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ABSTRACT

How Cosmological Flatness Affects Neutrino Properties

Aaron Smith
Department of Physics and Astronomy

Bachelor of Science

Cosmological data provide new constraints on the number of neutrino species and neutrino
masses. However these constraints depend on assumptions related to the underlying cosmology.
Since a correlation is expected between the number of effective neutrinos Ne f f , the total neutrino
mass ∑mν , and the curvature of the universe Ωk, it is useful to investigate the current constraints in
the framework of a nonflat universe. We provide an introduction to modern cosmology, placing an
emphasis on topics relevant to constraining neutrino parameters with the latest cosmic microwave
background (CMB) anisotropy data. The theoretical framework is designed to condense a wide
variety of resources and make them available for students with similar research interests. We
consider how cosmological flatness affects neutrino properties by providing theoretical arguments
for correlation and performing statistical analyses on cosmological models involving neutrinos.
We place new constraints on Ne f f and Ωk, with Ne f f = 4.03± 0.45 and 103 Ωk = −4.46± 5.24.
Thus, even with a nonflat universe, Ne f f = 3 is still disfavored with 95% confidence. We then
investigate the correlation between neutrino mass ∑mν and curvature Ωk that shifts the 95% upper
limit of ∑mν < 0.45 eV to ∑mν < 0.95 eV. Thus, the impact of assuming flatness should be an
essential consideration for future neutrino analysis in experimental cosmology.

Keywords: cosmology, cosmic microwave background, effective neutrino number, neutrino mass,
curvature
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Chapter 1

Introduction

Where do we fit in the grand scheme of things? Non-scientific searches can lead to very differ-

ent answers, but for many this discovery motivates a systematic approach to understanding the

cosmos. In the realm of the observable Universe this is exactly what cosmology is about! In

fact, fundamental physical principles allow scientists to “put a face” to the Universe. The precise

questions addressed in this work involve the mysterious properties of neutrinos, which are weakly

interacting, electrically neutral leptons important for nuclear decay processes. The standard model

of particle physics allows for three types of massless neutrinos, however, it is now known that

this picture is incomplete because neutrinos do have mass! Furthermore, cosmological data place

doubt on the effective number of neutrino species. This chapter provides the necessary context and

background required in order to study the properties of neutrinos from a cosmological perspective.

1.1 Evidence for additional neutrino species

Data from the cosmic microwave background (CMB) provide constraints on the composition and

structure of the Universe. The most recent data suggests the presence of more than three effective

neutrino species Ne f f . Indeed, a recent paper claims that “the number of neutrinos is greater than

1
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the standard model value with 98.4% confidence” [2]. This statistic, as radical as it may appear,

has been substantiated by others undertaking similar analysis with cosmological data (cf. [3, 4]).

Throughout the thesis we are comfortable with the notion of additional neutrino species.

Where do these additional neutrinos come from? No one yet knows for sure, but theorists offer

several possibilities. We briefly mention some ideas but stress a detachment from excessive spec-

ulation on this topic. The more exotic models include arguments for sterile neutrinos or modified

dark energy [5–7]. Indeed, an increasing number of cosmologists and particle phenomenologists

prescribe to a (3+1) or (3+2) model for neutrinos. This includes three active massive neutrinos and

one or two sterile neutrinos [8, 9]. In this work we emphasize that the “effective neutrino num-

ber” is just that—effective. In other words, although something is producing the same signature in

CMB data as neutrinos, the effect may be due to something entirely different than physical neu-

trinos. Therefore, the high neutrino number does not necessarily debunk what has been learned

from the standard model of particle physics. At this point we postpone further discussion about

cosmological neutrino physics until Section 1.4, where the properties are described in full detail.

This thesis explores possibly overlooked parameter degeneracy with the curvature of the Uni-

verse. If the parameter space is degenerate, or admits correlation, then statistical analysis is silent

as to whether a result is due to the original parameter or the related parameter. In general, the

freedom from such degeneracy is decreased with each improved experiment because parameter

constraints are tightened. At the same time if additional parameters are considered in a model then

the uncertainty of degenerate parameters increases. The qualitative effect is shown in Fig. 1.1 with

a distribution, or ‘cloud,’ of data for the parameters under consideration. In fact, the distribution

will change based on the assumptions made by the model. The strength of the correlation is a

good indication that there may be deeper physical connections between the parameters. Thus, we

attempt to explain degeneracy and hope for an extended parameter space more consistent with the

standard model value of three neutrino species. The key concept is that statistical analysis of CMB
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Strong Correlation Weak Correlation

Figure 1.1 Examples of strong (left) and weak (right) correlation. Following Hubble’s
work in 1929, one might infer a relationship between distance and radial velocity among
extra-galactic nebulae. In an analogous manner, the assumptions made by the model may
produce slightly different outcomes and infer different contour constraints. The axes are
intentionally left blank to focus on the strength of the correlations, however, one might
imagine plotting doppler redshift as a function of distance.

data are specific to the prescribed model. Thus, a model may be driven by physical principles

but the data may provide surprising results (e.g. cosmic acceleration, additional neutrinos, etc.).

With this motivation in mind, evidence for correlation between curvature and neutrino properties

is revealed by the theoretical arguments of Chapter 2 and computational results of Chapter 3.

1.2 The cosmic microwave background

Experimental cosmology has benefited from accurate measurements of the cosmic microwave

background (CMB) [10,11]. Data from the CMB is emphasized in this thesis because of the recent

cosmological advances gained from it. However, CMB data is coupled with other experiments,

such as redshift surveys, to provide improved statistical inference. Current parameter estimation

from the CMB focuses on tightening fundamental constraints [11–13] as well as exploring models

for extended parameter spaces [14]. The data have determined constraints on several cosmological
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parameters to remarkable accuracy, including parameters not included in standard models [15].

Furthermore, the ability to constrain new physics with the CMB continues to improve (Contrast

the progress made between [16] and [11] constraints). Future CMB experiments may even be able

to settle outstanding questions in cosmology. Some examples are early magnetic B-mode polar-

ization effects from the Big Bang [17] and discrimination of competing neutrino mass models (see

Subsection 1.4.2 and Refs. [18, 19]). The physical insight from these measurements may be as

important to modern cosmology as the discovery of the dark energy acceleration of the Universe.

The cosmic microwave background is one of the most powerful probes of the early universe. In

fact, the CMB is comprised of the first photons able to travel through space without being scattered

by the dense but expanding Universe. This “surface of last scattering” formed approximately

380,000 years after the Big Bang is the oldest radiation that cosmologists can currently detect.

Before the CMB, the Universe formed in a state of approximate equilibrium, so the measured

radiation is manifest by an omnipresent blackbody spectrum in the microwave range. This is

the source of the 3K background temperature of space, as measured by the COsmic Background

Explorer (COBE) satellite. The COBE blackbody curve shown in Fig. 1.2 is so precise that the

error bars are too small to be seen. The result is that “theory and observation agree,” or in other

words the Universe is extremely isotropic (i.e. it looks the same in every direction). Although

the quality of COBE was phenomenal for its time, CMB data has improved dramatically since the

COBE result. So much so that the CMB has become the iconic testing ground for the physics of

Big Bang cosmology [20, 21].

With the aid of precision experiments the slight deviations from isotropy may be measured and

connected to the underlying physics. In fact, the deviations from blackbody equilibrium predict

observable anisotropies in different parts of the sky. This should be expected because we know

the structure of the Universe forms anisotropic clumps (i.e. stars, galaxies, or clusters of galaxies).

These predicted temperature fluctuations are sensitive to cosmological parameters which allows
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Figure 1.2 The 2.725±0.002K blackbody curve of the CMB as measured by the COBE
satellite. John Mather and George Smoot were awarded the 2006 Nobel Prize in Physics
for the first detection of the CMB temperature fluctuations. The error bars are too small
to be seen in the plot, which explains the phrase “theory and observation agree.” The unit
along the vertical axis is erg(cm sr sec)−1, which is related to SI units by 1MJy sr−1 =
2.9979×10−7 erg(cm sr sec)−1. Figure from Ref. [22].

statistical constraints to be placed on the model parameters. The information regarding CMB

anisotropies is best described by a harmonic decomposition to form the temperature power spec-

trum. The large scale structure of the universe is a consequence of early cosmological events and

the rich physics thereafter (See Section 1.3.1).

Finally, we conclude this section with a summary of the various experiments designed to mea-

sure the fluctuations in the CMB. The Wilkinson Microwave Anisotropy Probe (WMAP) has col-

lected seven years of anisotropy data across the entire sky [11]. The scope and experience of

WMAP have set the standard for analysis of the temperature power spectrum, however, the resolu-
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tion is not high enough to measure very small scale CMB fluctuations. For high multipole modes

in the spherical harmonic decomposition there are ground based experiments. In fact, the South

Pole Telescope (SPT) [12] and the Atacama Cosmology Telescope (ACT) [13] are complementary

to WMAP because they have the resolution for the smallest scales but only cover a small portion

of the sky. Thus, WMAP satellite can be used for low mode spectral data (` < 900) and the ground

based experiments SPT or ACT can be used for high modes (up to ` ≈ 10,000), a portion of the

spectrum referred to as the “damping tail” [23, 24]. SPT and ACT are also at different bandwidths

so the combination may provide additional insights. It is hoped that upcoming Planck data will

further improve our understanding of cosmological parameters [19, 25], but at this point we pro-

ceed with the latest publicly available data. Before we explore the specific methods of constraining

cosmological parameters (See Chapter 2) we review some key concepts in modern cosmology.

1.3 Modern cosmology

1.3.1 Cosmic history

In the context of a Big Bang cosmology, the Universe has undergone epochs of both rapid change

and slow structural evolution. We now provide a timeline of significant events in cosmic history in

order to give context to the importance of CMB data. It is also important to understand the early

Universe because the initial conditions help determine the remainder of the structural evolution.

Furthermore, the energies attained during the first second of cosmic history are significantly higher

than any experiment on earth so cosmology may be the ultimate arena for exploring questions about

fundamental physics. In particular it requires an extension of gravity to scales that are small enough

for quantum effects to play a significant role. The events of the early Universe happen quickly so

hang in there as we start with the first second!

Currently, a theory known as “inflation” proposes a period of rapid expansion as the grand
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Figure 1.3 A graphical timeline of significant events in cosmic history. Figure from
Ref. [26].

advent of the Universe. The expansion from inflation acted to smooth out any unevenness in the

primordial spacetime, however, small quantum fluctuations were also blown up to astronomical

sizes. This properly explains both the large scale homogeneity of space and the emergence of

galaxies from the preexisting overdensities. Now it is somewhat meaningless to talk about times

before 10−43 s because this corresponds to distances shorter than the Planck length, `p =
√

h̄G/c3.

In fact, events up to about 10−36 s are not well understood because they occur at energies higher

than those found in most Grand Unified Theories (GUT). However, around this time inflation kicks

in and lasts until at least 10−33 s. This is a hot topic of research in cosmology but all inflationary

models include a source of negative pressure density to drive expansion. After inflation ends the

Universe continues to cool as it expands. Then by around 10−10 s (corresponding to an energy of

1 TeV), the “cosmic plasma” has gone through supersymmetry (SUSY) breaking and baryogenesis

(i.e. the process that produced more baryons than antibaryons). At this point the governing physics

is well understood and we may trace out the evolution through the quark-hadron transition (10−4 s),
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nucleon freeze-out (10−2 s), neutrino decoupling (1 s), and Big Bang nucleosynthesis (BBN at

3 minutes). This completes the rapid evolutionary “bang” of the Big Bang.

The next 13.7 billion years is determined by the cooling effects of expansion. The Universe

was first dominated by radiation produced from the Big Bang, then was dominated by matter

throughout structure formation, and is currently dominated by dark energy. The important event

for the CMB is called recombination (∼ 380,000 years) because this is when the cosmic plasma

is cold enough for electrons to “recombine” with their constituent nuclei. After this point, the

Universe enters a period known as the “dark ages” because very little is happening. The situation

is one of no stars or galaxies. Instead a tenuous medium of neutral atoms float around with very

small departures from homogeneity. Eventually, gravitational attraction localizes any overdensities

to regions where inflation ended soonest. This process is called “seeding” because the matter

clumps together through weblike structures that will eventually become stars and galaxies. The

first photon signals after the dark ages come from the reheating of the Universe as matter collects.

Thus the era is aptly named “reionization” because electrons disassociate from their corresponding

nuclei. Finally, galaxies as we know them first began to form when the Universe was about half a

billion years old. As telescope technology improves over time we may observationally track the

statistical properties of the large scale structure to the present time. Our own solar system was

formed over five billion years ago. See Fig. 1.3 for a graphical timeline of these significant events

in cosmic history. We will revisit particular epochs as needed during further discussion.

1.3.2 Relativistic framework

In general, the physics of the entire Universe is much too complicated to handle exactly so we

use models to approach the problem one step at a time. In this sense it is important to realize

the mathematics we introduce is used as a tool to understand the underlying physics. Thus, in

the framework of relativistic cosmology the fluctuations in the CMB originate as perturbations of
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much simpler cosmological solutions in general relativity. We review the most relevant aspects

of relativity for cosmological applications and refer the reader to Refs. [20, 27] for more detailed

treatments. The metric is a geometric tool that relates distances in spacetime, a kind of generalized

pythagorean theorem where the time coordinate is included as well. The underlying physics is

more important than the relative coordinates, so all equations are written in the invariant language

of tensors, or multi-indexed objects. The Einstein summation convention shortens the notation

by assuming an implied sum over repeated indices. With this in mind, the Friedmann-Robertson-

Walker (FRW) metric for a flat, homogeneous, and isotropic universe in cartesian coordinates

(t,x,y,z) is

gµν =



−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)


, (1.1)

which induces the following line element for measuring infinitesimal distances:

ds2 = gµνdxµdxν = −dt2 + a2(t)
(
dx2 +dy2 +dz2) . (1.2)

Note that in spacetime, the components dxµ = (dt,dx,dy,dz) are treated on equal footing except

for a relative minus sign in front of the squared time component. However, this allows for the

propagation of light along null vectors (i.e. ds2 = 0).

In fact, the Lorentzian form of the metric, i.e. the (−+++) signature asymmetry of time

with space, explains the presence of a gravitational force in curved spacetime. The geometry is

essential so we define vector fields at each point and parallel transport vectors from nearby points

to establish a generalized notion of the derivative. For the covariant derivative ∇ this is done by
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defining the Christoffel symbols Γ as a way to connect different points in spacetime:

∂ → ∇ where ∇µT α

β
= ∂µT α

β
+Γ

α
σ µT σ

β
−Γ

σ

µβ
T α

σ (1.3)

and Γ
µ

αβ
=

1
2

gµν
[
gαν ,β +gβν ,α −gαβ ,ν

]
. (1.4)

The comma denotes differentiation with respect to the coordinate xµ so that f,µ ≡ ∂ f/∂xµ . The

Christoffels are used to construct a measure of curvature called the Ricci tensor:

Rµν = Γ
α
µν ,α −Γ

α
µα,ν +Γ

α

βα
Γ

β

µν −Γ
α

βν
Γ

β

να , (1.5)

and its contraction or trace, R = gµνRνµ , known as the Ricci scalar.

This construction communicates the presence of spacetime geometry whereas the stress-energy

tensor T describes the matter and energy content of the Universe. In practice, a symmetric Ein-

stein tensor G satisfying special properties (i.e. the Bianchi identities given by ∇µGµν = 0) is

hand-picked to mirror the physical properties of the stress-energy tensor T (i.e. conservation laws

derived from ∇µT µν = 0). The final results needed for relativistic cosmology are the deduced

Einstein equations themselves:

Gµν ≡ Rµν −
1
2

gµνR =
8πG
c4 Tµν . (1.6)

Note that cosmologists tend to use units where the speed of light and the gravitational constant

simplify the equations so that c = 8πG = 1. Equation 1.6 simply relates the fact that ‘matter tells

space how to curve, and space tells matter how to move.’

1.3.3 The Lambda-Cold Dark Matter (ΛCDM) model

The Friedmann equations of cosmology are deduced by assuming a perfect fluid embedded in the

FRW spacetime of Eq. 1.1. The stress-energy tensor for a perfect fluid with energy density ρ and

pressure p in a comoving reference frame of uµ = dxµ/dτ = (1,0,0,0) (i.e. spatial coordinates
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Parameter w ρ(a) Parameter w ρ(a)

ΩΛ −1 a0 Ωm, Ωb 0 a−3

Ωk — a−2 Ωγ , Ων
1
3 a−4

Table 1.1 The equation of state w≡ p/ρ and corresponding energy density dependence
ρ ∝ a−3(1+w). The parameter contributions correspond to dark energy ΩΛ, curvature Ωk,
cold dark matter Ωm, baryons Ωb, photons Ωγ , and neutrinos Ων .

remain fixed in the expanding spacetime) is

T µ

ν = gµσ Tσν = (ρ + p)uµuν − pδ
µ

ν

= diag(ρ,−p,−p,−p) . (1.7)

Therefore, putting the left and right hand sides of the Einstein equations together (see Eq. 1.6) the

general Friedmann equations for flat space are [21]:

H2 ≡
(

da/dt
a

)2

=
ρ

3
and

dH
dt

+H2 =−ρ +3p
6

. (1.8)

We have associated a derivative of the scale factor with the Hubble constant so that relativity

connects directly with observation. Fundamentally, the Hubble parameter may be visualized as the

proper velocity of the scale factor (i.e. H = da/dτ = (da/dt)/a where t is the usual cosmic time

and τ is the proper time in the FRW spacetime). At this point we combine the two parts of Eq. 1.8

to reduce them to a single continuity equation

dρ

dt
+3H(ρ + p) = 0 . (1.9)

This is done in an effort to extract a simple yet realistic model for the Universe.

The Lambda-Cold Dark Matter (ΛCDM) model makes the assumption that the pressure p and

the energy density ρ are proportional to each other. This simplifies the Friedmann continuity

equation by distinguishing the contributions of various types of matter and energy. Thus, we may

use the equation of state parameter w≡ p/ρ to solve Eq. 1.9 as

ρ ∝ a−3(1+w) . (1.10)
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The ΛCDM model is very flexible and allows the total energy density to be comprised of matter

with different equations of state. Table 1.1 provides a summary of these solutions under different

forms of energy. For example, from statistical mechanics the equation of state is known to be

ρ = 3p so the energy density scales as a−4. For all contributions in this model we define the total

energy density as ρ ≡ ∑ρi and the total pressure as p ≡ ∑ pi so that the total equation of state is

given by wi ≡ pi/ρi. Furthermore, for each component it is useful to define the ratio of the present

energy density to the critical energy density ρcr,

Ωi ≡
ρi

ρcr
where ρcr ≡

3H2
0

8πG
. (1.11)

Note that we could affix a subscript “0” to signify the present value so that the Hubble constant H0

is the present value of the Hubble parameter H. Under this final simplification Eq. 1.8 reduces to

the compact statement
H2(t)

H2
0

=
ρ

ρcr
= ∑

i

ρi

ρcr
. (1.12)

The ΛCDM parameter space allows for many different types of universes, however, the point

of the model is to find the one that matches the Universe in which we live. A surprisingly simple

but accurate description is given by assuming only dark energy with ΩΛ∼ 0.7 and cold dark matter

with Ωm ∼ 0.3. To emphasize the simplicity we take Eq. 1.12 to a final explicit equation for the

Hubble parameter as a function of the redshift factor z = 1/a−1

H(z) = H0

√
ΩΛ +Ωm(z+1)3 . (1.13)

Finally, we note that the ΛCDM model is easily extended to include contributions from curvature

Ωk, photons Ωγ , neutrinos Ων , and baryons Ωb. A summary of equations of state wi and densities

ρi(a) for the most common energy contributions may be found in Table 1.1.
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1.3.4 Parameter constraints

The ΛCDM model assumes isotropy so it needs to be extended in order to infer parameter con-

straints from the anisotropic CMB. However, as stated above the simple model is a surprisingly

good approximation to our Universe on large scales. Thus, the next step is to assume small pertur-

bations on top of the original solutions. The perturbations need to be inserted into all sources of

anisotropy; including the metric, the temperature, and matter densities. It turns out that these equa-

tions cannot be solved exactly so we rely on numerical calculations for the results of Chapter ??.

However, we now introduce the connection between these perturbative effects.

The early Universe consisted of a dense cosmic plasma with small deviations from an equilib-

rium state. The study of nonequilibrium mechanics is considerably more complicated than what

is taught in an introductory thermodynamics course but basic ideas are extensions of familiar con-

cepts. The formulation is based on the Boltzmann equation, which consists of an integrodifferential

equation over the phase space (See Ref. [20] for details). The essential idea is to relate the change

in a distribution f to the physical and state variables (x and p respectively) via the chain rule

d f
dt

=
∂ f
∂ t

+
∂ f
∂xi ·

dxi

dt
+

∂ f
∂ pi ·

d pi

dt
=C[ f ] . (1.14)

C[ f ] is a “collision integral” equal to zero under equilibrium conditions but nonzero for scattering,

absorption, nuclear reactions, pair production, etc. Throughout this section we use pi for the phase

space momentum Ei for the energy components. We now integrate Eq. 1.14 over the distribution

f j to get a relation for the scaled number density n j. For the case of Big Bang nucleosynthesis

(BBN) we leave some of the details as words in order to bring out the physics. For a species j in

an expanding universe the result is given by

a−3 d(n ja3)

dt
=

N

∏
i=1

∫ d3 pi

(2π)32Ei
× (Conservation Laws)× (BBN Reactions) . (1.15)

This allows for analytic progress in modeling changes in the composition of the Universe during

events such as BBN.
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The front ends of equations such as Eq. 1.14 are tedious to keep writing down so we work with

unintegrated equations for cosmological perturbations. Also we must use the explicit form of the

linearized anisotropic metric

ds2 =−(1+2Ψ(~x, t))dt2 +a2(1+2Φ(~x, t))(dx2 +dy2 +dz2) , (1.16)

which is the extension of Eq. 1.2. Mathematically, the perturbative corrections allow for relations

between overdensities in the early Universe (i.e. geometry Φ and Ψ, matter ρ , and temperature Θ).

The simplified calculation leaves the following for the left hand side of Eq. 1.14:

d f
dt

=
∂ f
∂ t

+
pi

a
∂ f
∂xi − p

∂ f
∂ p

[
H +

∂Φ

∂ t
+

pi

a
∂Ψ

∂xi

]
. (1.17)

This is the general starting point because various types of matter will have different distributions

f and different collision integrals C[ f ]. For example, for dark matter we expect very little inter-

action with other types of matter, but this is not the case with baryons. We may continue to make

analytic progress with the Boltzmann equations by considering the evolution of a species under

nonequilibrium conditions. We now do so with photons.

Fluctuations in the CMB are encoded in perturbative corrections to the distribution of photons

under the Boltzmann equation. To zeroth order photons follow the Bose-Einstein distribution with

zero chemical potential,

f (0) ≡ 1
ep/T −1

. (1.18)

Recall that we are using units where kB = 1. Thus, if we allow for a small correction to the original

isotropic temperature T (~x, p̂, t) = T (t)[1+Θ(~x, p̂, t)] then a first order temperature expansion of

the photon distribution is given by

f (~x, p, p̂,τ) =
[

exp
{

p
T (τ)[1+Θ(~x, p̂,τ)]

}
−1
]−1

≈ f (0)− p
∂ f (0)

∂ p
Θ . (1.19)
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The zeroth order homogeneous, isotropic equilibrium equation gives

d f
dt

∣∣∣∣zeroth
order

=
∂ f (0)

∂ t
−H p

∂ f (0)

∂ p
= 0 , (1.20)

with the important result that

T ∝
1
a
. (1.21)

The first order equations relate additional physics for photons, dark matter, baryons, and other con-

tributions with a nonzero collision integral C[ f ]. In essence this provides a set of three Boltzmann

equations which complement the six Einstein equations. The linearized extensions of the zeroth

order Einstein equations from Eq. 1.6 must also include corrections in Ψ, Φ, ρ , and Θ. In Chap-

ter 2 we use a numerical approach to solving the Boltzmann-Einstein equations. This allows for

the determination and analysis of cosmological parameters from CMB data.

1.4 Neutrino Physics

As nearly massless, neutral leptons, neutrinos interact weakly with other forms of matter at low

energies. In fact, after the first second of expansion the Universe has cooled enough for neutrino de-

coupling to occur. After this time neutrinos maintain a Fermi–Dirac distribution with zero chemical

potential and a temperature that falls inversely with the expanding scale factor, i.e. T ∝ a−1 [20].

In this section we investigate the properties of the effective neutrino number Ne f f and the sum of

the neutrino masses ∑mν .

1.4.1 The effective neutrino number Ne f f

The effective neutrino number Ne f f is defined as the contribution of neutrinos to the relativistic

degrees of freedom g∗. These degrees of freedom represent the effective number of relativistic

particles in the early Universe and need not be an integer value. For example, in a standard physics
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scenario the particles contributing to the total value of g∗ ' 10.75 are electrons, three neutrinos,

three antineutrinos, and photons. Any extra relativistic degrees of freedom can be parameterized

in terms of an excess with respect to the standard effective neutrino number Ne f f = 3 (which, more

precisely, is ' 3.046 after accounting for QED corrections and non-instantaneous decoupling of

neutrinos) [28,29]. We will need the neutrino energy density ρν for a later calculation. The density

ρν is in fact proportional to the energy density of photons ργ through the number of neutrino

generations Ne f f by the relation

ρν = Ne f f
7
8

(
4

11

)4/3

ργ . (1.22)

The factor of 7/8 is due to the fact that neutrinos are fermions and photons are bosons. The factor

of (4/11)4/3 is included because photons are heated by e+e− annihilation. The main point is that

ρν is proportional to ργ through the Ne f f parameter.

One effect that Ne f f can have is related to the primordial helium abundance YP. According

to the standard picture of Big Bang nucleosynthesis (BBN), at a temperature of ∼ 0.6 MeV all

available neutrons are used to form helium. Thus, the helium abundance YP is approximately

YP '
2nn/np

1+nn/np

∣∣∣∣
T'0.6 MeV

, (1.23)

which is determined by the value of nn/np when the Universe reaches the freeze-out temperature

Tf reeze. The neutron to proton ratio remains roughly constant from then on, unless we consider

neutron to proton decay. However, with a neutron half-life of about 15 minutes, the time-scale for

this process is too long to affect nn/np over the period in which BBN takes place. The helium

abundance depends on g∗ (and hence on Ne f f ) via the relation Tf reeze ' 1
2g1/6
∗ , so larger g∗ means

earlier nn/np freeze-out.

Finally, as Eq. 1.22 relates the neutrino energy density ρν to the photon energy density ργ we

derive the latter for use in Chapter 2. The temperature of CMB photons has been measured at

T = 2.725±0.002K by the COBE satellite (see Fig. 1.2). Thus, if photons have a Bose–Einstein
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distribution fBE with zero chemical potential, degeneracy g from two spin states, and phase space

momentum p, then the energy density ργ is [20]

ργ =
∫ g fBE pdV

Phase Volume

= 2
∫ d3 p

(2π)3
p

ep/T −1
. (1.24)

The integral may be evaluated exactly with the substitution x= p/T and knowledge of the Riemann

zeta function ζ (i.e. ζ (4) = π4/90 and Γ(4) = 3!). The phase space is isotropic so we may

immediately include a factor of 4π p2 for the angular part. The integration proceeds as follows:

ργ =
8πT 4

(2π)3

∫
∞

0

x3

ex−1
dx

=
T 4

π2 Γ(4)ζ (4)

=
π2

15
T 4 . (1.25)

However, the temperature in an expanding FRW spacetime is inversely proportional to the scale

factor (See Eq. 1.21 and Table 1.1). Therefore, with a present temperature T0 and scale factor a0 the

temperature history of photons is T = T0a0/a = 2.275K/a. Furthermore, with the critical density

ρcr defined by Eq. 1.11 and the Hubble constant H0 parameterized by a dimensionless quantity h,

defined by

H0 = 100h km sec−1 Mpc−1

= 2.133×10−33 h eV/h̄ , (1.26)

the contribution of photons to the total energy density Ωγ is [20]

Ωγ ≡
ργ

ρcr
=

π2

15
T 4 8πG

3H2
0

=
π2

15

(
2.725K

a

)4 1
8.098×10−11h2eV4

=
2.47×10−5

h2a4 . (1.27)
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The last line was calculated by inserting four factors of the Boltzmann constant (i.e. kB = 1 implies

1eV = 11605K). This stands to emphasize that although radiation was dominant in the early

Universe (a� 1), we are justified in neglecting the contribution at late times.

1.4.2 The sum of the neutrino masses ∑mν

We conclude this section by stating our purpose to further constrain the neutrino mass ∑mν and

investigate any correlation with curvature Ωk. The fact that neutrinos have mass to begin with

is a relatively recent discovery. It was just over a decade ago when the experiment at Super–

Kamiokande led to the general acceptance of neutrino mass [30]. Around the same time, the

DONUT collaboration obtained the first detection of the tau neutrino species [31]. Since then the

number of phenomenological questions regarding neutrinos has only increased.

Cosmology hopes to distinguish between two types of hierarchical models: a normal hierar-

chy with two “smaller” neutrinos and one “larger” neutrino, and an inverted hierarchy with one

“smaller” neutrino and two “larger” neutrinos. Specifically, the models are distinguished by the

arrangement of the absolute difference in the mass eigenstates. This is important because particle

models with massive neutrinos are silent on whether there are one or two light neutrinos. At this

point many particle physicists hope to learn more about this question from direct cosmological

measurements. In fact, the different hierarchies may be distinguished by their effect on the matter

power spectrum, but this may have to wait for the accuracy of future CMB experiments [32, 33].

Perhaps the upcoming Planck results will be sufficient to determine the neutrino hierarchy, how-

ever, high statistical significance may require additional experiments (See Fig. 1.4). Keep in mind

that the CMB test is derived (not empirical) because it provides an upper bound on ∑Mν through

the fractional energy density fν ≡ Ων/Ωm [34]. For information about how to extract ∑mν from

fν see the discussion surrounding Eq. 2.24 in Section 2.3.2 regarding the code implementation.

With every major improvement in experimental cosmology it is important to analyze the current
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Figure 1.4 Constraints on the sum of the neutrino masses ∑mν based on projections of
future experiments. The normal and inverted neutrino hierarchies diverge if ∑mν is small.
Figure from Ref. [34].

status and direction of significant questions in physics. We hope that preference toward a particular

hierarchical model may slightly improve with the combination of ACT and SPT datasets, however,

a cosmological determination of the neutrino mass hierarchy largely remains a task for future

experiments. Our contribution relates to the understanding of extended cosmological parameter

spaces. Section 3.2 contains details about the connections between mass and curvature. Fig. 1.4

shows the projected constraints on ∑mν based on the mass differences. Future experiments should

be able to constrain the mass accurately enough to favor either the normal or inverted hierarchy.

However, when this level of precision is reached it will still be important to consider the effects

that extended parameter spaces have on mass. A non-exhaustive list of additional references on the

subject of constraining neutrino parameters includes Refs. [32–45].

1.5 Review and overview

The material from this chapter is designed to consolidate a variety of resources from the literature

at the undergraduate level. This research began while I was a visiting student researcher for Asan-
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tha Cooray at the University of California, Irvine and was completed at Brigham Young University

with collaborators from the Universita’ di Roma “La Sapienza.” Students with similar interests

should be directed by their advisors for the computational analysis of CMB data; however, the

material presented in the remainder of the thesis may serve as a practical guide for research in

this area of cosmology. So far we have provided an introduction to modern cosmology with the

following question in mind: “What are the implications of failing to consider curvature in cos-

mological models involving neutrinos?” Thus, Chapter 1 is general and later chapters become

increasingly specialized. Specifically, Chapter 2 contains three important aspects of the project.

First, we use an analytical approach to explain the theoretical origin for correlation. Second, we

provide an explanation of the statistical methods behind the Monte Carlo Markov Chain (MCMC)

procedure. We also include the mathematics of a harmonic decomposition of CMB data. Third,

we walk through the specific implementation of the computational analysis using the most recent

data available. Chapter 3 provides confidence contours demonstrating correlation in the parameter

space, tables featuring the parameter constraints, and a discussion of the significance of assuming

cosmological flatness for the neutrino parameters Ne f f and ∑mν .



Chapter 2

Methods of Analysis

Chapter 1 provided an introduction to the significant theoretical concepts needed for a modern

understanding of CMB cosmology. The current chapter is divided into three sections that sequen-

tially focus on the theoretical, statistical, and computational tools used in the thesis. Chapter 3

discusses the results of the computational aspects of constraining parameters. Thus, the scope

and application of each chapter become increasingly directed toward the core investigation of how

cosmological flatness affects neutrino properties.

2.1 Analytical methods

2.1.1 The sound horizon rs(Ne f f )

Additional neutrino species influence the evolution of the early Universe. The effect of the num-

ber of neutrino species Ne f f on cosmological observables (e.g. CMB anisotropy power spectrum)

can be seen in considering when the epoch of matter-radiation equality aeq occurred. This is the

point in the Universe’s history in which the energy distribution shifted from being dominated by

radiation to being dominated by matter. In particular, increasing aeq will change the extent of the

21
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so-called integrated Sachs-Wolfe (ISW) effect [46]. The early ISW effect changes the distribution

of temperature hotspots. In analogy with classical potential wells, the radiation collects in areas

of greatest “depth,” the imprint of which may be seen in the CMB. The ISW effect is essentially

the same mechanism that extracts energy from gravitationally lensed photons (i.e. the deflection

of starlight by massive objects). At this point neutrinos act as an additional source of radiation, so

a larger number of neutrino species Ne f f pushes aeq to a later time. In turn, this would increase the

amount of radiation trapped in these potential structures before their eventual escape and obser-

vation via the CMB. The decoupling of this increased radiation from the potential structures will

have a noticeable effect on CMB anisotropy measurements.

The particular relation between aeq and Ne f f is given by equating the matter and radiation

energy densities we presented in Section 1.3.3 (Specifically Eq. 1.11 and Table 1.1):

ρm = ρrad (2.1)

Ωma−3
eq = (Ωγ +Ων)a−4

eq . (2.2)

At this point we incorporate Eq. 1.22 to write Ων in terms of Ωγ and Eq. 1.27 to give the currently

observed value Ωγ . The epoch of equality is given by

aeq =
Ωγ

Ωm

[
1+Ne f f

7
8

(
4

11

)4/3
]

=
1+0.22711Ne f f

40484Ωm h2 . (2.3)

The calculations in this section are used to provide a qualitative description of correlation between

the curvature Ωk and the effective neutrino number Ne f f , so the precision of numbers is arbitrary

and chosen by the author for compactness and readability.

The epoch of matter-radiation equality aeq is linear in Ne f f (Eq. 2.3 results from the approxi-

mation in Eq. 2.1), which is important because many cosmological observables are influenced by

aeq. At the end of this calculation we will reveal a series of “Russian doll” dependences to reach
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an observable related to curvature. In particular, the dependence transfers directly to the baryon to

photon ratio R. The ratio at equality Req is given by [20]:

Req ≡
3ρb

4ργ

∣∣∣
aeq

= 30496Ωb h2 a
∣∣∣
aeq

=
1+0.22711Ne f f

1.3276
Ωb

Ωm
. (2.4)

The presence of baryons in the relativistic cosmic fluid slows down the sound speed cs by the factor

cs ≡ 1/
√

3(1+R) , (2.5)

and so this quantity also depends on Ne f f at equality. This is ultimately reflected in the size of

the so-called sound horizon rs at a generic time τ . The sound horizon is the comoving distance

traveled by a sound wave in the time τ . Said another way it is just the integrated sound speed cs.

Note: Comoving distances simply move with the expanding spacetime so that stationary objects

remain at fixed coordinates. This is already taken care of when the time component is proper or

conformal. In the context of Eq. 1.2 the proper time τ is related to the metric time t via dt = adτ .

We are interested in integrating with respect to the scale factor a, which may be done through the

definition of the Hubble factor, or H ≡ 1
a

da
dt ⇒ dτ = da

a2H [20]. Therefore the sound horizon is

rs ≡
∫

τ

0
dτ
′ cs(τ

′)

=
∫ a

0

da
a2H

cs(a)

≈ 2
3keq

√
6

Req
ln

{√
1+R +

√
R+Req

1 +
√

Req

}

=
6.612×10−3

H0
√

ΩmΩbh2
ln

{√
1+R +

√
R+Req

1 +
√

Req

}
. (2.6)

The last two lines come from assuming the Universe is matter dominated during recombination.

We consider typical values for the present Hubble constant H0, the total matter contribution Ωm,
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Figure 2.1 A demonstration of how the sound horizon rs changes with the effective
neutrino number Ne f f under the matter dominated approximation of Eq. 2.6.

and the contribution from baryons Ωb [11]. As can be seen in Fig. 2.1, the sound horizon rs depends

on Ne f f through Req. The “Russian doll” dependence structure is as follows: the sound horizon rs

depends on the sound speed cs, which depends on the baryon to photon ratio at equality Req, which

in turn depends on the epoch of matter-radiation equality aeq, which finally depends on Ne f f !

In [2] the authors provide qualitative arguments for how changing the number of allowed neu-

trinos affects the observed values of parameters. One qualitative example which we use is the

relative dependence of distance measurements on the Hubble constant. In fact, the sound hori-

zon at recombination scales as rs ∝ 1/H while the distance a photon typically diffuses prior to its

last scattering goes as rd ∝ 1/
√

H. This is significant because the response of the radiation rela-

tive to matter determines the degree of damping prior to recombination θs. In other words, with

θs = rs/DA fixed by observation, the angular diameter distance DA must must also decrease as 1/H,

which is more rapid than rd . Thus, the damping increases according to θd = rd/DA ∝
√

H [2]. If

these distances depend on H then they similarly depend on various parameters correlated with H.
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2.1.2 The angular diameter distance DA(Ωk)

Distances are calculated by tracing radial light rays to the emission source. Geometrically, this is

done by integrating along a null geodesic in the spherically symmetric spaces of constant curva-

ture (k). The extension of the FRW metric (see Eq. 1.2) to include curvature is given by

ds2 =−dt2 +a(t)2
(

dr2

1− kr2 + r2dΩ
2
)
, (2.7)

where dΩ2 = dθ 2+sinθdφ 2 is the differential element for the unit sphere in spherical coordinates.

The null condition is ds2 = 0 and the condition that our light rays be radial gives dΩ2 = 0. We can

then rearrange the metric in Eq. 2.7 into the form

dt
a(t)

=
dr√

1− kr2
. (2.8)

Equation 2.8 allows for the calculation of the comoving distance χ in terms of the angular diameter

distance DA (Note: The speed of light does not appear because we have set c = 1)

χ ≡
∫

τ0

τ

dτ
′ =

∫ t0

t

dt ′

a(t ′)
=
∫ DA

0

dr√
1− kr2

. (2.9)

The integral depends on the sign of k, which is related to the cosmological parameter for curvature

by Ωk = −k/H2
0 , where the Hubble Constant H0 is the present value of the Hubble parameter.

Solving for the angular diameter distance DA after integrating Eq. 2.9 gives [20, 47]

DA =
a

H0
√
|Ωk|

 sin[
√
−ΩkH0χ] Ωk < 0

sinh[
√

ΩkH0χ] Ωk > 0

 . (2.10)

For a practical calculation of the comoving distance χ we use a change of variables to integrate

with respect to the redshift factor z = 1/a−1:

χ(z)≡
∫

τ0

τ

dτ
′ =

∫ 1

a

da′

a′2H(a′)
=
∫ z

0

dz′

H(z′)
. (2.11)

In this case we may use a ΛCDM model for H(z) similar to Eq. 1.13 except with radiation and

curvature included. For the case of a flat cosmology the angular diameter distance is related linearly

with the comoving distance, so that DA = χ/1+ z.
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Figure 2.2 A demonstration of how the angular diameter distance DA changes with cur-
vature Ωk under the ΛCDM model. The ratio of the sound horizon to the angular diameter
distance determines the degree of damping prior to recombination θs, which is fixed by
observation. Note: Ωk ∈ (−0.025,0.025).

Apparently, distances are larger in an open universe with nonzero curvature (Ωk > 0), as

demonstrated by Fig. 2.2. Therefore by the argument directly preceding this section, in an open

universe the effective neutrino number is slightly reduced. The theory confirms this because as

stated above θs is constrained by observation which means if Ne f f is reduced and Ωk > 0 then rs

and DA both increase (see Fig. 2.1). However, if the parameter space favors a closed universe then

there will appear to be a higher number of effective neutrinos. This is one of the primary reasons

for expecting correlation between Ne f f and Ωk.

Much stronger correlation exists between Σmν and Ωk. However, this is expected because mas-

sive neutrinos are still relativistic at decoupling so they act as additional radiation (c.f. Ref. [48]).

As a consequence the presence of massive neutrinos shifts both the time of matter-radiation equal-

ity aeq and the position of CMB peaks. This effect can be compensated for by a change in the

geometry of the Universe, which weakens the constraints on both ∑mν and Ωk (See Section 3.2).
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2.2 Statistical methods

As the size of datasets gets considerably larger, cosmologist need fast and reliable statistics to

evaluate various models. We review the fundamental principles of the Bayesian statistical frame-

work and the various sources of error in CMB measurements. We also include a discussion on the

mathematics behind CMB anisotropies to better understand the calculation of the power spectrum

underlying the computational methods of Section 2.3.

2.2.1 Bayesian statistics

The human mind naturally works under a Bayesian framework because decisions are based on

the information at hand combined with one’s experience, or prior belief regarding the outcome

of events. We emphasize this prior information because frequentist statisticians tend to avoid

making assumptions, saying instead that probabilities are determined by a limit of independent

trials. We use the Bayesian framework because we study the evolution of a unique Universe. The

one observable trial we do have allows for the inference of parameter probability distributions

described in further sections.

Realistic cosmological models usually have about a dozen parameters that are tuned to fit the

experimental data. These parameters answer questions about quantities: how much of this, how fast

is that, or what law does it follow? The lack of information about the model is contained within

probability distributions P(k) of continuous parameters k. These distributions are non-negative

and normalized so that
∫

P(k)dk = 1. If data d is available, then we may realize a conditional

probability P(d|kH) of the data given a particular model with hypothesis parameters kH . Thus, the

probability that both the model parameters and the data happen to be correct is given by [20, 49]

P(d∩ kH) = P(d|kH)P(k) and P(kH ∩d) = P(kH |d)P(d) . (2.12)
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Actually, the two parts of Eq. 2.12 are equal, which is the basis for Bayes theorem,

P(kH |d) =
P(kH)P(d|kH)

P(d)
. (2.13)

This is exactly the information we need to know! Bayes theorem gives a way to find the probability

distribution that a theoretical model is correct given the experimental data. The names for the

contributions to Eq. 2.13 are the posterior distribution P(kH |d), the prior distribution P(kH), and

the likelihood function P(d|kH). The probability of the data P(d) ends up being a normalizing

constant, so the explicit form of Bayes theorem is

Posterior ∝ Prior ·Likelihood . (2.14)

The cosmological prior is an essential consideration with this kind of analysis. We will define

the specific prior used for this thesis in Section 2.3.2, but for the moment note that as long as

priors are fairly reasonable the large datasets we consider will provide a barrier that will protect

from prior induced biases. We also note that Gonzalez Morales et al. have recently argued that

the statistical prior is responsible for the entirety of the Ne f f question [50]. This is an important

consideration, however, the robustness of the computational analysis used by the majority of the

CMB community engenders confidence in our methods.

The Monte Carlo Markov Chain (MCMC) analysis that we will present in Section 2.3 is based

on this Bayesian framework. It is difficult to directly draw from P(kH |d), however, we may con-

struct the distribution using an iterative process that generates the desired draws, i.e. a ratio that

gives samples in the correct proportions. This is done by setting up a random walk over the pa-

rameter space kH that preferentially samples regions of high probability. The random walk is the

“Monte Carlo” part of the algorithm and the way the walk samples is the “Markov Chain” part of

the algorithm. This is given by Q(kH,t+1|kH,t), or the transition probability of moving from kH,t to

kH,t+1, which depends only on the current configuration kH,t . The samples will have a probability

density function equal to P(kH |d) because the next step is considered and accepted with a prob-
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ability based on substituting the ratio of proposed and previous values of Eqs. 2.13 or 2.14. The

exact method is given by iterating between the following steps:

1. Propose a new value kprop for kH,t+1, taken from the distribution Q(kprop|kH,t), which is often

a multivariate Gaussian with mean Xt or a top hat prior as shown in Fig. 2.4. It is usually

better to have the distribution pick points that are nearby in the parameter space.

2. Decide whether to accept the proposed value based on the ratio

r =
P(kprop|d)
P(kH,t |d)

Q(kH,t |kprop)

Q(kprop|kH,t)
. (2.15)

If r ≥ 1 then we accept the transition and set Xt+1 = kprop. If r < 1 we only accept kprop with

a probability of r. If kprop is rejected then Xt+1 = Xt .

In practice, we allow for a “burn in” period to alleviate skewed contributions from the initial

configurations (i.e. depending on the analysis we throw away the first 100 or even 100,000 draws).

Thus, with many chains, or MCMC processes, we may be confident in converging on a reliable

posterior distribution.

In order to calculate the statistical properties of a given parameter we marginalize, or numer-

ically integrate, over all other parameters. The idea behind this is that if we are in a multidimen-

sional parameter space we can project onto an axis via P(k1) =
∫

P(k1,k2, . . . ,kn)dk2 · · ·dkn. We

may also arrive at a two dimensional probability distribution by marginalizing over all but two

parameters in the parameter space. This allows for intuitive contour plots similar to Fig. 3.1 that

provide qualitative and quantitative descriptions of correlation between the parameters. The appar-

ent correlation revealed in these plots may either be due to fundamental physics or an artifact of

the particular model. We return to the topic of parameter interpretation in Chapter 3.
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2.2.2 The mathematics of CMB anisotropies

The power spectrum P(k) of the CMB cab be thought of as a measure of how much the background

blackbody radiation deviates from strict isotropy. If the CMB were perfectly isotopic P(k) would

be a constant. It is, of course, not a constant and P(k) is then a measure of how far the radiation

is from being a pure blackbody. A clever way to talk about fluctuations at various length scales

is to decompose the data into harmonic space, where low ` modes correspond to differences on

large scales and high ` modes refer to smaller scales. Recall that the central limit theorem tells us

that large statistical samples will give rise to Gaussian distributions. To a good approximation the

distribution of density fluctuations δ = δρ/ρ (called the overdensity because it gives the relative

change in the distribution or identifies regions of varying density) from the early Universe can be

considered to be roughly Gaussian. Gaussian fields are special because they can be completely

specified by a two point correlation function ξ (i.e. a comparison between how much two points

differ from each other on various scales is enough to specify distribution). In fact, the two point

correlation function ξ is directly related to the power spectrum P(k) through the Fourier transform

and is given by

ξ (~x−~x′)≡ 〈δ (~x)δ (~x′)〉

=
∫ d3k

(2π)3 P(k)ei~k·(~x−~x′) . (2.16)

It is common for cosmologists to use the Fourier convention of f (~x) = (2π)−3 ∫ d3k f (~k)exp{i~k ·~x}

and f (~k) = d3x
∫

f (~x)exp{−i~k ·~x}. The 〈· · · 〉 averaging is over all realizations of the density field.

Thus, the power spectrum is given by

P(k) =
∫

d3x ξ (~x)e−i~k·~x . (2.17)

We note that non-Gaussian distributions need higher order correlation functions and corresponding

higher order spectral descriptions (e.g. a bispectrum compares information from three points and
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their two independent connecting length scales). The study of how non-Gaussian affects the CMB

requires keeping track of algebra consisting of Wigner 3- j symbols and implementations of Wick’s

theorem. We do not discuss this further.

Finally, we make specific contact to the harmonic decomposition of the CMB. Recall from

the first order temperature deviation in the Bose-Einstein photon distribution of Eq. 1.19 that

T (~x, p̂,τ) = T (τ)[1+Θ(~x, p̂,τ)] The temperature overdensity Θ is only observed today (at τ0)

and is averaged over spherical harmonics to encode the (2D) CMB information. Thus, the decom-

position gives [20]

Θ(~x, p̂,τ) =
∞

∑
l=1

l

∑
m=−l

alm(~x,τ)Ylm(p̂) , (2.18)

where the property of orthogonal harmonics (i.e.
∫

dΩYlm(p̂)Y ∗l′m′(p̂) = δlmδl′m′) uniquely deter-

mines the coefficients through the relation

alm(~x,τ) =
∫ d3k

(2π)3 ei~k·~x
∫

dΩY ∗lm(p̂)Θ(~x, p̂,τ) . (2.19)

Each alm is drawn from the same distribution with variance Cl determined by 〈alma∗l′m′〉= δlmδl′m′Cl .

However, there is a fundamental uncertainty called cosmic variance that limits knowledge about

the low mode Cls according to

∆Cl =

√
2

2l +1
Cl . (2.20)

This is why the plotted power spectra of Fig. 2.3, which is plotted in terms of `(`+1)C`/2π [µK2],

has large uncertainty for low ` modes. Also when the temperature fluctuation map is plotted in

Fig. 2.3 the WMAP team has subtracted out the low ` modes because the monopole is the average

temperature and the dipole corresponds to differences resulting from the motion of our local galaxy.

Finally, a calculation similar to that of Eq. 2.16 relates the Cl to the matter power spectrum P(k).

This is because the ratio of the temperature Θ and matter δ overdensities has nice properties arising

from the perturbation equations of Subsection 1.3.4. Qualitatively, the correlation functions are
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Figure 2.3 The first image is the internal linear combination sky map from WMAP
7-year observations. The temperature fluctuations are shown with subtractions of the
monopole (average tempurature), dipole (from the motion of our local galaxy), and the
excess radiation from the plane of the Milky Way. The image is also shown using data
from multiple bandwidths. The second image is a plot of the corresponding TT matter
power spectrum. Notice the uncertainty from cosmic variance with low ` modes. The plot
is given in terms of `(`+1)C`/2π [µK2]. Figure from Ref. [51].
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related via

〈ΘΘ〉= 〈δδ 〉Θ
δ

Θ

δ
, (2.21)

so that the spectral relation is given by

Cl =
2
π

∫
∞

0
dk k2 P(k)

∣∣∣∣Θl(k)
δ (k)

∣∣∣∣2 , (2.22)

where this provides most of the information to plot the curve in Fig. 2.3. This is a rich subject

which merits considerable discussion on its own (see e.g. Ref. [10]).

2.3 Computational analysis

2.3.1 Specialized code: CosmoMC

In order to fit cosmological models to data we use a modified version of the publicly available

CosmoMC software package [52]. This uses a Monte Carlo Markov Chain analysis on calcula-

tions of the lensed CMB power spectrum made with the fast Boltzmann code CAMB (Code for

Anisotropies in the Microwave Background) package [53]. The FORTRAN90 code is designed to

be as fast and accurate as possible given the large datasets used in cosmology. This relates back

to Subsection 1.3.4 about Boltzmann equations because the full numerical solutions are consid-

ered when constructing the likelihood function. Models with different parameter distributions are

run through the Bayesian sampling framework until the “chains” converge to a particular distribu-

tion. We use a convergence diagnostic test known as the “R− 1” statistic which relates the chain

means to the mean of variances. Usually, a convergence of R− 1 < 0.01 is more than adequate

for CMB parameters [49]. With three nodes of eight processors each the computation of a fiducial

cosmology is completed in an afternoon. Once additional datasets and parameters are included the

process may take up to a week. Luckily, the progress and preliminary results may be monitored

throughout.
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Parameter WMAP+BAO+H0 WMAP+SPT WMAP+ACT WMAP+SPT+ACT

100Ωbh2 2.249±0.054 2.256±0.041 2.235±0.047 2.258±0.040
Ωch2 0.135±0.016 0.130±0.0094 0.137±0.012 0.129±0.0091
ΩΛ 0.721±0.018 0.722±0.015 0.714±0.018 0.722±0.015
ns 0.979±0.015 0.9808±0.0122 0.982±0.013 0.9803±0.0121
τ 0.086±0.014 0.085±0.014 0.086±0.014 0.086±0.014

H0(km/s/Mpc) 75.1±3.4 74.0±2.0 74.6±2.15 73.9±1.92

Ne f f 4.34±0.88 3.91±0.43 4.30±0.58 3.89±0.41

Table 2.1 Summary of matching results from WMAP 7-year [11], SPT [12], and
ACT [13]. Note that the analyses are modeled by the choice to reproduce SPT results,
which produces a smaller value for Ne f f than expected for ACT data. All datasets include
BAO and H0 for improved parameter constraints. The quoted errors are given at the 68%
confidence levels (CL).

Our MCMC analysis combines the following CMB anisotropy datasets: WMAP 7-year [11],

SPT [12], and ACT [13]. Including BAO+H0 simply means we are using the baryon acoustic

oscillation (BAO) data of Percival et al. [54] and impose a prior on the Hubble parameter based

on the last Hubble Space Telescope observations [55]. We integrate spectral data out to `max =

3000. We sample from the following parameters: the baryon Ωbh2, cold dark matter Ωch2, and

dark ΩΛ energy densities, the scalar spectral index ns, the optical depth to reionization τ , the

Hubble parameter H0, and the amplitude of SZ spectrum ASZ . For the purposes of this analysis

we also consider the effective neutrino number Ne f f , spatial curvature Ωk, and the sum of neutrino

masses ∑mν . Factors, such as degeneracy and poor choices for the parameter space, slow the rate

of convergence and mixing of the chains. The first column in Table 2.1 provides a confirmation

of the results in the literature using WMAP 7-year data, Baryon Acoustic Oscillations (BAO), and

the Hubble Space Telescope (H0) [11].
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Figure 2.4 A visualization of a top hat prior distribution. The primary motivation for
assuming such a distribution is the general improvement from a uniform distribution,
which assumes no prior information. There are strict upper and lower bounds as well as a
tighter best estimate based on the current understanding of the parameter. As an example,
the notation of Eq. 2.23 places a prior of Ne f f ≈ 3.04+0.5

−0.5 ∈ [0,10].

2.3.2 Additional CMB datasets

Finally, we make decisions specific to the high multipole mode data of the South Pole Telescope

(SPT) and Atacama Cosmology Telescope (ACT) collaborations. We consider purely adiabatic

initial conditions, which provide predictions about secondary spectral contributions [20]. When

the background data are taken to small enough scales the spectra from infrared source emission

must be taken into account. The infrared (IR) spectra is dominated by Poisson power partially

from source emission clustering at the smallest scales. Thus, a model for such effects must be

subtracted out from the CMB power spectra. The resulting adaptations are representative of the

considerations made during the process of checking the code for consistency with established

results. It is also important to include a Big Bang nucleosynthesis (BBN) consistency check during

the sampling in order to provide analysis consistent with helium abundance measurements, as

proposed in Refs. [18, 56]. We remark that the ACT collaboration did not include the same BBN

consistency condition used by SPT and our analysis. This explains why we find a slightly better

constraint on Ne f f than Ref. [13].
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At this point, we include various models which vary the curvature Ωk, effective neutrino num-

ber Ne f f , and sum of the neutrino masses Σmν . This is done with a few simple modifications to

CosmoMC (e.g. params.ini). Compare this with the dozens of changes in multiple files to ac-

count for the high-` IR spectral contribution. Top hat priors are applied by setting minimum and

maximum values on the allowed parameter space. There is also a best estimate applied with a

stronger secondary range as the “top” of the “hat” (see Fig. 2.4). For the most part, the exact prior

does not matter but we provide the ranges with the following notation (see Fig. 2.4):

(Estimate)
+σTight Upper
−σTight Lower

∈ [Lower Bound,Upper Bound] . (2.23)

The prior for Ne f f is 3.04+0.5
−0.5 ∈ [0,10] while the prior for Ωk is 0+0.02

−0.02 ∈ [−0.2,0.2]. Both easily

provide enough freedom for a good fit in the parameter space. Finally, we also constrain the sum

of the neutrino masses ∑mν . To do this, we use a top hat prior on the fractional contribution of

neutrinos to the total mass density, fν ≡Ων/Ωm of 0.05+0.01
−0.02 ∈ [0,0.5]. Then we extract ∑mν from

fν through the standard relation,

∑mν = 94Ωνh2 eV = 94h2
Ωm fν eV , (2.24)

where Ω2
ν ≡ ρ0

ν/ρcr is the neutrino contribution to the energy density [20]. Specifically, each value

for fν in the MCMC chains must each be multiplied by 94h2Ωm before the final Bayesian analysis

is invoked (i.e. with distparams.ini).



Chapter 3

Results and Conclusions

3.1 Confirmation of correlation from cosmological data

We discuss the properties of the newfound parameter degeneracy, which is extracted from our

analysis in Chapter 2. First of all, under the flat Universe scenario the constraint improves to

Ne f f = 3.89± 0.41 at the 68% confidence level (see Table 2.1). This result suggests Ne f f = 3 is

inconsistent with the data with at least 95% confidence.

We then allow the curvature to vary to determine how assuming flatness affects the constraints

on Ne f f . Figure 3.1 demonstrates the correlation between Ωk and Ne f f , which agrees with the

prediction from Section 2.1. Interestingly, the effect of the additional CMB datasets (ACT and

SPT) increases the correlation between these parameters with respect to WMAP 7-year data alone.

This may be due in part to the considerable improvement in Ne f f whereas the uncertainty in the

curvature of the Universe is not noticeably improved by the addition of small scale anisotropy

measurements. These results suggest that an open universe with fewer neutrinos would look similar

to a flat universe with more neutrinos. We also note that when including Ne f f as a free parameter

in the ΛCDM+Ωk model, the 1σ constraint of Ωk = −0.0023+0.0054
−0.0056 found in Ref. [11] does not

37
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Figure 3.1 Correlation between Ωk and Ne f f . The credible intervals are given at the 68%
and 95% confidence levels and the markers indicate the locations of the marginalized
values. WMAP+BAO+H0 is shown in red while WMAP+ACT+SPT+BAO+H0 is in blue.
Note that the effect of adding additional datasets is significant.
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Figure 3.2 Correlation between H0 and Ne f f . The credible intervals are given at the 68%
and 95% confidence levels and the markers indicate the locations of the marginalized
values. WMAP+BAO+H0 is shown in red while WMAP+ACT+SPT+BAO+H0 is in blue.
In this case the effect of adding additional datasets is also significant.
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Parameter WMAP7+Ne f f +Ωk . . .+ACT+SPT

100Ωbh2 2.26±0.056 2.27±0.045
Ωch2 0.136±0.0169 0.129±0.00915
ΩΛ 0.721±0.0179 0.723±0.0158
ns 0.9837±0.0157 0.9863±0.0147
τ 0.0887±0.0148 0.0894±0.0149

H0(km/s/Mpc) 74.88±3.40 73.44±2.03

Ne f f 4.61±0.96 4.03±0.45
103 Ωk −4.45±5.85 −4.46±5.24

Table 3.1 Summary of constraints while varying Ωk and Ne f f . All datasets include BAO
and H0 for improved parameter constraints. Errors are at the 68% CL. See Fig. 3.1.

deteriorate significantly for the same combination of datasets (i.e. WMAP+BAO+H0). This is due

to the presence of the BAO data and the H0 prior in the analysis, since both probes are sensitive

to the geometry of the Universe. Therefore, BAO and H0 help to break the degeneracy between

Ne f f and Ωk. The correlation is not as strong as we had expected. In fact, the correlation does

not indicate a substantial problem with degeneracy. Furthermore the contour seems to favor a

closed universe with Ωk < 0 rather than an open one. However, the correlation is still present and

agreement with the prediction from Section 2.1.

Table 3.1 provides a summary of parameter values for runs where Ωk and Ne f f vary. Here we

find Ne f f = 4.03±0.45 and 103Ωk = −4.46±5.24 at the 68% confidence level. Therefore, even

when Ωk is allowed to vary, Ne f f = 3 is still disfavored with at least 95% confidence. Note that the

increased value for H0 is indicative of the known correlation between H0 and Ωk. We provide an

equivalent marginalized contour plot of H0 vs. Ne f f to emphasize the connection (see Fig. 3.2).
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Parameter WMAP7+BAO+H0 . . .+ACT+SPT

100Ωbh2 2.26±0.053 2.23±0.038
Ωch2 0.112±0.0036 0.111±0.0029
ΩΛ 0.719±0.0182 0.726±0.0154
ns 0.968±0.0124 0.963±0.0092
τ 0.0897±0.015 0.0873±0.014

H0(km/s/Mpc) 69.2±1.6 69.9±1.37

∑mν < 0.57 eV < 0.45 eV

Table 3.2 Summary of the constraint on the sum of the neutrino masses. All datasets
include BAO and H0 for improved parameter constraints. Errors are at the 68% CL except
for ∑mν , which is quoted as a 95% upper limit.

3.2 Neutrino mass

We now turn to the question of how well the datasets are able to constrain the sum of the neutrino

masses ∑mν . Table 3.2 shows the results from WMAP in the first column and the result of adding

the additional datasets in the final column. Although the constraint greatly improves the two sigma

limit for the masses, this is not enough to favor either the standard or inverted hierarchy (see

Section 1.4). However, this is not a surprise because none of the datasets are sensitive enough on

their own. Forthcoming data from the Planck experiment and other future experiments will likely

improve the mass constraint [19].

Finally, we investigate the effect of assuming flatness while determining an upper bound on

∑mν . We investigate two models. The first assumes three degenerate massive neutrinos, while the

second allows for additional relativistic species accounted by ∆Ne f f > 0. We define the correlation

coefficient ρi j as the ratio of the off-diagonal term of the covariance matrix σi j to the 1σ errors

σiσ j, so that for two parameters denoted by i and j we have ρi j = σi j/σiσ j. Figure 3.3 shows

that ∑mν and Ωk are strongly correlated with a correlation coefficient of ρΩk ∑mν
= 0.78 for both

models (∆Ne f f = 0 and ∆Ne f f > 0). Furthermore, the degeneracy considerably increases the un-

certainty in the sum of the neutrino masses. In fact, with Ωk 6= 0 the 95% upper limit on ∑mν more
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Figure 3.3 Comparison of the correlation between Ωk and ∑mν under the two ∆Ne f f
models under consideration. The model with three massive neutrinos is shown in blue
while the model with additional relativistic species is in red. Intervals are given at the 68%
and 95% confidence levels and markers indicate the locations of the marginalized values.
Datasets include WMAP7+ACT+SPT+BAO+H0. The addition of curvature allows ∑mν

to be more than twice the previous constraint with Ωk = 0.

than doubles with respect to the flat case: with ∑mν < 0.95 eV for the model assuming only three

massive neutrinos and ∑mν < 1.19 eV for ∆Ne f f > 0. The strong correlation between curvature

and mass is expected because massive neutrinos are still relativistic at decoupling so they act as

additional radiation (c.f. Ref. [48]). As a consequence the presence of massive neutrinos shifts

both the time of matter-radiation equality aeq and the position of CMB peaks. This effect can be

compensated for by a change in the geometry of the Universe, which weakens the constraints on

both ∑mν and Ωk. See Table 3.3 for a summary of cosmological parameters when curvature and

massive neutrinos are considered.

The constraint on the sum of the neutrino masses with the combined datasets is is an important

result by itself (see Section 1.4). However, the effect of curvature on the neutrino mass is insightful,

especially when compared with the ∆Ne f f > 0 model. Both models produce roughly the same
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Parameter ∆Ne f f = 0 ∆Ne f f > 0

100Ωbh2 2.24±0.043 2.26±0.049
Ωch2 0.118±0.0063 0.134±0.0105
ΩΛ 0.711±0.0216 0.703±0.0239
ns 0.967±0.011 0.982±0.015
τ 0.0864±0.0144 0.0890±0.0145

H0(km/s/Mpc) 70.6±1.62 73.1±2.03

103 Ωk 7.52±7.74 3.46±8.69
∑mν < 0.95 eV < 1.19 eV

∆Ne f f 0 0.995±0.430

Table 3.3 Summary of the constraint on the sum of the neutrino masses when Ωk 6= 0.
∆Ne f f is an additional relativistic contribution after considering 3.046 massive neutrinos.
Datasets include WMAP7+ACT+SPT+BAO+H0. Errors are at the 68% CL except for
∑mν , which is quoted as a 95% upper limit.

correlation effect but the one with additional relativistic neutrinos has a “pull” toward Ωk < 0.

This is significant because the correlations are opposing each other so that the mass favors an open

universe and the effective neutrino number favors a closed universe. However, it should be noted

that Ne f f and ∆Ne f f are not the same parameter! Indeed, a model with all relativistic neutrinos and

a model with massive neutrinos are intrinsically different. This means we cannot make a plot of

Ωk vs. ∆Ne f f similar to Fig. 3.1. The parameter still has a noticeable effect on other cosmological

parameters, such as Ωk and ∑mν , but may not have any correlation between them.

3.3 Implications of assuming flatness

The resolution of the high effective neutrino number in cosmology remains an open question.

However, additional neutrinos may be due to parameter degeneracy or other issues in statistical

analysis rather than new physics. In this thesis we have discussed some of the interesting physics

behind neutrino cosmology and contributed to the rich subject. The focus has been an argument

for correlation between the number of effective neutrinos Ne f f and the curvature of the Universe
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Ωk, which arises from the effect of these parameters on distance measurements. The qualitative

argument is confirmed by a statistical analysis of CMB anisotropy measurements using CosmoMC.

Indeed, we have shown that there is a correlation between Ne f f and Ωk that gets stronger when

SPT and ACT datasets are added to WMAP alone. However, even when Ωk is allowed to vary,

Ne f f = 3 is still disfavored by the data with 95% confidence. Although the correlation favors a

closed universe with Ωk < 0, if CMB data were to favor open models then the neutrino number

would decrease as predicted. Perhaps the same element of the data that favors a closed universe

may also be responsible for the trend toward a higher Ne f f . More importantly, we discovered

strong correlation between curvature and the sum of the neutrino masses.

Future experiments will provide further insight into both Ne f f and ∑mν [57]. Our results

are consistent with the current understanding of the data available. The strongest constraints on

these parameters from the statistical analysis assuming a flat universe are Ne f f = 3.89±0.41 and

∑mν < 0.45 eV with 95% confidence level using WMAP7+ACT+SPT+BAO+H0. The constraints

are weakened by degeneracy with the curvature parameter Ωk. However, this still represents the

continued effort toward significant improvements on parameter constraints in cosmology. Al-

though the sum of the neutrino masses is significantly improved from the WMAP 7-year result

of ∑mν < 0.57 eV, the constraint is far from being sensitive enough to rule out one of the mass hi-

erarchies. Furthermore, we have shown that the mass uncertainty more than doubles when Ωk 6= 0.

Based on our results and the estimated quality of data for Planck and other experiments, it should

be possible to determine the existence or nonexistence of sterile radiation to greater confidence in

the near future.
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3.4 Future work

There are many directions for similar research involving parameter constraints under different

models, but the scope of this work is fairly self-contained so we have chosen to move on to other

problems. The correlation measures should be put into proper perspective. They are statistical tools

used to explore various cosmological models. In other words correlation is just a correlation and

does not “favor” anything. In this respect the greatest improvements on cosmological models will

take place as future experiments are able to decrease parameter uncertainty by orders of magnitude.

New and innovative designs must be sought out by collaborations hoping to achieve such results.

This is a rich area of research that will continue to influence other areas of physics, as has been

seen by the insights emphasized in Chapter 1, especially relating to the neutrino mass hierarchy.

For students interested in this avenue of theoretical and computational cosmology we suggest

a collaborative environment. It is much more effective to facilitate this kind of research under a

group with experience with cluster computing. In the age of information the learning process is

simply a matter of choice, which may be pursued through the references provided. An example

of a similar project would be to investigate the effects of baryon acoustic oscillations (BAO) and

gravitational lensing in possibly breaking the degeneracy between neutrino parameters. We suspect

these topics will have advanced significantly in ten years. Hopefully, by that time the source of

effective neutrinos will no longer be an open question in cosmology.

We conclude this thesis by briefly describing our current research focus. We have become

interested in the cosmic geometry and topology of the Universe. Currently, statistical models

only consider the possibility of the flat (Ωk = 0), spherical (Ωk < 0), and hyperbolic (Ωk > 0)

geometries. However, under the geometrization conjecture and the work of Thurston and others

there are five additional unique geometries for spatial 3-Manifolds [58]. We do not provide details

here but most of the work in this area has been mathematical in nature with only a few applications

in cosmology. Perhaps there is good reason for this because the cosmological principle, which
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assumes spatial isotropy and homogeneity (i.e. to a good approximation the Universe looks the

same same in every direction from any reference point). Nonetheless, in this theoretical project

we hope to constrain generalized curvature parameters in these FRW-like spacetimes in order to

provide an additional check on the validity of assuming flatness in general.
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