 0.62 0.95

400 0.55 0.50 0.26 0.24 0.00 0.58 0.92

200 0.33 0.18 0.28 0.26 0.28 0.41 3.34

100 0.15 0.08 0.32 0.30 0.30 0.33 1.04

Table 4.1 Coefficients and magnetization values from the charge spin function and the
magnetization loop as the nanoparticle assembly experienced different field values for
sample 2. M is the actual measurement from the VSM at a given field value. The coef-
ficients are the weights for the various magnetic ordering and gave the best fit for each
profile. Mc is the calculated magnetization from the model

Figure 4.6 This is a plot of the coefficients from table 4.1 and 4.1. The plot presents the
linear combination of the magnetic ordering as the nanoparticle assembly experiences a
change in the external magnetic field.

direction, as the external magnetic field decreases the c2, c3, c4 coefficients gradually increase at

a somewhat similar rate. This is interesting to note that c2 does not reflect what c1 did as the field
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Model Fitting for Dichroic Effect: Sample 3

Field (H) M/Ms C1 C2 C3 C4 Mc ε (%)

3000 0.89 0.90 0.10 0.00 0.00 0.90 0.86

1000 0.70 0.70 0.00 0.15 0.15 0.82 15.3

600 0.62 0.47 0.07 0.06 0.40 0.69 5.72

400 0.55 0.25 0.43 0.16 0.16 0.39 11.77

200 0.33 0.13 0.32 0.31 0.26 0.36 4.05

100 0.15 0.00 0.55 0.45 0.00 0.15 17.67

Table 4.2 Coefficients and magnetization values from the charge spin function and the
magnetization loop as the nanoparticle assembly experienced different field values for
sample 3. M is the actual measurement from the VSM at a given field value. The coef-
ficients are the weights for the various magnetic ordering and gave the best fit for each
profile. Mc is the calculated magnetization from the model

value increased. This indicates that at a zero magnetic field value, the nanoparticle assembly does

not have a pure antiferromagnetic order of ↑, ↓, ↑, ↓ as it might have been perceived in that way.

But rather a complicated linear combination of c2, c3, and c4 .

Tables 4.1 and 4.2 give the coefficients for the weights of the individual magnetic ordering

for the different magnetization of the nanoparticle sample. These comparisons confirm the phe-

nomenon of superparamagnetism as the magnetic ordering becomes ferromagnetic as an external

magnetic field is applied. More work will need to be carried out to analyze the magnetic ordering

of the Fe3O4 nanoparticles. In chapter 3, it was stated that hundreds of profiles were generated.

These profiles along with their dichroic plots will need to be fitted with a model to further under-

stand the magnetic ordering. We will understand better how external magnetic field, temperature,

and nanoparticle sizes affects the magnetic ordering of each sample and thus draw more conclu-

sions.

Future work includes improving the modeling functions to resemble the two dimensional
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nanoparticle layer since the Fe3O4 nanoparticles is assembled on a membrane. Creating a two

dimensional model would increase the accuracy and show a more physical representation.



Appendix A

XRMS Analyzing Program

This section of the thesis explains the process of analyzing the XRMS images and the program

to perform such tasks. In this program, some of the functions were written by Yanping Cai, but

were improved for robustness and then merged together to build a graphical user interface (GUI)

to make the analyzing process more efficient and ultimately dynamic. When I first joined Dr.

Chesnel’s research group, I started to analyze images from the 2014 synchrotron experiment. The

process was tedious and would take about ten minutes per profile. Now with this new program it

can analyze the data in ten seconds or less. The program was written in MATLAB which is known

for its ability to minipulate matrices quickly.

In Figure A.1, we have the basic layout to access all of the functionalities to process any

XRMS images. These features include converting data files, producing blockers and ring sets, and

generating 1-D profiles. Additionally, it compares the profiles for different helicities of x-rays and

saves the data arrays to export to excel files. The program directly saves and uploads data files

from a personal computer and organizes the XRMS profiles. This unique feature is what allows

the efficiency and speed to compute these functions. Before using this program, one needs to set

up a directory folder.

The program uses the “P“ drive to access the data. Keep in mind that the directory in the

41
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Figure A.1 The Figure displays the user interface of the XRMS analyzing program.
The program is divided into four sections to convert data, create ring sets and blockers,
generate profiles, and compare data.

program can be rewritten for convenience. First, a folder called “Profile“ was created in “MyDoc-

uments“ under my “P“ drive. Like this:

/ : P/MyDocuments/Pro f iles/

The “Profiles“ folder maintains all of the data and information about the XRMS data. Inside

of “Profile“ place MATlab code called “final.m“ and “final.fig“. These files are the scripts to run

the program. Inside “Profiles“, create five more folders and name them “Analyzed“, “Blockers“,

“Images“,“RingSets“, and “TimeScans“. With these five folders the program will select data files,

perform the functionalities, and then place them in an organized manner. A Figure A.2 shows the

folder directory.

All of the time scans and scattering images regardless of the type of format needs to be placed

in the right folder. The time scans go in the “TimeScans“ folder and the XRMS images go inside

“Images“. Now we are ready to run the program and evaluate the XRMS images to produce
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Figure A.2 The image shows the folders that need to be created in the folder called
Pro f iles in order for the program to sort the data files.

profiles. To begin click on the “final.m“ file and run it, you should see a Figure A.1 pop-up. You

can use the user interface to perform the needed functions. It is useful to keep the Matlab output

console visible in case any error occurs. We start with the green panel in the upper right hand

corner. This is called the command box. Here all of the functionalities are used to analyze the data,

the other boxes are used to extract user input calls while a function is being run.

In the green panel we see a drop down menu consisting of the six functions. The six functions

are “Convert SPE“, “Convert CSV“, “Make RingSet“, “Make Blocker“, “Generate“, “Compare“.

Next we see an evaluation box and a time box. The drop down menu contains the functions

to produce the desired profiles. The evaluation box informs the user where they are at in the

computing stages. At the beginning it should say “Ready“ to inform the user that it ready to begin

running a function. After a function is clicked it will change to “Running“ and then when it is

completed it will say “Done“. Sometimes while a function is running the evaluation text will

present “Waiting“ this means that it is waiting for a user response usually to click the “Continue“

button on the blue panel. These are the four displays for the evaluation box. The last box is the

time box and it lets the user know how long it took to perform a function. The numbers are in units

of seconds. Now we can begin describing what the functions do in the drop down menu, along the

way we will explain the other colored panels as they are associated with the functions.
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A.1 Converting SPE and DAT

The Convert SPE and CSV functions transform the data files into another file format in order for

Matlab to import the data. When you click on the “Convert SPE“ tab it converts the Images which

have the file extension of “.SPE“ and it will convert these images into “.mat“ extension. The same

go for the “Convert CSV “button, it transforms the files from a CSV extension into “.dat“ extension.

The process is easy when either function is clicked, a pop up menu will appear and display files of

the images if you clicked “Convert SPE“ or display the file of time scans if you clicked “Convert

CSV“. You can select as many files as desired. Then click the confirm button. The pop up display

will vanish and you will see the evaluation box turn from “Ready“ to “Running“ to indicate it’s

busy processing. Also the files will be loaded in the blue panel table. The SPE and CSV files will

be deleted after the conversion takes place to save memory. Each file will be named the same, just

with a new file extension.

A.2 Making Ring Set and Blocker

Making a ring set and a blocker are crucial steps for generating a profile from a XRMS image. A

ring set is used to do angular integration of the scattering image. A blocker can be seen in Figure

A.3, it helps to get rid of any points that may occur around the center that should not be included

in the integration process. Before the function is clicked a few important things need to be handled

first. The first is that making ring sets and blockers use common inputs and so when you make a

ring set it should always be followed by making a blocker. For example, a ring set and blocker use

the same center point. Let’s look at the yellow panel and see its purpose in making a ring set and

blocker.

In the yellow panel displayed above in Figure A.1 there are six text boxes that are used for

making a ring set and a blocker. We divide the yellow panel into two parts to explain its purpose.
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On the top half there are four text boxes labeled: “Name of R&B“, “CX“,“CY“, and “Steps.“ The

“Name of R&B“ is used to give the new ring set and blocker a name. “CX“ are used “CY“ to define

the center of the ring set, find these coordinates from your research lab notebook and “Steps.“ is

how thick you want the rings to be. I usually use a value of eight. After these four values are

defined then it is possible to proceed in making a ring set. The new ringset with its accompany

name will be saved under the “RingSet“ folder. If the center of the XRMS images changes the

center location then a new ring set will need to be generated. Look at the values picked to make a

ring set as below
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Figure A.3 On the left the image is a ring set in order to perform an angular integration.
The center was chosen to be cx = 1032 and cy = 1028, with a step size of 8. On the right
we have a n image of a blocker which also is apart of the angular integration.

In order to make a blocker it uses the the parameters such as “Name of R&B“ and the bottom

two text boxes. You will notice that in the first text box it reads “sample1_ 3.mat“ this is a default

scattering image. To make a blocker it needs a scattering image to know where to block the

center of the images and how big the blocker should be. The last box is the dark field box, this is

used to subtract from the scattering images to subtract background light. Before the subtraction is
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taken place, each of the dark field and scattering image matrices are individually summed. Theses

matrices are three dimensional matrix and summing it will convert it into a two dimensional matrix.

Once this process is completed, the procedure of making a blocker is in pursuit by having a set

criterion of 280. If the values in the matrix are above this criterion then they are set to the value of

one. If the values are less than the criterion then they are set to a value of zero. This makes boolean

image and is saved under the “Blocker“ folder. A blocker looks like this in Figure A.3.

After making a ring set and blocker both images will appear. Each of them will appear in their

respective folders. The two default values for the bottom two boxes can easily exchange scattering

images and dark field if the ring center has changed. To change the image you can click on the

“change“ button and a pop-up menu of the ring set or blocker folder will appear or manually type

the new images. In summary, the yellow panel is used for making the ring set and blocker and

you must enter the desired values in the yellow panel before clicking “make ringsets“ or “make

blockers“ in the green panel.

A.3 Generating Profiles

Generating profiles is the bulk of this program and is a complicated process using numerous func-

tions to produce the desired profile plot. The advantage of using this program compared to the

original method of generating these profile is its ability to generate multiple profiles at the same

time. This is due to the fact that many of the XRMS images use the same ring set and blocker.

Before generating a profile we need to look at the red panel. Look at Figure A.1 to see the red

panel.

You will notice there are three text boxes. In order to generate a profile from the XRMS image

three other files must be included the blocker, the ring set, and the dark field. The red panel is

to indicate to the user what blocker, ring set, and dark field will be used to generate the profiles.
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When you made the ring set and blocker in the yellow panel they will update the text boxes in

the red panel automatically. If you did not create ring sets or blockers you can use the “change“

buttons to exchange the default values for the desired ring set or blocker. Make sure that these are

the desired value before the generating process starts.

Once the red panel has the right parameters it is time to transform the XRMS images to the

profile plots. To begin, click the “Generate“ button in the drop down menu in the green panel.

A pop up menu will appear and ask which images you like to generate, this is done by selecting

them and then pressing the confirm button. Next a pop-up menu will appear and ask you to select

the time scans associated with the images you previously selected. You will notice now that the

images and time scans you selected are printed in the table in the blue panel. The blue panel is used

simply to display and verify what you selected is what you want to be generated. It is important

that the image on the left side is next to the time scan on the right. Having the image and the time

scan on the same row indicates that this time scan will normalize that image. It is possible that

the uploaded time scan is not associated with the right image. Double check the association in

the research notebook. If you select more or less time scans than image files the evaluation box

will give you an error and you will have to run the command again. So make sure you select the

right amount of files. After verifying the associated time scans with images the program will wait

until you click the “continue“ button in the blue panel and the process of generating the profiles

continues. The first function the program encounters is automatically making a folder for this

sample in the “Analyzed“ folder, the name of the folder is just the image’s name. Here in this

folder, the profile plot, the result vectors, and the new scattered image and more will be stored in

its own folder. This is helpful to keep track of what images have been organized. Next is grabbing

the selected images and summing each of the 2 dimensional plots then subtracting the dark field

from each image. This new scattered image is saved in the samples folder under “Analyzed“ It then

undergoes an angular integration using the ring set and averaging it with time scan. See Figure A.4
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demonstrating how the angular integration works and the time scans.
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Figure A.4 The image depicts a scattered image being integrated in order to be trans-
formed into a one dimensional intensity profile. You will notice that the blocker and ring
set created is apart of the process.

Afterwards it then applies the blocker removing the center of the image. During these proce-

dures a 1- dimensional profile plot is made. A title, axis labels, and legend are given. A quick note

is the scattering images were in pixels and now the plots is in terms of the q space which has units

of inverse nanometers. Now the plots and the vectors for making the plots are saved for further use

in Excel if needed. These vectors are also saved in another folder called “ForComparson“.

A.4 Extracting Dichroic Signals

An element of making this program beautiful is its ability to quickly manipulate data so quickly.

Apart of the analyzing process is making magnetic ratios and dichroic effect plots. Back in the

function of “generate“ which made for making profiles, it saves the result vectors in a folder called

“ForComparison“ this is to our advantage as we can use the files in this folder instead of going

through each sample folder to grab the sample vectors. To compare the data we first click on the
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“compare“ under the drop down menu in the green panel. A pop-up window of the “ForCompar-

ison“ will appear asking you to select the positive results. After clicking “OK“, another pop-up

window of the “ForComparison“ will appear asking you to select the negative results. Use the

research notebook to see what samples are at positive or negative helicity. You will notice that

these samples will fill up the table in the blue table. Verify that the positive sample is next to the

corresponding negative file. Then click “Continue“. If you select more or less negative profiles

than positive files the evaluation box will give you an error and you will have to run the command

again. Make sure you select the right amount of files. The program then runs the function for this

command. It will display magnetic ratio plots and dichroic plots and then save both these plots and

vectors in both the sample folders. They will not be saved in the “ForComparison“ folder.

In summary, this program is quick and easy to use. Most problems arise when the folder setup

process was not done correctly. It is case sensitive so make sure you spell each folder correctly.

Other problems arise when use you the program on different computers and the system directory

varies. It is common to rewrite the new system directory in the program and is an easy process as

you can use the “find“ and “replace all“ command in MATlab to write the system directory.



Appendix B

Graphs of Model Fits

Many XRMS profiles were made for the charge density function and the charge spin function. This

appendix shows the model fits for various samples and their dichroic effect plot. For the charge

density model only one sample was model to find the nanoparticle size, interparticle distances

and the distribution, see Figure B.1 and B.2. The tables that gathered this information is back

in chapter 3. However, because the main purpose of this research project is to find the magnetic

ordering of these nanoparticle assemblies more models were made to fit different samples and at

various external magnetic field values using the dichroic effect technique. Below in Figure B.3

and B.4 The tables that extracted information from these model fits are in chapter 4 for analyzing

purposes.
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Figure B.2 Models for all of the XRMS profile samples. Sample 5 was excluded due to
its poor signal and was unable to be modeled. The models were are to give information
about its average nanoparticle size, interparticle distances and distribution. The table that
extracted this information is in chapter 3.
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Figure B.3 The charge spin function was fitted on the magnetic ratio plots. The models
were performed on sample 2 through a magnetization loop starting at H=3000 to H=-3000
Oe. Only some of the images are displayed here.
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Figure B.4 The charge spin function was fitted on the magnetic ratio plots. The models
were performed on sample 3 through a magnetization loop starting at H=3000 to H=-3000
Oe. Only some of the images are displayed here.
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