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ABSTRACT

Correcting for Reflection Attenuation in the Extreme Ultraviolet Due to Surfce Roughness

Greg Hart
Department of Physics and Astronomy

Bachelor of Science

We quantitatively characterized the effect surface roughness has on extreme ultraviolet radia-
tion. This was done by taking the ratio of the reflectance of a surface with random roughness and
the reflectance from a perfectly smooth surface of the same composition and size. The reflectance
was calculated by numerically solving the exact integral equations for the electric and magnetic
fields for s polarization. The surfaces had low spatial-frequency noise in one direction and were
invariant in the other. The reflectance for the rough surface was averaged from many different
random surfaces. In order to determine the parameters that affect this ratio, we varied angle of
incidence, rms height of the roughness, thickness of the substance, real and imaginary parts of the
index of reflection, and frequency cut-off for the random noise on the surface. We determined that
in the extreme ultraviolet only the angle and rms height mattered. We did a fit to create a correction
factor and compared it to Debye-Waller and Nevot-Croce correction factors.
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Chapter 1

Introduction

1.1 Interest in XUV

The extreme ultraviolet (XUV) is the bridge between ultraviolet and x-ray with wavelengths be-

tween one and 100 nanometers. In recent years there has been an increased interest in XUV optics.

This interest arises from new applications and the possibility of realizing old applications.

For example, astronomy depends on electromagnetic radiation for virtually all of their discov-

eries; this means all wavelengths have the potential to contribute new understanding. XUV light

can be used to observe objects such as white dwarfs and redshifts of x-ray producers [1–3]. In

addition, XUV optics have recently found application in planetary science. The Earth’s magneto-

sphere traps singly ionized helium which gives off XUV radiation. Thus, XUV light provides a

way to observe the magnetosphere and how it changes over time [4, 5].

XUV optics also have applications in microchip fabrication [3, 6]. Many microchips are made

by the process of photolithography. Photolithography requires exposing photosensitive material

to an image of what is desired, causing it to be etched into the surface. Photolithography has

been around for many years and there has been much research into getting it to produce smaller
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2 Chapter 1 Introduction

circuits. This effort has been successful, producing several methods that allow manufactures to

create features smaller then the resolution of the light they are using [7, 8]. Even with these great

successes, using small wavelength light would give greater resolution allowing even smaller, and

hence, faster chips.

The field of microscopy also stands to benefit from improved XUV optics [9]. Particularly,

XUV offers benefits in looking at biological systems. XUV microscopes offer higher resolution

than visible light microscopes and easier sample preparation than electron microscopes. There are

ranges in the XUV where water is transparent and carbon is opaque [10], making it easy to see the

inside of a cell without staining it or similar preparation.

Realizing all of these applications require making improvements to XUV optics. Making optics

begins with understanding how the light interacts with material. When light impinges on a surface,

energy must be conserved. Therefore we have to be able to account for all the energy of the

incoming beam. After the interaction the energy is distributed between reflection, transmission,

and absorption. How the energy is distributed is dependent on the complex index of refraction, a

frequency-dependent property of the material

N = n+ iβ (1.1)

where n is the real part of the index of refraction and β is the imaginary part [3]. The imaginary

part of the index represents the absorption of the material. Both the real and imaginary parts of

the index are used to determine the reflected and transmitted portions of the light. The index of

refraction becomes the key to predicting how optics behave. Therefore BYU’s XUV group has

spent a lot of time to determine the index of refraction for different materials [11, 12].

Arbitrary light can be broken into two components or polarizations. The most common polar-

izations to use are s and p (see figure 1.1). S polarization (s stands for senkrecht, the German word

for perpendicular) is the part of the light whose electric field oscillates perpendicular to the plane

of incidence (the plane that the incident and reflected light are in). P polarization (p stands for par-



1.1 Interest in XUV 3

Figure 1.1 The geometry of s and p polarization. The plane of the page is the plane of
incidence.

allel, the German word for parallel) is the component whose electric field oscillates in the plane

of incidence. Since the electric field must be perpendicular to the direction of propagation, these

two polarizations are linearly independent, forming a basis for any problem. Also as we introduce

roughness we will assume that the surface is invariant perpendicular to the plane of incidence. This

ensures (with reasonable intensities) that the two polarizations are noninteracting. Allowing the

vector problem to be split into two uncoupled scalar problems.

With the light broken into components one can calculate what happens when it encounters an

interface between surfaces. This is done using the electromagnetic boundary conditions. The re-

flected and transmitted fields for each polarization can easily be calculated for an infinite flat abrupt

interface. Taking the ratio of these fields with the incident field gives the Fresnel coefficients [13].

For the reflected s and p polarizations the coefficients are respectively

rs =
Es

r
Es

i
=

N1 sinθi−
√

N 2
2 − cos2 θi

N1 sinθi +
√

N 2
2 − cos2 θi

(1.2)

and

rp =
E p

r

E p
i
=

N1

√
N 2

2 − cos2 θi−N 2
2 sinθi

N1

√
N 2

2 + cos2 θi +N 2
2 sinθi

(1.3)
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Figure 1.2 An illustration of reflections from a multilayer mirror.

where N1 is the index of the material the light is coming from, N2 is the index of the material it

is entering, and θi is the angle of the incident field measured from grazing (see figure 1.1). These

coefficients can be applied to the incident field to get the reflected field (including any phase shift)

or by squaring the magnitude we can get a coefficient for the reflected intensity

Rs = |rs|2 (1.4)

and

Rp = |rp|2. (1.5)

In the XUV range the real part of the index of refraction is close to one. The imaginary part

of the index of refraction is larger then zero. These general properties of the index of refraction

mean that materials are highly absorptive and poor reflectors. This is one of the difficulties in

building good XUV optics. In order to strengthen the reflected intensity, multilayer thin film

mirrors are used (see figure 1.2). If the layers are the right thickness the reflection at each interface

will constructively interfere with the others building a stronger reflection, however because of the

absorption, the layers should be as thin as possible. The problem of poor reflectance is further

compounded by the small wavelength of XUV light. A surface that looks perfectly flat to the eye

has all sorts of imperfection that are on the scale of the small wavelengths of XUV light.



1.2 Roughness and Surfaces 5

Figure 1.3 On the left is an example of perfect specular reflection. The right shows the
diffuse (or nonspecular) reflection results from mild imperfections in the surface.

1.2 Roughness and Surfaces

The derivation of the Fresnel coefficients assumes a perfectly flat infinite surface, so all the reflected

light is reflected at the same angle, known as the specular angle. When the surface is not flat, the

light is reflected at the range of angles instead of just the specular angle (see figure 1.3). This

nonspecular reflection is responsible for the observed decrease in reflected intensity.

To improve XUV optics it necessary to quantitatively understand how the surface roughness

attenuates the reflected intensity. The most common way to handle surface roughness is applying

a scalar correction factor [14, 15]:

R = R0C (1.6)

where R is the measured reflected intensity, R0 is the calculated reflected intensity off of a flat

surface, and C is the correction factor. This correction factor can be a function of many things:

properties of the material such as the index of refraction, the RMS roughness height of the surface,

the wavelength of light, the angle of incidence, etc. The most commonly used correction factors

are Debye-Waller or Nevot-Croce [16, 17]. They have the same form and are respectively

R = R0e−4q2h2
(1.7)
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Figure 1.4 Here is the geometry of the surface. The dashed line represents the corre-
sponding flat surface. The solid line is the actual surface. The arrows represent the wave
vector of the incoming light. θ is the angle the incoming light makes with the flat surface
and q is the component of the light’s momentum perpendicular to the flat surface.

and

R = R0e−4q1q2h2
(1.8)

where h is the RMS height, and q is the component of the momentum perpendicular to the flat

surface (see figure 1.4). Thus q is
2πN

λ0
sinθ (1.9)

where θ is the incidence angle from grazing, λ0 is the wavelength in vacuum, and N is the

index of refraction. For the Debye-Waller factor q is evaluated on one side of the interface. The

Nevot-Croce factor is a modification of Debye-Waller in which q is evaluated on each side of the

interface. Each produces accurate results for different angle ranges, but neither accurately covers

a large range of angles [18].

They both rely on the assumption that the rough surface is made from Gaussian noise around

the flat surface. We hope that using a more realistic surface model will produce a similar but more

accurate correction factor, applicable across a larger range of angles. This requires knowledge
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of what real surfaces look like. Our mirrors are created through the processes of sputtering or

evaporation. Depending on the details of the process (temperature, thickness, materials, annealing

conditions, etc.) the atoms have a degree of randomness in their locations. In most cases, there is

a tendency for the formation of locally ordered structures which removes some of this randomness

resulting in no big jumps or discontinuities in the surface. In most models, surface roughness

is characterized by the root mean square (RMS) height. Modeling the surface as heights with a

Gaussian distribution having a given RMS height can make the surface unrealistically jagged. A

more realistic way to produce the surface would be to have widely-spaced points whose height is

determined by a random Gaussian distribution giving the desired RMS height. Then the rest of

the surface is produced by smoothly connecting these points with a spline. The spatial-frequency

of this surface can be partially controlled by changing the number, and hence the spacing, of

the random points. To validate our surface models, Alex Rockwood examined several samples

using atomic force microscopy (AFM) [19]. This confirmed that the surfaces do have roughness

but it is closer to rolling hills than jagged rocks (see figure 1.5). He took a Fourier transform

of the surface. This revealed that real surfaces have low spatial frequencies. Observations of the

spline method in frequency space revealed that it did not consistently give spectrums similar to real

surfaces. Therefore in order to better represent real surfaces a frequency filter is used [20]. Surface

points are generated by the random Gaussian distribution, after which its Fourier transform is sent

through a low pass Gaussian filter whose standard deviation is controlled by a parameter called the

frequency cut-off (ω). This makes almost 70% of the frequencies smaller then ω . After the low

pass filter, if one is cautious with the phases, they can transform back to real space and get a low

spatial-frequency surface1 (see figure 1.5).

In the 1994 de Boer derived a more general correction factor that reduces to Debye-Waller and

1Making changes to the values in frequency space removes the garentee that the inverse transform will return all

real values. Thus after the filter is applied we can not just apply the inverse transform.



8 Chapter 1 Introduction

Figure 1.5 Each side is 50 wavelengths of a surface. The left side is a surface made with
random Gaussian noise. The right show the surface after the low pass filter is applied
leaving only the low frequencies from the noise.

Nevot-Croce in the angle ranges were each is most accurate and smoothly fills in the gap between

them [18]. His factor added an additional parameter representing the lateral length correlation.

This length correlation could be used to produce the low spatial frequencies found in real surfaces.

David Sterns also worked on the problem of reflections off non-ideal surfaces [21]. He developed

a general method for calculating the reflectance from any type of nonideal interface. Both de Boer

and Stearns’ derivations approximate the surface roughness as a perturbation of the smooth surface

and calculate the reflectance to first order. Stearns specifically assumes the reflections are weak.

Since our goal is to strengthen the reflectance this assumption may fail. Also we believe we can

do better than first order and understanding how each polarizations is affected has its place.

1.3 Previous Work

In order to find a correction factor we need the ratio of rough surface reflections to flat surface

reflections for many different surfaces at a large ranges of angles. To obtain this this data Jed

Johnson produced a program that very accurately calculates the reflectance from a rough surface

[22]. The problem is approached as a scattering problem with the surface, as mentioned earlier,

being invariant in one direction reducing the problem to two dimensions (see figure 1.6). Also for

simplicity he assumed that the material is nonmagnetic, i.e. µ = µ0. The total electric field is equal
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Figure 1.6 The incident (Ei) and scattered (Es) fields. The gray represents the object
causing the scattering. It is invariant in the ẑ direction. So only what is in the plane of the
picture matters.

to the incident field plus the scattered field

~E = ~Ei +~Es. (1.10)

The incident field is determined by the known initial conditions. The scattered field is produced

by currents induced on the scatterer by the incident field. Assuming the fields have harmonic time

dependence e−iωt , the familiar Maxwell equations can rewritten in the symmetric form

∇ · (ε0~E) = ρe (1.11)

∇ · (µ0~H) = ρm (1.12)

∇×~E = iωµ0~H−~K (1.13)

∇× ~H =−iωε0~E + ~J (1.14)

where ~H is the auxiliary field, ~B = µ~H and

ρe = ε~E ·∇
(

ε0

ε

)
(1.15)

ρm = µ~H ·∇
(

µ0

µ

)
(1.16)
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~K =−iω(µ−µ0)~H (1.17)

~J =−iω(ε− ε0)~E (1.18)

Having both electric and magnetic sources make the equations symmetric so the process of solving

for the electric field is identical to the one for the magnetic field. Therefore I will only show

equations for the electric field in the remainder of this discussion. Also note that these sources

represent bound soucres.

The incident field is source free and combining Maxwell’s equations gives the vecter Helmholtz

equation:

(∇2 + k2)~Ei = 0 (1.19)

where k2 = µεω2. Solving for the associated Green’s function

G(r,r′) =
i
4

H(1)
0 (k|r− r′|) (1.20)

where the primed coordinates are the source points, the unprimed coordinates are the observation

points (see figure 1.7), and H(1)
0 is a Hankel function of the first kind. The scattered field has

sources but Maxwell’s equations can likewise be combined to get

(∇2 + k2)~Es = ∇

(
∇ · ~J
iωε0

)
− iωµ0~J+∇×~K (1.21)

which looks like the Helmholtz equation but with sources. In fact the Green’s function from the

Helmholtz equation can be used to solve for ~Es. Right multipling by the Green’s function and

integrating over the scatterer gives

~Es =−∇

(
∇ ·
´
~J Gda′

iωε0

)
+ iωµ0

ˆ
~J Gda′−∇×

ˆ
~K Gda′ (1.22)

which is the scattered field in terms of the induced currents ~J and ~K. This can be written more

compactly as

~Es =−
∇(∇ ·~A)+ k2~A

iωε0
−∇×~F (1.23)
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Figure 1.7 Illustration of source and observation points. The red box represents a point on
the mirror where there is some surface currents creating fields (source point). The green
box represents a point on the surface that is feeling or observing the effects of these fields
(observation point). We will have currents all around the surface of the mirror so r′ will
be evaluated at every point on the surface. Also for each value of r′, r will be evaluated at
every point on the surface.

where the new potentials ~A and ~F have bene defined:

~A =

ˆ
~J(r′)G(r,r′)da′ (1.24)

~F =

ˆ
~K(r′)G(r,r′)da′. (1.25)

However since the medium is assumed to be homogenous there are on bound currents in the bulk

of the material. The only sources are surface currents. This reduces these integrals over the whole

scatterer to integrals over its surface (line integrals in this two dimensional setup).

With this the scattering equation can be written (1.10) as

~E = ~Ei−
∇(∇ ·~A)+ k2~A

iωε0
−∇×~F . (1.26)

Now taking advantage of polarization. The electric field equation (1.26) is used to solve for s

polarization and the corresponding magnetic field equation,

~H = ~Hi−
∇(∇ ·~F)+ k2~F

iωµ0
+∇×~A, (1.27)
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Figure 1.8 This figure shows how the coordinates are set up [22]. With z being the
invariant axis. The white area is vacuum, the gray area is the mirror, and the red is the
incident wave. Where n̂ points outward and the direction of t̂ is defined so that n̂× t̂ = ẑ.

to solve for p polarization. Again the method of solving the electric and mangentic equations are

identical. Continuing with only the electric equation, the s polarization corresponds to the z axis

(see figure 1.8). This allows us to use the z components instead of the full vectors. Since the

surface is invariant along the z axis the divergence of
⇀
Ais 0 and we can explicitly write out the curl

of
⇀
F . Also solving for the incident field we have

(Ei)z = Ez +
k2Az

iωε0
+

[
∂Fy

∂x
− ∂Fx

∂y

]
. (1.28)

The last thing we need to know is that the surface currents can be written in terms of the total field

~J = n̂× ~H (1.29)

~K = ~E× n̂. (1.30)

Since the z component of ~E is perpendicular to n̂ it is equal to the tangential component of ~K.

Finally we are left with an equation for the electric field. Outside of the material we have

(Ei)z = Kt +
k2

0(A0)z

iωε0
+

[
∂ (F0)y

∂x
− ∂ (F0)x

∂y

]
(1.31)
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where I have added subscripts to k, A, and F to indicate that they use the permittivity of free space.

Inside the material we have

0 =−Kt +
k2Az

iωε
+

[
∂Fy

∂x
− ∂Fx

∂y

]
(1.32)

where Ei is 0 inside the material, Kt picks up a negative sign because the direction of normal flips,

and I have dropped the subscripts because everything relies on the constants of the material. Now

we have equations for the incident field in terms of the surface currents, but we know the incident

field and want the scattered field. Since the currents produce the scattered field we can use these

equations to solve for the currents and thus the scattered field. The only problem is that the currents

are under the integrals in A and F so it has to be solved numerically.

Numerically solving an integral amounts to changing the integral to a sum of the function being

integrated, where the sum is over different points at which the function is evaluated. In our case

the integrals are the potentials A and F so the functions being integrated are the surface currents

multiplied by the Green’s function (evaluated at primed coordinates). How you go about replacing

the integral with a sum (i.e. a quadrature rule) imposes an approximation on the function. For

example the easiest rule is literally replacing the integral sign with a sum and changing the dx to

the distance between points. This approximates the function as a series of flat steps. We used a

third order rule, meaning it is exact for any function that is a polynomial of order 3 or less. This

gives us

Ei = K +
k0

4ωε0
∑

j
c jS jJ(r′j)H

(1)
0 (k0|r− r′j|)

+
ik0

4 ∑
j

c jS jK(r′j)
H(1)

1 (k0|r− r′j|)
|r− r′j|

[
cos(θ ′j)(y− y′j)− sin(θ ′j)(x− x′j)

]
(1.33)

where the c js are the weights from the quadrature rule, S j is the Jacobian, and everything else in

the last term came from the derivatives and geometry of the cross product. Now to finish it off

the unprimed variables need to be evaluated at specific points. This is done using the Nystrom

Method, which uses the same points for the unprimed variables as those used for the integrals
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(primed variables). This gives a system of equations

Ei(rk) = K(rk)+
k0

4ωε0
∑

j
c jS jJ(r′j)H

(1)
0 (k0|rk− r′j|)

+
ik0

4 ∑
j

c jS jK(r′j)
H(1)

1 (k0|rk− r′j|)
|rk− r′j|

[
cos(θ ′j)(yk− y′j)− sin(θ ′j)(xk− x′j)

]
. (1.34)

Now the integral with K has a singularity that needed to be treated with more care then I have done

here, but when done right it only changes K by 1
2 . Which yields a matrix equation E

0

=

 N0 +
I
2 M0

N− I
2 M


 K

J

 (1.35)

where I is the identity matrix and M and N represent matrices with the coefficients of their respec-

tive currents from (1.34) and the subscripts indicate which constants to use. This type of equation

(1.35) can be solved by any linear algbra software package. We can choose how accurately to

calculate the currents by how finely the surface is discretized.

1.4 Research Scope

The overall goal of this research is to developed an empirical correction factor that is more accurate

than Debye-Waller or Nevot-Croce and covers a larger range of angles and also is more applica-

ble and easier to use then Stearns’ or de Boer’s methods. In order to accomplish this Johnson’s

scattering model was used to produce reflectance data. With the large amounts of data for this re-

search a faster way of running the model was necessary. The code was changed from MATLAB to

compiled FORTRAN. This increased its speed by about 100 times. It was also moved onto BYU’s

supercomputer. In addition to running faster, on the supercomputer we can use multiple processors

to run several data sets at the same time. It also offers more memory allowing for larger data sets

and modeling larger mirrors.
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Once the model was running correctly on the supercomputer we could start looking at what pa-

rameters effects the reflection. The parameter’s effects were determined by varying one parameter

at a time and comparing the difference. In the interest of accuracy for each set of parameters the re-

flectance was averaged over many surfaces with different random roughness. With the parameters

making the biggest difference identified, the data was fit with those parameters as the variables.

This gave the correction factor valid in the XUV range.
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Chapter 2

Procedure

2.1 Problem Setup

Our model of the mirror breaks it up into four surfaces: top, bottom, and two sides (see figure 2.1).

The two sides are represented as semicircles whose diameters equal the thickness of the mirror.

The line integrals in (1.26) require the surface to be continuous; the sides are necessary to contin-

uously connect the top and bottom surfaces. If the surface is not continuous the surface currents

develop singularities1. Aside from introducing numeric difficulties, these singularities physically

mean large amounts of charges are building up, which is unrealistic for our mirrors. Since we are

interested in thin film mirrors the sides have a small affect on reflections and their affect mostly

shows up in the diffraction pattern. The bottom surface is important in multistack mirrors, but

since this research is interested in the attenuation of reflections due to surface roughness the bot-

tom surface is unimportant. Accordingly we made the bottom surface flat and normally had the

absorption high so very little light would reflect off the bottom and make it make to the top of the

mirror. The top surface is the one the light impinges on and hence is the one that we are studying.

1The first derivative also needs to be continuous. Fulfilling both of these requirements has proved difficult, and

there is still room for improvement in generating the surfaces.

17
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Figure 2.1 This is an example surface. Both axes are in units of wavelength but the aspect
ratio is not 1:1. The surfaces are very long and skinny. The ends are semi-circles even
though they look almost flat in this figure. The bottom is flat and the top has rms height
of 0.1 wavelengths.

We are setting the mirrors to be long and skinny. They are typically 100 wavelengths long and

generally about a wavelength thick.

Using the algorithm developed by Johnson (see section 1.3) and BYU’s supercomputer we

were able to calculate data for large numbers of random surfaces. Our goal was to determine what

parameters significantly affected the reflectance and then to create a fit with those parameters as

variables. So far we have only used the s polarization. Since the correction factor is equal to the

ratio of the measured (rough surface) reflectance to the theoretical (flat surface) reflectance we also

calculated the reflectance from a flat surface with the same parameters and output the ratio. The

ratio was specifically of the peak intensities. We used peak intensities because in our experimental

setup the detector is narrow. However these results may not be valid for a larger detector that may

get extra intensity from side lobes or a boarder main lobe. Each set of parameters were used for

100 different random rough surfaces. After taking the ratio of reflectance the mean was calculated.

We explored the affects of mirror thickness, frequency cut-off, and the real and imaginary parts of

index of refraction. Each was viewed at a range of incident angles and rms roughnesses.



Chapter 3

Results

3.1 Results

Since we anticipate that our correction factor will have the same form as Debye-Waller and Nevot-

Croce and in order to better compare them, rather than plotting and fitting the ratios of reflectance

we use the negative natural log of the ratio (− ln( R
R0
)). Thus we are finding and looking at the

exponent of the correction factor. This means that on the graphs moving in the positive y direction

means more attenuation of the reflectance. Also since our surface is invariant along the z axis

we do not get scattering in that direction. While a real surface has scattering in both directions.

However the roughness will not have a preferred direction so the attenuation should be the same

for both dimensions. Putting both direction together put a factor of
√

2 in the exponent. With this

added factor we can truly compare our correction factor with Debye-Waller and Nevot-Croce.

As we varied the different parameters we used the following for the parameters that remained

constant: the imaginary part of the index of refraction was 5. This caused high absorption so that

there was little affect from the back side of the mirror allowing us to focus on what happens on the

top surface. The real part of the index was 0.9, since n is close to one for materials in the XUV. The

19
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Figure 3.1 A plot of the -ln( R
R0

) for varying frequency cut-offs on the Gaussian noise
(ω). Five cut-offs from ω = 0.2 to ω = 0.05 inverse wavelengths. For each cut-off value
the reflectance ratio was calculated at 80 difference values of qh. It appears to follow a
parabola.

thickness of the mirror was about 1 wavelength. The frequency cut-offs were 0.1 and 0.2 inverse

wavelengths. The rms height varied from 2.5% to 10% of a wavelength and the angle from 5◦to

85◦.

The first parameter we tested was the width of the Gaussian filter used to cut-off the frequency

of the noise. We used frequency cut-offs from 0.05 inverse wavelengths to 2 inverse wavelengths.

For the higher frequencies (2 to 0.2 inverse wavelengths), the ratio of the reflectance varied signif-

icantly as the cut-off frequency changed. However, as mentioned earlier, surfaces of actual XUV

mirrors do not have high frequency noise and these frequencies (2 to 0.2 inverse wavelengths) are

above what was observed to be realistic [19]. When examining only results from surfaces with

a frequency cut-off of 0.2 inverse wavelengths or lower there was much less spreading in the re-

flectance ratio (see figure 3.1). As long as the frequency cut-off is below 0.2 inverse wavelengths,

which it usually should be to model real surfaces, it causes little variation in the ratio of reflectance.

However at the shorter end of our wavelength range the spatial-frequencies climb above this and

start having greater effects. Accordingly further research into the effect of the spatial-frequency
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Figure 3.2 A plot of the -ln( R
R0

) for varying real part of the index of refraction (n). Six
values of n from n = 0.1 to n = 0.92 . For each n value the reflectance ratio was calculated
at 80 difference values of qh. It appears to follow a parabola.

would allow the surface roughness to be characterized by a parameter that is a function of both rms

height and spatial-frequency.

The next parameter tested was the index of refraction. The difference between Debye-Waller

and Nevot-Croce is how the index of refraction affects the attenuation of the reflectance. Does the

index from the second material matter or just the index of the first material (vacuum in our case)?

When finding the reflectance from a flat surface, the index of refraction plays a role because it

appears in the Fresnel coefficients. By taking the ratio of the reflectance of the rough surface and

the flat surface, the Fresnel coefficients cancels and thus the effect of index disappears. Since in

our model we are always coming from vacuum we can vary the index of refraction of the mirror

and determine if both indexes are needed when correcting for roughness.

We started by varying the real part of the index of refraction (n). We used values of n from 0.1

to 0.92. In the XUV n ≈ 1 for most materials. So this range of values extends beyond what we

expect to encounter. The spread of the reflectance ratios is very narrow (see figure 3.2) . In fact the

spread in our ratios is smaller then the difference between Debye-Waller and Nevot-Croce for a
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Figure 3.3 A plot of the -ln( R
R0

) for varying imaginary part of the index of refraction (β ).
Six values of β from β = 0.01 to β = 15. For each β value the reflectance ratio was
calculated at 80 difference values of qh. It appears to follow a parabola.

single n. This shows that, at least for the real part, the index of the second material does not matter.

So having a single q, as the Debye-Waller factor does, looks promising.

Next we explored the affect of the imaginary part of the index of refraction (β ). We varied β

from 0.01 to 15. While XUV materials tend to be very absorptive this range going higher than what

we expect to encounter. For the values of β ≤ 1 there was significant interference from the bottom

surface. However as we increase β beyond one, this interference drops off and we find that β has

little affect on the change in reflectance (see figure 3.3). Combining this with the results from the

real part of the index we can conclude that attenuation in the reflection caused by roughness is

independent of the complex index of the material from which it is reflected.

3.2 Issues

As can be seen in the previous figures (3.1, 3.2, and 3.3) there are always several values of qh

for which the reflectance ratio greatly differs from the values of the neighbors. Examining these



3.2 Issues 23

Figure 3.4 A plot of the -ln( R
R0

) for varying thickness of the mirror (t). Six thicknesses
from t = 1 to t = 10 wavelengths. For each thickness the reflectance ratio was calculated
at 80 difference values of qh.

qh values we found that they all have the same incident angle. Thinking that these spikes arose

from interference with the back surface we also explored the affect of thickness on the reflectance.

We varied the thickness for 1 to 10 wavelengths, making sure to use thicknesses that were both

an integer number and irrational number of wavelengths. Unsurprisingly the location of these

spikes change with thickness (see figure 3.4), showing dependence. However, when the thickness

is changed by an integer multiple, the spike–surprisingly–does not move back to where it started;

which is expected if it were due to interference from the back surface. We run over a smaller angle

range, centered on the spike, with higher resolution and found that the spike is not at a single point

but is a small oscillation (see figure 3.5).

Calculating the reflection off a flat surface for a large range of angles for each incident angle

revealed that in addition to getting a strong specular reflection there was always some reflection at

the angle of the spike. This same nonspecular reflection at a fixed angle does not show up with the

rough surfaces leading to the sudden change in reflection attenuation. This nonphysical behavior

lead to the discovery that the matrix in (1.35) is not well conditioned. Particularly the eigenvalues

around the problematic angle are close to zero. We are still seeking for the best fix for this problem



24 Chapter 3 Results

Figure 3.5 A plot of the -ln( R
R0

) over an angular range of 24 to 34 degrees with a fixed h
and angular resolution of 0.1 degrees.

(see Section 4.2), but in the mean time I throw out the data near the problematic angle before doing

anything with the data.
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Conclusion

4.1 Conclusion

To find the correction factor we fit the data from varying the cut-off frequency to a third order

polynomial. We assumed that the constant term was zero because when qh is zero either the

surface is flat (h = 0) or we are just grazing the surface (θ = 0) and then roughness should have no

effect. From the fit we have

−0.28qh+3.58(qh)2−0.87(qh)3

where the errors on the coefficients are 6%, 33%, and 39% respectively. This gives an overall

correction factor of

e0.28qh−3.58(qh)2+0.87(qh)3
.

While this is similar to Debye-Waller it exhibits smaller decreases in the reflection (see figure 4.1).

We found that this factor does depend on the rms roughness and angle of incidence. We also

looked for correlations with index of refraction, and spactal frequency. However no correlation

was discovered and if these parameters are kept within realistic ranges for the XUV, their affect

on the reflectance is small compared rms height and incident angle. While our correction factor is
25
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Figure 4.1 This figure compares the fits with the existing correction factors. The top to
curves are the Debye-Waller and Nevot-Croce factors. The lower curves are the fits of the
data for varying the frequency cut-off. There is a curve for each value of the cut-off as
well as one for the aggregation of all data. The actual data is overlaid for comparison.

similar to Debye-Waller it exhibits smaller decreases in the reflection (see figure 4.1). In addition

to having a quadratic term (whose coefficient is slight smaller) we have linear and cubic term which

have the opposite sign of the quadratic term. This new correction to the reflectance will allow for

improvements in XUV mirror design and fabrication.

4.2 Further Work

As we push forward the first order of business is finding the best solution to our ill-conditioned

matrix. The most direct way through singular value decomposition. Rather than directly inverting

the matrix decompositing it into a product of three matrices where the middle one is diagonal with

the singular values. This allows one to detect and eliminate the problematic singular values and

then solve by inverting each of these three matrices. While all of these matrices invert easily the

decomposition is very costly, time wise. Another option is to combined the electric and magnetic
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equations instead of solving the individually for the different polarizations. This is helpful because

the ill-conditioned part of the matrix corresponds to strong resonant currents that do not radiate.

Since these resonances happen in different places for the electric (equation 1.26) and magnetic

(equation 1.27) fields, combining the equations allows the resonances to suppress each other. A

third option is to use an iterative solution. This essentially works by guessing the answer, then

plugging it in to see how far off it is. This is used to refine the guess and try again. Using physical

optics we could get our intial guess close enough that this method could be faster then our current

one. Also, iterative solutions can take advantage of special structure in the matrix and can be less

sensitive to ill conditioned systems.

Once a suitable solution is found and implemented we will start looking at nonspecular reflec-

tion. With concerns about the accuracy of the AFM measurements [12], we desire a better way to

measure the surface. With our computational model and the extreme small measurements we are

capable of in the lab we feel that by measuring the nonspecular reflections we can determine learn

about the surface. We should be able to find a relationship between the rms roughness and spatial

frequency of the surface. This information can be used to adjust or recalibrate the AFM to give

more accurate measurements of the surface.

Also the computational model makes no assumptions that limit its use to the XUV. It is derived

generally in terms of wavelengths and can be used in problems across the whole EM spectrum.
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