
PARALLELIZING SIMULATIONS OF NONNEUTRAL

PLASMA INSTABILITIES IN A MALMBERG-PENNING TRAP

by

Melissa Powell

A 492R capstone project report submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Advisor: Ross Spencer

Department of Physics and Astronomy

Brigham Young University

December 2007

Copyright c© 2007 Melissa Powell

All Rights Reserved

ABSTRACT

PARALLELIZING SIMULATIONS OF NONNEUTRAL

PLASMA INSTABILITIES IN A MALMBERG-PENNING TRAP

Melissa Powell

Department of Physics and Astronomy

Bachelor of Science

A Malmberg-Penning trap is a cylindrical apparatus which confines non-neutral

plasma with an axial magnetic field and negative electric potentials on both

ends. Theory predicts that a hollow plasma density profile is unstable, and

experiments agree. However, the experimental growth rate of the m=1 dio-

cotron mode of the instability is much larger than the theoretical growth rate,

by a factor of around 2-4. We are collaborating with an experimental research

group to find the cause for this discrepancy by recreating their Malmberg-

Penning trap in our 3D PIC computer simulation. The growth rates of our

simulation test cases have remained roughly half that of the experiments. I will

report how we successfully parallelized the simulation, allowing the number of

plasma particles to be increased to approximately the number of particles in

the experiment. The increased number of particles improves the accuracy of

the simulation by reducing the noise on the computational grid.

ACKNOWLEDGMENTS

I gratefully acknowledge the patience and assistance of my research advi-

sor, Dr. Spencer, in completing this project, as well as Dr. Mason and Dr.

Campbell’s help and support. I also greatly appreciate having the use of the

facilities of the Brigham Young University Supercomputing Center, without

which this project would not have been possible. This project was supported

and funded by NSF and the Brigham Young University Physics Department.

Contents

Table of Contents v

List of Figures vii

1 Introduction 1

2 Methods 5

2.1 The Malmberg-Penning Trap . 5
2.1.1 Diocotron Instabilities . 7

2.2 Overview of the Simulation . 8
2.3 Parallelizing the Simulation . 10

2.3.1 Using the MPI Library . 10
2.3.2 Parallelizing the Densmaker and Mover Steps 12

3 Results 15

4 Conclusion 17

Bibliography 19

A Using Multiple Processors on Marylou4 21

v

Chapter 1

Introduction

The behavior of plasma, or in other words gases of charged particles, is a subject of

interest in many fields, including technology and astronomy. The waves that can be

created in pure electron plasma confined in an apparatus such as the cylindrically

shaped Malmberg Penning trap are of special interest because they can be used to

check the theory of fluid dynamics. Much of the theory of plasma physics and fluid

dynamics has been verified by studying the waves in confined electron plasma.

The diocotron instability waves created in electron plasma confined in a cylindrical

trap when the column of electron gas has a hollow radial density profile were first

given serious theoretical consideration by Levy [1] in 1965. He predicted that the

m=1 mode of the diocotron instability should be stable, while m ≥ 2 modes should be

unstable. The application of fluid dynamics theory to pure electron plasma confined

in a cylindrical apparatus has since been used to successfully predict much of the

diocotron wave behavior in experiments [2]. However, in 1990 Driscoll and Fine [3,4]

reported that they had observed an exponentially growing m=1 mode of the diocotron

instability, contrary to the theory which said that the m=1 mode should be stable.

Soon afterward, Smith [5] reported that their investigations using a particle-in-cell

1

2 Chapter 1 Introduction

simulation showed how m=1 exponential growth could be created, but they had a

lower growth rate than that observed in the experiments. Many attempts were made

to theoretically explain the high growth rate of the m=1 mode [6, 7, 9]. However, no

satisfactory explanation has yet been found for the discrepancy between theory and

experiment in the growth rate of the m=1 mode.

Our research group seeks to understand the cause of the discrepancy by duplicating

experimental conditions as closely as possible in computer simulations, collaborating

with Travis Mitchell’s experimental research team at the University of Delaware. Our

simulation of non-neutral plasma is discussed in a paper by Spencer and Mason [7].

The simulation calculates the motion of the plasma confined in a Malmberg-Penning

trap using the equations of the Drift-Poisson Model, and runs on a 3D computational

grid in Cartesian coordinates.

Several simulations have been created to explore the behavior of non-neutral

plasma confined in a cylindrical trap. An excellent overview of these simulations

is given by Tsidulko et al [8], who noted that while many 2D particle-in-cell codes

have been created, they knew of only a few which are 3D. For example, the simula-

tion by Smith [5] that was cited above was 2D and had a total of 32,000 particles.

The simulation recently developed by Tsidulko et al was 3D and was run on a single

processor on a personal computer [8]. Although many parallelized 3D PIC simula-

tions have been developed for many areas of plasma and fluid study, according to our

knowledge no other simulation has been developed for this particular research area

besides our own which is both 3D and parallelized to allow access to more memory

and hence more particles than would be possible with a single processor. In the re-

search which I will describe in this paper, we have parallelized our simulation and

increased the number of particles from 20 million to 2 billion, which is on the same

order of magnitude as the number of electrons in the experiment. This was done by

3

running the simulation with 100 processors on the supercomputer marylou4 at the

BYU Supercomputing Center, which has a total of 1,260 processors and 5,040 GB of

total memory. The memory made available by using 100 processors allowed us to run

with 100 times as many particles as before. The increased number of particles results

in less noise and better statistics on the computational grid.

4 Chapter 1 Introduction

Chapter 2

Methods

2.1 The Malmberg-Penning Trap

We simulate the Malmberg-Penning trap used by Travis Mitchell’s experimental re-

search team in our particle-in-cell code. Malmberg-Penning traps were first described

in 1975 by Malmberg and deGrassie [10] and are an effective means of confining and

studying waves in electron plasma. This trap consists of a cylindrical apparatus which

confines a column of pure electron plasma with an axial magnetic field and split rings

on both ends holding negative potentials of −50 V. Fig. 2.1 is a rough sketch of the

trap showing the electric and magnetic fields inside the cylinder, while Fig. 2.2 is a

more detailed diagram showing diagnostic rings and wave control rings that can be

used to manipulate the plasma [11]. A plot of the electron density at a given moment

in time is obtained by dumping the entire plasma column out one end onto a phosphor

screen.

5

6 Chapter 2 Methods

Figure 2.1 A sketch of the electric(blue) and magnetic(red) fields inside the
cylindrical apparatus confining the plasma in a MP trap. Plasma electrons
spin around the magnetic field and so cannot escape radially.

Figure 2.2 A diagram of an MP trap showing diagnostics and controls.
Electron density is measured at a given point in time by dumping the entire
electron column out one end onto the phosphor screen, yielding 2D plots of
electron density. Fig. from [11].

2.1 The Malmberg-Penning Trap 7

Figure 2.3 The electron column precesses around the conducting cylinder
when it is in a stable state. Fig. from [2].

2.1.1 Diocotron Instabilities

In its stable state, the electron column has high density near the center and lower

density near its edges, and precesses about the center as in Fig. 2.3. This stable mode

is due to the induced charge on the walls and the axial magnetic field. In order to

set up instabilities within the plasma, the column is hollowed by evacuating electrons

from the middle. Non-neutral plasma has fluidlike properties, and in fact is used to

study the behavior of fluids because motion in fluids is in some ways more difficult to

study than in electrons [11]. To picture what happens when the plasma is hollowed,

imagine if a bucket of water were suddenly taken from a rainbarrel. Where before the

water was calm, now it is unstable and turbulent.

Similarly, when the plasma column is hollowed, the plasma becomes turbulent.

The entire column no longer moves together as it precesses around the center. In-

stead, a part of the plasma precesses in one direction and part of it in another, and

instabilities called diocotron waves are created [2]. In particular, the m=1 instability

8 Chapter 2 Methods

mode amplitude grows until the plasma reforms and becomes stable again with the

highest density in the center. The electron density plots in Fig. 2.4 show this process

for the m=2 instability. The m=1 instability causes a similar evolution. Experiments

with these diocotron instabilities are described in detail in papers by Driscoll [3],

Malmberg [2], and Fine, Driscoll and Malmberg [12].

2.2 Overview of the Simulation

Since experiment and theory do not agree on the exponential growth rate of the m=1

instability, our simulation attempts to bridge the two by simulating the experiment

using plasma theory and adjusting various parameters such as the potentials on the

rings in order to try to recreate the experiment’s high m=1 growth rate.

The positions of the plasma particles within the cylinder are stored in Cartesian

coordinates. Plasma particle motion is calculated using the equations of the Drift-

Poisson Model, which are as follows.

Newton’s Second Law for motion in the z-direction (axial direction) is

m
dvz

dt
= −q

∂φ

∂z
,

dz

dt
= vz(t) , (2.1)

where φ = φ(x, y, z) is the electrostatic potential.

In the xy-plane motion is governed by the electric field drift:

dr⊥

dt
=

E× z

B
(2.2)

where r⊥ = x(t)x + y(t)y and where x, y, and z are the three cartesian unit vectors.

The electrostatic potential is given by Poisson’s equation:

∇2φ = −
q

ǫ0

n (2.3)

2.2 Overview of the Simulation 9

(a) (b)

Figure 2.4 These plots are snapshots in time of the electron density profile
across the plasma column’s radius in experiments described by Malmberg [2],
and show the evolution of the plasma density profile caused by the m=2
instability. The m=1 instability causes a similar evolution. a) At t = 0,
the plasma column has just been hollowed by evacuating electrons from the
middle of the column (near 0 radius). Notice how the density graph has
become scattered by t = 200 µsec by the increasing instabilities in the plasma
caused by this unstable shape. At t = 2 msec, the instabilities have died off
and the plasma has reformed itself into a stable state (a non-hollow shape).
b) After the plasma column is hollowed, part of the plasma precesses in one
direction and part of it in another and instability modes grow rapidly. Fig.
from [2].

10 Chapter 2 Methods

with

E = −∇φ (2.4)

where n = n(x, y, z) is the plasma number density. The guiding center approximation

[13] is used so that a particle’s motion follows the path of the time-averaged center

of mass of an electron.

The simulation code runs in a three step cycle as seen in Fig. 2.5. A time step of

3× 10−9 sec is completed each cycle. The three-step cycle to move the particles is as

follows:

1. Resolve Particles into Density Grid Each particle contributes a little of
its charge density to each of the eight points of the grid cube it is in to compute
a 3D charge density grid.

2. Field Solve The forces acting on the particles are found by using the charge
density grid and multigrid numerical techniques to solve for the electric potential
in Poisson’s equation.

3. Move Particles The particles are moved using the forces found by the field
solver.

The simulation is typically run for between 3000 and 30000 time steps. The motion

of the plasma is analyzed by graphing file output diagnostics such as the amplitude

of the m=1 mode (as was done in Fig.3.1).

2.3 Parallelizing the Simulation

2.3.1 Using the MPI Library

The Message-Passing Interface(MPI) library provides an orderly way for communica-

tion to take place between processors executing code [14]. We used MPI to parallelize

our code because its subroutines provide good control over processor communication

and the library is widely used. MPI Fortran and C/C++ compilers are included

2.3 Parallelizing the Simulation 11

Figure 2.5 A time step in the simulation represents the completion of one
cycle.

on the marylou4 supercomputer in the BYU Supercomputing Laboratory. A sample

MPI Fortran program is included in Appendix A, along with information on how to

submit parallel processing jobs to run on marylou4.

The MPI subroutines allow direct control over communication between processors

with the subroutines. For instance, the MPI subroutine send and receive allows the

programmer to command one processor to send a packet of data(like an array) and

another processor to receive it and store it. A more complicated subroutine called

mpi reduce will collect the indicated arrays stored by the same name but holding

different values on all processors and perform some operation on the arrays, such

as add or subtract. A very useful guide on MPI Fortran subroutines can be found

at the Texas Advanced Computing Center’s website [15]. The control over processor

communication provided by MPI subroutines makes it easy to understand and modify

a code’s algorithm. Careful consideration of our code’s algorithm was necessary in

order to keep communication time overhead from canceling out the benefits of using

multiple processors.

12 Chapter 2 Methods

Figure 2.6 The MPI subroutine mpi allreduce collects the mydens3d arrays
from all processors, adds them together, and stores the result in dens3d.

2.3.2 Parallelizing the Densmaker and Mover Steps

In the regular serial version of our code, the 3D density array called dens3D stores

the charge density grid as calculated in the densmaker function in step 1 in the three

step cycle in Section 1.3. Dens3d is used by the field solver to calculate the fields,

which are then used to calculate the particle moves.

In the parallelized version, each processor stores about 20 million particles in its

particle position arrays, which is close to the maximum the compiler will allow given

the available memory. In the densmaker function, each processor calculates its own

dens3d array for its own particles, called mydens3d. Thus the resolving density step is

parallelized, since the work to create the complete density array is divided up among

processors working in parallel. When all processors have created their mydens3d

arrays, mpi allreduce is called to collect the arrays, add them together, and send

the result to all processors to be stored as their copy of dens3d. The full call to

mpi allreduce is shown in Fig. 2.6.

In the next step, the field solve, each processor uses its own copy of the dens3d

array to calculate the fields. Since they are all doing the same thing here, there is

some wasted processor time, and the field solver step is not truly parallelized. Once

the field solver step is complete, each processor then moves its own set of particles,

2.3 Parallelizing the Simulation 13

so that the mover step as well as the densmaker step is parallelized. In summary, we

successfully parallelized the simulation to the extent that we can increase the number

of particles in proportion to the number of processors that we run our simulation on.

14 Chapter 2 Methods

Chapter 3

Results

Parallelizing the simulation allowed us to increase the number of particles in the

simulation from 20 million to 2 billion, which is on the same order of magnitude as

the actual number of electrons in the experiment. This was made possible by running

the simulation with the memory made available by 100 processors on marylou4. The

number of particles per processor was set to 20 million since that was close to the

maximum the compiler would allow given the available memory.

The increased number of particles results in less noise and better accuracy in the

simulation. For example, previously we were forced to have a much higher starting

amplitude than in the experiment because the high noise levels with the number

of particles we had in the simulation made observing low amplitudes impossible.

In the experiment, the m=1 component of the perturbed density, normalized to the

maximum equilibrium density, starts at about 2×10−4 and increases exponentially to

about 5× 10−3, after which it levels off. Our simulation’s relative amplitude started

much higher, at about 1 × 10−2, which we hypothesized was making it difficult to

reproduce the experimental conditions.

We found that running with 100 processors and thereby increasing the number

15

16 Chapter 3 Results

Figure 3.1 A run using a total of 2 billion particles. The green curve shows
a 4× 104 growth rate for comparison.

of particles from 20 million to 2 billion decreased the noise level sufficiently to allow

us to reach a starting relative amplitude close to the experimental value. The m=1

amplitude plot of such a run is seen in Fig. 3.1. In a run using 100 processors with

a total of 2 billion particles, we were able to achieve a starting relative amplitude

close to the experimental value of 2 × 10−4. We hoped that this improvement in

the accuracy of our simualtion would result in a growth rate more like that in the

experiment’s. However, the growth rate of 1.13×104 was still much lower than in the

experiment, which had growth rates from 4×104 to 8×104. We would like to further

improve the accuracy of the simulation by making the field solver more efficient by

parallelizing it and converting it from a two grid to a three grid multigrid solver. If the

field solver could do more work in less time, we could use a finer grid, which would be

more like the physical system. For comparison, the run in Fig. 3.1 completed 29,000

time steps in a period of 10 days. If we had used a significantly finer grid it would

have taken much longer to complete the same number of time steps.

Chapter 4

Conclusion

In conclusion, parallelizing our simulation has allowed us to significantly increase the

number of particles and reduce the noise on the grid. Using 100 processors, we were

able to have a maximum of 2 billion particles, a number that approaches the actual

number of electrons in the experiment. Although getting the starting amplitude closer

to the experimental value did not turn out to have a significant effect on the growth

rate during the 10 day run seen in Fig. 3.1, we may be able to further improve the

accuracy of the simulation by running with a finer grid. However, a finer grid is more

computationally expensive and therefore significantly increases the runtime. We have

been working on increasing the efficiency of the field solver by modifying its multigrid

algorithm to include three grids instead of two. Adding another, coarser grid in the

V-loop of the multigrid algorithm should make the long wavelength error disappear

faster. We may also be able to split up the work during the field solver step and take

advantage of the increased number of processors, although the interdependency of the

steps of the multigrid algorithm complicate its parallelization. Thus, in the future

parallelizing and optimizing the simulation’s field solver should further improve the

accuracy of the simulation by allowing runs on a finer grid.

17

18 Chapter 4 Conclusion

Bibliography

[1] R.H. Levy, ”Diocotron Instability in a Cylindrical Geometry,” Phys. Fluids 8,

1288 (1965).

[2] J.H. Malmberg et al, “Experiments With Pure Electron Plasmas,” AIP Confer-

ence Proceedings 175, 28 (1988).

[3] C.F. Driscoll, “Observation of an Unstable l=1 Diocotron Mode on a Hollow

Electron Column,” Phys. Rev. Lett. 64, 645 (1990).

[4] C.F. Driscoll, K.S. Fine, ”Observation of an Unstable l=1 Diocotron Mode on a

Hollow Electron Column,” Phys. Fluids B 2, 1359 (1990).

[5] R.A. Smith, M.N. Rosenbluth, ”Algebraic instability of hollow electron columns

and cylindrical vortices,” Phys. Rev. Letters, 64, 649 (1990).

[6] T.J. Hilsabeck, T.M. O’Neil, ”Finite Length Diocotron Mode,” Phys. Plasmas

8, 407 (2001).

[7] G.W. Mason, R.L. Spencer, ”Simulations of the instability of the m = 1 self-

shielding diocotron mode in finite-length nonneutral plasmas,” Phys. Plasmas 9,

3217 (2002).

19

20 BIBLIOGRAPHY

[8] Y. Tsidulko, R. Pozzoli, M. Romé, ”MEP: A 3D PIC code for the simulation

of the dynamics of a non-neutral plasma,” Journal of Computational Physics

209(2), 406 (2005).

[9] S.N. Rasband, R.L. Spencer, ”Modes in a non-neutral plasma of finite length

m=0,1,” Phys. Plasmas 10, 948 (2003).

[10] J.H. Malmberg, J.S. deGrassie, ”Properties of Nonneutral Plasma,” Phys. Rev.

Letters 35, 577 (1975).

[11] T.B. Mitchell, ”Travis Mitchell’s Research Interests: Penning Traps, 2D

Electron Fluids,” http://www.physics.udel.edu/wwwusers/mitchell/research

interests.html (Accessed June 22, 2007).

[12] K.S. Fine, C.F. Driscoll and J.H. Malmberg, “Measurements of a Nonlinear

Diocotron Mode in Pure Electron Plasmas,” Phys. Rev. Lett. 63, 2232 (1989).

[13] T.J.M. Boyd, J.J. Sanderson, The Physics of Plasmas, Cambridge University

Press, 2003, pp. 17-19.

[14] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Parallel Programming with the

Message-Passing Interface, MIT Press, 1994, pp. 11-23.

[15] Texas Advanced Computing Center, ”MPI for Fortran Programmers,” http://

www.tacc.utexas.edu/resources/user guides/mpi/ (Accessed June 22, 2007).

Appendix A

Using Multiple Processors on

Marylou4

21

22 Chapter A Using Multiple Processors on Marylou4

Using Multiple Processors on Marylou4
Melissa Powell

This is some useful information on how to get started on running MPI Fortran code with
multiple processors on marylou4 at the BYU Supercomputing Center, after getting an
account that has permission to run on the supercomputers.

Basic info on marylou4

Ira and Mary Lou Fulton Supercomputing Center http://marylou.byu.edu/

marylou4 Dell 1955 Blade Cluster
1260 Dual Core Intel EM64T processors @ 2.6 GHz
618 compute nodes
5,040 GB total memory (8 GB/node)
15 TB Disk
RedHat Enterprise Linux v4.3
PBS submission system

MPI-enabled Fortran 77/90, C/C++ compilers

.tcshrc

This is a sample .tcshrc file, adapted from Grant W. Mason’s .tcshrc file. This file should
be at the top most level of your account directory. As long as it is present, it will be used
to set up your account preferences and set your path variable, which is all the directories
the shell will search when you type commands. Note the /opt/mpich/intel/bin/mpif90

which will allow you to compile with the MPI Fortran 90 compiler.

set prompt='[%m:%c] %n> '

setenv TERM vt220

set path = (. .. \
 $path \
 ~/bin \
 /usr/gm \
 /usr/bin \
 /usr/local/bin \
 /bin \
 /usr/X11R6/bin \
 /opt/mpich/intel/bin/mpif90 \

)

alias ll ls -la

limit stacksize unlimited
limit coredumpsize 0

Core dump is data left over after a program terminates abnormally. If you don’t want to
look at these leftovers, set the coredumpsize limit to 0.

23

Compile on marylou4 with: /opt/mpich/intel/bin/mpif90 -o MyExe MyMPIProg.f

Our simulation was compiled with the following options(italicized):
/opt/mpich/intel/bin/mpif90 -o MyExe MyMPIProg.f -cm -save -O3 –xP

SumProg.f

This is an example of MPI Fortran code. The MPI(Message Passing Interface) library can
be used to tell processors what to do and how to communicate during runtime.

c SumProg
c Melissa Powell
c Demonstrates important aspects of an MPI program
c This program finds the definite integral of a function, dividing up the task
c according to the number of processors assigned to it in the PBS script.

 program SumProg
 implicit none
c To include MPI functions,

 include 'mpif.h'

c MPI variables

 integer :: myid, numprocs,ierr

c Functions
 real*8 :: y_value

c Program variables
 real*8 :: i,j, dx, height
 integer :: standard_myN, myN
 double precision :: sum
 real*8 :: mysum = 0
 real*8 :: a = 1
 real*8 :: b = 2
c High N is just to make everything take longer(not to get high accuracy)
c so you can see how runtimes vary for different numbers of processors
 integer :: N = 1000000000

c You must call MPI_INIT if you want to use multiple processors

 call MPI_INIT(ierr)

c These functions set the values of useful variables you can use

c to command different processors to do the tasks you want

 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

 if (myid .eq. 0) then
 write(*,*) 'STARTING PROGRAM- SumProg'
 write(*,*) 'Number of processors: ', numprocs
 end if

c write(*,*) ' This processor is #', myid

24 Chapter A Using Multiple Processors on Marylou4

c Setting limits of integration for
c each processor:

c myN for all processors but the last
standard_myN = int(N/numprocs)

c If I am not the last processor, then
 if (myid .lt. numprocs-1) then
 myN = standard_myN*(myid+1)
 else
 myN = N
 end if
 write(*,*) 'myid, myN: ', myid, myN

c Summing area under the curve between this
c processor's set limits of integration:

c Do loop is just to make everything take longer(for time tests)
 dx = (b-a)/N
c do j = 1, 1000
 mysum = 0
 do i = standard_myN*myid, myN-1
 height = y_value(a + .5*dx + real(i)*dx)
 mysum = mysum + height*dx
 end do
c end do
 write(*,*) 'My part of the Def Int: (myid, sum)', myid, mysum

c This MPI function sums the results each processor got

c for the area between its limits of integration:

 call MPI_REDUCE(mysum, sum, 1, MPI_DOUBLE_PRECISION,

 & MPI_SUM, 0, MPI_COMM_WORLD, ierr)

c You must call MPI_FINALIZE when you're done

c or strange EOF errors will occur

 call MPI_FINALIZE(ierr)

 if (myid .eq. 0) then
 write(*,*) 'Definite integral: (myid, sum)', myid, sum
 write(*,*) 'ENDING PROGRAM'
 end if
 stop
 end program SumProg

 real function y_value(num)
 implicit none
 real*8 :: num
 y_value = 3*num**2
 return
 end

25

Running with Multiple Processors(PBS)
Programs can be run with multiple processors by submitting them to the queue with PBS.
PBS assigns the number of processors requested to the jobs in the job queue so that they
can start running. The supercomputing center’s system managers use PBS to keep track
of the jobs being run to make sure nobody is misusing the resources.

-The walltime set in the PBS submission file keeps your program runtime within a
reasonable limit.
-Nodes are groups of processors, about 1-4 each on marylou4.
 -Running within nodes makes your program run faster.

SumProg.sh

A sample PBS submission script file for SumProg adapted from
http://marylou.byu.edu/pbs.php, where there is a complete tutorial on the script
commands.
The submission script sets your preferences for the job when PBS runs it, including how
many processors you want and whether you want email notification when the job is done.

Note: The higher you set the walltime, the longer it will take for your job to start

running. A recent change in policy does not allow more than 128 processor weeks

per user, or more than 480 processors per faculty member at a time.

Ex. You can set NP to 64 and walltime to 2 weeks, or set NP to 1 processor and walltime
to 128 weeks. Processor time is NP * walltime.

#!/bin/bash
#PBS -l nodes=2:ppn=2,walltime=72:00:00
#PBS -N SumProg

#PBS -m abe
#PBS -M myemail@byu.edu

PROG=/ibrix/home/username/myprogramsdir/SumExe
PROGARGS=""

TMPDIR=/ibrix/home/username/tempdir/$PBS_JOBID

NP should always be nodes * ppn from the #PBS -l directives above
NP=4

#cd into the directory where I typed qsub
cd $PBS_O_WORKDIR

Execute the mpi job. ‘time’ tells you how fast it runs.
time mpiexec $PROG $PROGARGS

exit 0

26 Chapter A Using Multiple Processors on Marylou4

Working with the Queue on the PBS system on Marylou4

Submit Job to the Queue qsub + submission file

username> qsub SumProg.sh
162007.m4bi *Note: 162007 is your job’s ID #

Look at the Queue showq

username> showq

active jobs------------------------

JOBID USERNAME STATE PROC REMAINING STARTTIME

945570 wesb Running 1 57:01:15:18 Wed Oct 11 21:18:34

945522 glh43 Running 1 53:05:49:03 Mon Sep 25 09:50:22

Etc.

Delete Job from the Queue qdel + Job ID#

username> qdel 162007

Program Output Files

After your program is executed, output files will be put in the same directory qsub was
typed in. If you want to pipe output to an output file during runtime so you can watch the
program’s progress, include something like ‘> mylogfile.fil’ in the PROGARGS in the
.sh job submission script. Otherwise the output will be put in the .o output file as below
(the .o, .e files are not created until after the job is complete).

SumProg.o162007

Sample output file for SumProg with 4 processors

STARTING PROGRAM- SumProg
 Number of processors: 4
 myid, myN: 0 250000000
 myid, myN: 2 750000000
 myid, myN: 1 500000000
 myid, myN: 3 1000000000
 My part of the Def Int: (myid, sum) 3 2.64062500000949
 My part of the Def Int: (myid, sum) 0 0.953124999995298
 My part of the Def Int: (myid, sum) 1 1.42187499999796
 My part of the Def Int: (myid, sum) 2 1.98437500003173
 Definite integral: (myid, sum) 0 7.00000000003447
 ENDING PROGRAM

SumProg.e162007

Sample error output file with output from ‘time’ command in PBS submission script.

real 0m9.869s
user 0m1.345s
sys 0m0.087s

