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ABSTRACT

QUANTUM UNCERTAINTY AND CONSERVATION LAW RESTRICTIONS

ON GATE FIDELITY

Nathan John Steiger

Department of Physics and Astronomy

Bachelor of Science

This work explores several formulations of inherent limitations in quantum the-

ory. Ever since its inception with Heisenberg in 1927, uncertainty has played

the lead role in imposing such limitations [1]. Yet the ubiquitous Heisenberg

uncertainty principle, ∆x∆p ≈ h, and its generalized version developed by

Robertson [2] can be strengthened in many cases. I discuss and present a new

derivation of a physically and mathematically extended uncertainty relation

for both pure and mixed states that Schrödinger originally developed [3]. I il-

lustrate the discrepancies between the Robertson and Schrödinger uncertainty

relations by applying them to a selection of incompatible operators. I work

out these uncertainties in one dimension for the infinite square well, the har-

monic oscillator, and the free particle wave packet; I also expand upon my

previous work [4] to calculate uncertainties for operators and states in the

space of angular momentum 1/2, 1, 3/2, and 2. Incorporating the Schrödinger



uncertainty relation often raises the lower bound on uncertainty with respect

to incorporating the Robertson uncertainty relation.

Furthermore, I connect the Schrödinger form of uncertainty to conserva-

tion law constraints and analyze some limitations on quantum computational

processes. Recent work by Karasawa et al. [5] suggests that conservation laws

limit the inherent accuracy of gate operations in quantum computing. One

way to quantify these limitations is through a gate operation’s fidelity. I extend

and clarify this work on arbitrary single-qubit gate operations by incorporat-

ing the Schrödinger form of the uncertainty relation. From this, I propose an

approximate computational feasibility check that suggests an upper bound on

fidelity for certain quantum computations.
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Chapter 1

Introduction

1.1 Quantum Uncertainty

Quantum uncertainty forms the crux of this thesis. A precise application of quan-

tum mechanics must invariably confront the limitations imposed by uncertainty. An

understanding of the nature of those limitations is thus imperative. Indeed, quan-

tum mechanics has come to be characterized—at least in its popularized version—by

the iconic and controversial assertion of Werner Heisenberg that “It seems to be a

general law of nature that we cannot determine position and velocity simultaneously

with arbitrary accuracy” [6,7]. This was the first profound insight into the quantum

characteristics of nature: that certain pairs of observables cannot be measured both

accurately and simultaneously.

The debate over the significance of this uncertainty restriction, begun by Albert

Einstein and Niels Bohr in the 1920s, continues today [8]. After over 80 years of

research and overwhelming experimental evidence, this fundamental assumption of

quantum mechanics that certain observables are fundamentally incompatible seems

inescapable. This has led some [9] to assert with Stephen Hawking that “Even God

1
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is bound by the uncertainty principle and cannot know both the position and mo-

mentum” [10].

Heisenberg originally thought of uncertainty in an intuitive way. He pictured a

microscope through which one could view very small objects. Heisenberg proposed a

Gedankenexperiment in which one uses high-frequency photons to improve the reso-

lution of what is being imaged. In his seminal paper on uncertainty [6,7] Heisenberg

explains, “Let one illuminate the electron and observe it under a microscope. Then

the highest attainable accuracy in the measurement of position is governed by the

wavelength of the light. However, in principle one can build, say, a gamma-ray mi-

croscope and with it carry out the determination of position with as much accuracy

as one wants.” However, he notes, since gamma rays have high-frequency and en-

ergy, they will greatly disturb the electron being observed. The observed electron

undergoes “a discontinuous change of momentum.” Essentially, it is a Catch-22; the

high-frequency gamma ray determines the position very accurately, yet it disturbs the

electron so much that one looses track of the momentum. Likewise, if one uses lower

frequency photons, such as microwaves, the momentum will be much more certain,

but the position will become fuzzy. All of this is encapsulated in his uncertainty

principle

∆x̂∆p̂ ≈ h , (1.1)

where ∆x̂ is the uncertainty of knowledge about the position of the particle, ∆p̂ is

the uncertainty associated with the momentum of the particle, and h is Planck’s

constant.1

Since the time of Heisenberg, the uncertainty relation has become increasingly

1Max Planck had introduced h = 6.626 × 10−34J⋅s to describe the smallest possible amount of

“action” (energy multiplied by time) involved in quantum processes [11] and Heisenberg used this

as his lower bound.
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Table 1.1 The progression of uncertainty relations. I give the names of the people who
developed each equation along with the year they published their work in parentheses.
The arrow denoted by Ô⇒ indicates a progression forward; each step in the process,
from Heisenberg to Weyl to Robertson to Schrödinger, expands the uncertainty principle
further.

Heisenberg (1927) +3 Weyl (1928)

rz mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

∆x∆p ≈ h σxσp ≥
h̵
2

Robertson(1929) +3 Schrödinger (1930)

σAσB ≥ 1
2i⟨[Â, B̂]⟩ σAσB ≥

√

(1
2⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩)

2

+ ( 1
2i⟨[Â, B̂]⟩)

2

nuanced; our understanding of it has undergone both a qualitative and a quantitative

change. On the qualitative side, uncertainty is seen to have a broader scope than

the limited version of Heisenberg’s Gedankenexperiment ; it is seen in terms of the

multifaceted process of quantum measurement. On the quantitative side, Heisenberg’s

uncertainty principle has been translated into the more formal language of quantum

mechanics and given various interpretations and reformulations.

This thesis will highlight some important transitions and the attributes of the

uncertainty relations. The uncertainty relation has undergone different transitions,

with each transition producing a more complete uncertainty relation. The progression

from Heisenberg [6], to Weyl [12], to Robertson [2], and to Schrödinger [3] can been

seen diagrammatically in Table 1.1. I focus on this four-step progression in this

thesis because these four forms of the uncertainty relation are the most commonly

used, and they form the basis from which others have been developed; uncertainty

and uncertainty relations are a broad topic, and there are books entirely devoted to

the subject (see [13, 14]), so this thesis will highlight only key points.
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I primarily use the Robertson and Schrödinger uncertainty relations (see Table

1.1) in this thesis by calculating the standard deviations and expectation values for

various operators and states. In my results, I find a range of outcomes: sometimes the

Robertson and Schrödinger relations give the same answer, sometimes the Robert-

son relation predicts no uncertainty while the Schrödinger picks up uncertainty, and

sometimes the Schrödinger relation expands the uncertainty found by the Robertson

relation.

1.2 Spin Systems

In this thesis, I employ quantum mechanical spin to further illustrate the differences

between the Robertson and Schrödinger uncertainty relations and also to highlight

the nature of conservation law constraints in quantum computational processes. Spin

plays a primary role because of its relative simplicity, its usefulness in illustrating

quantum mechanical ideas, and its wide range of applications. Consequently, I will

give an overview of how spin is defined and briefly discuss some of the key elements

of spin that I utilized.

1.2.1 Classical and Quantum Spin

In classical mechanics (as opposed to quantum mechanics), a rigid object can have

two different types of angular momentum: orbital and spin. Like the earth orbiting

the sun, orbital angular momentum is associated with the approximately circular

trajectory of the object; like the daily rotations of the earth or of a spinning top,

spin angular momentum is associated with the motion of an object about the center

of mass [9]. As exhibited in Fig. 1.1, a planet orbiting a star has a vector angular

momentum L = r × p (where r is the radial vector going from the star to the planet
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Figure 1.1 The system of a planet orbiting a star [15] has an angular momentum L = r×p
where r is the radius or distance between the planet and the star and where p is the
momentum of the planet. A spinning top has physical “spin” which can be written as:
S = I ⋅ω, where I is the moment of inertia tensor and ω is the vector angular velocity of
the top.

and where the vector quantity p is the momentum of the planet), and the spinning

top has a vector spin momentum S = I ⋅ω (where I is the moment of inertia tensor

and ω is the vector angular velocity of the top).

Although L and S are often separately identified, that separation is really just a

matter of convenience; if one were to label all the particles that make up a spinning

top and then calculate and sum all their orbital angular momenta about the center

of mass, one would arrive at the value S. By contrast, very small things like mi-

croscopic particles are quantum mechanical objects and must be treated differently.

Spin in quantum mechanics is therefore fundamentally different from spin in classical

mechanics: a particle’s spin is intrinsic and does not directly coincide with an actual

rotation of the particle. Though an electron may be represented as orbiting a nucleus

and thus have an orbital angular momentum L, the electron’s spin S is inherent and

immutable. As it turns out, every particle has an intrinsic spin value: electrons have

spin 1/2; photons have spin 1; ∆ baryons have spin 3/2; gravitons have spin 2; and

so on.
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1.2.2 Quantum Angular Momentum Operators

The classification “angular momentum” includes both spin and orbital angular mo-

mentum. The algebra of spin and orbital angular momentum—and thus quantum

angular momentum in general—rely on the same principles. The entire theory of

quantum angular momentum stems from the commutation rules

[Ji, Jj] = ih̵εijkJk , (1.2)

where [Ji, Jj] = JiJj − JjJi, the constant h̵ = h/2π, (i, j, k) = (1,2,3), εijk is the Levi-

Civita symbol, Ji stands for any angular momentum, and the Einstein summation

convention is implied. From Eq. (1.2) one can derive orbital angular momentum

states and spin states, the Pauli matrices, orbital angular momentum and spin op-

erator representations, and much more. In this thesis I will focus particularly on

orbital angular momentum and spin states and orbital angular momentum and spin

operators because they illustrate uncertainty relations in a clear way.

Throughout the discussion on spin uncertainty and quantum computation, I utilize

orbital angular momentum and spin operators. For spin 1/2, the operators are written

as

Si =
h̵

2
σi (1.3)

where i = x, y, z and σi corresponds to the Pauli matrices

σx =

⎛
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎠

σy =

⎛
⎜
⎜
⎝

0 −i

i 0

⎞
⎟
⎟
⎠

σz =

⎛
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎠

. (1.4)

The operators for higher values of spin, such as 1, 3/2, and 2, are similar.
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1.2.3 Quantum States

Figure 1.2 Any angular mo-
mentum quantum state ∣ψ⟩
can be represented by a vec-
tor using the spherical coor-
dinates (r, θ, φ) where r is
the magnitude of the state.
States are most often normal-
ized, making ∣r∣ = 1.

States in quantum mechanics are critical for calculating

expectation values and thus uncertainty equations. For

spin and orbital angular momentum, I calculated expec-

tation values using generalized states which are extensions

of single states. Single states can be written as the sum of

the basis vectors for that state; for example, a single state

that happens to have three basis vectors can be written

as

∣ψ⟩ = a1∣ψ1⟩ + a2∣ψ2⟩ + a3∣ψ3⟩ ,

where ∣ψ1⟩, ∣ψ2⟩, and ∣ψ3⟩ are the basis vectors and a1, a2, and a3 are arbitrary complex

coefficients. Generalized states differ from single states in that the components, such

as a1, a2, and a3 from above, are parameterized such that one can point the state in

any direction by merely specifying two angles and a magnitude (see Fig. 1.2.2). For

spin 1/2, which has two basis vectors, one of these generalized states can be written

as

∣χ⟩ = cos(θ/2)∣ψ1⟩ + e
iφ sin(θ/2)∣ψ2⟩ ,

where one has only to specify the angles θ and φ and then one will know where the

state is located. Chapter 3 contains a fuller discussion of generalized states and how

I use them in the calculations.

1.3 Quantum Computing

Quantum information science has sought answers to the question: is there any ad-

vantage to be gained by storing, transmitting, and processing information encoded

in quantum systems? After intense research spanning the past several decades the
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Figure 1.3 Astronaut decoherence and corresponding fidelity. This sequence of pho-
tographs of an astronaut is analogous to the decoherence of a quantum state. The quan-
tum state starts out clear and with all the intended information, but over time or through
the process of performing a calculation the state can decohere until it is not longer clearly
distinguishable. Fidelity, F , which has the range 0 ≤ F ≤ 1, can be used to characterize
how well a quantum process is performing. Quantum computational processes that keep
a state clear and free of noise, have high fidelity (near 1) whereas low fidelity processes
make the state decohere too quickly.

consensus answer has developed into a resolute yes. Today, many research groups

around the world work towards the ambitious technological goal of building a quan-

tum computer [16]. This thesis focuses on understanding the limitations inherent in

quantum computational processes essential for quantum computing. In this section

I discuss the ideas behind limitations inherent in quantum computing (quantified by

using the Schrödinger uncertainty relation) and how quantum computational states

are represented—both crucial concepts in my thesis.

1.3.1 Limitations

Several factors limit the process of quantum computing. Any quantum computer

must be sufficiently isolated from the world around it to prevent “decoherence.” A

state undergoing decoherence loses its inherent quantum properties; in a sense, the

quantum state becomes fuzzy (see Fig. 1.3). A quantum state that decoheres too

quickly loses its usefulness for quantum computing. Thus it is essential to understand

the sources of decoherence and ways to avoid them.

Decoherence comes from several sources: the environment in which the quantum

computer resides, controlling or handling the quantum state, and from conservation
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law constraints. A large amount of literature exists that discusses how to correct

for environmental and controller-induced decoherence [17, 18], yet there is little dis-

cussion of the limitations imposed by conservation laws. Chapters 4 and 5 focus on

conservation law decoherence and limitations.

A valuable connection between uncertainty and quantum computing is fidelity.

Fidelity is one of the primary measures of how well information in a state is preserved

through a computation; fidelity, F , has the range 0 ≤ F ≤ 1, where 1 indicates perfect

fidelity and 0 indicates the lowest possible fidelity. I illustrate with an example: if a

quantum computer takes an initial memory state ∣ψ⟩ and performs some dynamical

process, noise and decoherence will almost invariably be introduced into the state; if

∣ψ⟩ has obtained little noise, then the fidelity will be high (see Fig. 1.3). Processes of

high fidelity correspond to low uncertainty and the connection between the two will

be discussed in Chapter 4.

1.3.2 Qubit States

Two-level states, such as ∣ψ⟩ = a0∣0⟩+a1∣1⟩ known as qubits, are particularly useful for

quantum information because they hold the 0’s and 1’s that are so essential for com-

putation. Current computers encode information into 0’s and 1’s and then perform

the calculations based on large strings of these numbers. For example, the binary

equivalent of the words “Physics is cool” is encoded as: 01010000 01101000 01111001

01110011 01101001 01100011 01110011 00100000 01101001 01110011 00100000 01100011

01101111 01101111 01101100 00001101 00001010. Quantum computers similarly need

to transform information into two-valued pieces of data; the basic building block is

often the state ∣ψ⟩ = a0∣0⟩ + a1∣1⟩ which can, for example, represent the possibility of

an electron being in the spot designated by ∣0⟩ or in the spot designated by ∣1⟩.

Two-level states can also be represented on the Bloch sphere. The Bloch sphere
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Figure 1.4 (A) The Bloch sphere is a special case of spherical coordinates; states that live
on the Bloch sphere all have a magnitude of 1 (which is on the surface of the sphere), they
can be designated by two angles (θ, φ), and they have two basis states, typically chosen to
be ∣0⟩ and ∣1⟩. The Bloch sphere is often used to represent or visualize a two-level state.
(B)-(D) The plots give potential wells where two levels are utilized to store information
(∣0⟩ and ∣1⟩) and below these are shown two experimental realizations of these potential
wells [16].

is a unit sphere (a sphere of radius 1) and states can be represented as a point on the

surface of the sphere or a vector directed to that point (see Fig. 1.4(A)). I will often

use the Bloch sphere when discussing quantum computing and presenting some my

calculations (Chapters 4 and 5).

1.3.3 Thesis Overview

In Chapter 2 I discuss various forms of the uncertainty relation. I then give new

derivations of the Schrödinger uncertainty relation for both pure and mixed states.

In Chapter 3 I compare and contrast the Robertson and Schrödinger uncertainty rela-

tions by showing the results of calculations for various quantum operators and states.

In Chapter 4 I show how the Schrödinger uncertainty relation places constraints on

the fidelity of single-qubit quantum gates. In Chapter 5 I compare and contrast the

use of the Robertson and Schrödinger uncertainty relations for the fidelity of three

different situations. In Chapter 6 I conclude that incorporating conservation law con-
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straints and the Schrödinger uncertainty relation may impose important limitations

on quantum gate fidelity.

In this thesis I define the terms and equations that I use to the best of my ability,

but I do not have the space nor the time to fully explain every principle and equation.

This thesis is based on the principles of quantum mechanics and quantum computa-

tion and if the reader is unfamiliar with certain principles or equations, I invite the

reader to consult some of the excellent texts on quantum mechanics (such as [9, 19])

and quantum computation (such as [18]).
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Chapter 2

Uncertainty Derivations

2.1 Heisenberg and Robertson Uncertainty Rela-

tions

There have been several improvements on the Heisenberg uncertainty principle, Eq.

(1.1). A year after Heisenberg formulated Eq. (1.1), Weyl derived [12] the more

formal relation

σxσp ≥
h̵

2
, (2.1)

where σx and σp are standard deviations of the two operators x̂ and p̂ defined for an

arbitrary Hermitian operator Ô as σO =

√

⟨Ô2⟩ − ⟨Ô⟩2. Going even further, Robertson

[2] generalized Eq. (2.1) for arbitrary Hermitian operators Â and B̂

σAσB ≥
1

2i
⟨[Â, B̂]⟩ , (2.2)

where σA and σB are the standard deviations and where [Â, B̂] represents the com-

mutator [Â, B̂] ≡ ÂB̂ − B̂Â or the incompatibility of the two operators Â and B̂.

The majority of quantum textbooks—and consequently many research papers which

use uncertainty—get only as far as the Robertson relation. One of the purposes of

13
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this work is to show the limitations and some of the pitfalls of using the Robertson

uncertainty relation.

2.2 Schrödinger Uncertainty Relation

Though Heisenberg’s uncertainty principle and Robertson’s version of the uncertainty

relation are part of the foundation of quantum mechanics, other versions of the uncer-

tainty relation—including the Schrödinger uncertainty relation—have received com-

paratively little attention in the physics literature. The Schrödinger uncertainty rela-

tion was initially published in an inconspicuous German journal [3] that periodically

reported on the activity of the Prussian Academy [20]. I believe that these factors

have led to the cursory coverage the Schrödinger uncertainty relation receives in the

literature.

Schrödinger derived the following uncertainty relation

σAσB ≥

√

(
1

2
⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩)

2

+ (
1

2i
⟨[Â, B̂]⟩)

2

. (2.3)

The difference between Eqs. (2.2) and (2.3) is the first squared term under the

square root, known in a classical statistics sense as the covariance, consisting of the

anti-commutator {Â, B̂}, defined as {Â, B̂} ≡ ÂB̂ + B̂Â, and the product of two

expectation values ⟨Â⟩⟨B̂⟩. These extra terms lead to substantial differences between

the two uncertainty relations Eqs. (2.2) and (2.3) in many cases. In this thesis I will

show how salient these differences can be. From this point onward, I will frequently

call the right hand sides of Eqs. (2.2) and (2.3) the Robertson and Schrödinger

uncertainties respectively.

I now derive the Schrödinger uncertainty relation. The derivation shown here

incorporates and builds off of those done in Robertson [2], Schrödinger [3] and Griffiths

[9]. For any Hermitian operator Â, based upon the standard deviation definition, I
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have

σ2
A = ⟨(Â − ⟨Â⟩)Ψ∣(Â − ⟨Â⟩)Ψ⟩.

I let ∣f⟩ = ∣(Â − ⟨Â⟩)Ψ⟩ and thus

σ2
A = ⟨f ∣f⟩ .

Similarly, for any other Hermitian operator B̂ in the same state

σ2
B = ⟨(B̂ − ⟨B̂⟩)Ψ∣(B̂ − ⟨B̂⟩)Ψ⟩ = ⟨g∣g⟩

for ∣g⟩ = ∣(B̂ − ⟨B̂⟩)Ψ⟩. The product of the two deviations can thus be expressed as

σ2
Aσ

2
B = ⟨f ∣f⟩⟨g∣g⟩ . (2.4)

In order to relate the two vectors ∣f⟩ and ∣g⟩, I use the Schwarz inequality (see [21]

pg. 246) which is defined as

⟨f ∣f⟩⟨g∣g⟩ ≥ ∣⟨f ∣g⟩∣2 , (2.5)

and thus Eq. (2.4) can be written as

σ2
Aσ

2
B ≥ ∣⟨f ∣g⟩∣2 . (2.6)

Since ⟨f ∣g⟩ is in general a complex number, I use the fact that the modulus squared

of any complex number z is defined as

∣z∣2 = zz∗,

where z∗ is the complex conjugate of z. The modulus squared can also be expressed

as

∣z∣2 = (Re(z))
2

+ (Im(z))
2

= (
z + z∗

2
)

2

+ (
z − z∗

2i
)

2

. (2.7)

I let z = ⟨f ∣g⟩ and z∗ = ⟨g∣f⟩ and substitue these into Eq. (2.7) to get

∣⟨f ∣g⟩∣2 = (
⟨f ∣g⟩ + ⟨g∣f⟩

2
)

2

+ (
⟨f ∣g⟩ − ⟨g∣f⟩

2i
)

2

. (2.8)
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The inner product ⟨f ∣g⟩ is written out explicitly as

⟨f ∣g⟩ = ⟨Ψ(Â − ⟨Â⟩)∣(B̂ − ⟨B̂⟩)Ψ⟩,

and using the fact that Â and B̂ are Hermitian operators, I find

⟨f ∣g⟩ = ⟨Ψ∣(Â − ⟨Â⟩)(B̂ − ⟨B̂⟩)Ψ⟩

= ⟨Ψ∣(ÂB̂ − Â⟨B̂⟩ − B̂⟨Â⟩ + ⟨Â⟩⟨B̂⟩)Ψ⟩

= ⟨Ψ∣ÂB̂Ψ⟩ − ⟨Ψ∣Â⟨B̂⟩Ψ⟩ − ⟨Ψ∣B̂⟨Â⟩Ψ⟩ + ⟨Ψ∣⟨Â⟩⟨B̂⟩Ψ⟩

= ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩ − ⟨Â⟩⟨B̂⟩ + ⟨Â⟩⟨B̂⟩

= ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩ . (2.9)

Similarly it can be shown that

⟨g∣f⟩ = ⟨B̂Â⟩ − ⟨Â⟩⟨B̂⟩. (2.10)

I insert these two results, Eqs. (2.9) and (2.10), into Eq. (2.8) to get

⟨f ∣g⟩ − ⟨g∣f⟩ = ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩ − ⟨B̂Â⟩ + ⟨Â⟩⟨B̂⟩ = ⟨[Â, B̂]⟩ (2.11)

and

⟨f ∣g⟩ + ⟨g∣f⟩ = ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩ + ⟨B̂Â⟩ − ⟨Â⟩⟨B̂⟩ = ⟨{Â, B̂}⟩ − 2⟨Â⟩⟨B̂⟩. (2.12)

I now substitute Eqs. (2.11) and (2.12) back into Eq. (2.8) and get

∣⟨f ∣g⟩∣2 = (
1

2
⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩)

2

+ (
1

2i
⟨[Â, B̂]⟩)

2

. (2.13)

Substituting (2.13) into (2.6) I get the Schrödinger uncertainty relation

σAσB ≥

√

(
1

2
⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩)

2

+ (
1

2i
⟨[Â, B̂]⟩)

2

. (2.14)
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2.3 Uncertainty for Mixed States

2.3.1 Mixed States, the Density Operator, and Uncertainty

So far I have considered only “pure” quantum states, e.g. ∣f⟩ and ∣g⟩. A pure state is

one that can be described by a single ket vector, as in ∣ψ⟩ = a1∣ψ1⟩ + a2∣ψ2⟩, where a1

and a2 are scalar quantities. In contrast, a mixed state is a statistical ensemble of pure

states and cannot be represented by a single state vector, but must be represented by

a density operator. Given a quantum system1 in one of the states ∣ψi⟩, with respective

probabilities pi, the general density operator ρ is defined [18] as

ρ ≡∑
i

pi∣ψi⟩⟨ψi∣. (2.15)

Compared to the pure state formalism of quantum mechanics, density operators

are used to describe a much wider class of quantum states [22]. Not only can a

density operator be used to represent a pure state (i.e. when every pi but one is

zero), it can be used when one deals with an ensemble of systems or when one is

uncertain about the state of the system at hand. The density operator of a mixed

state describes the statistical state of a quantum system, including both quantum

and classical aspects—quantum uncertainty and classical randomness.

A translation of pure states into mixed states requires a few transformations. For

the purposes of this thesis, I only discuss briefly how expectation values are expressed

with density matrices. The expectation value of an arbitrary operator Â changes such

that

⟨Â⟩Ô⇒ Tr(ρA) (2.16)

where ρ is the density matrix that describes the mixed state and Tr denotes the trace.

1Here and throughout this thesis, I always choose an orthonormal basis.
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The trace of an n × n matrix D with elements dij is defined as

Tr(D) =
n

∑
i=1

dii ,

which is the sum of the diagonal elements of the matrix D. The trace is invariant

under a change of orthonormal basis.

How “mixed” a state is can be determined by its total polarization P . For spin

1/2, the polarization in a particular direction is defined as

Pi = ⟨σi⟩ = Tr(ρσi), (2.17)

where i = x, y, z and σi corresponds to the Pauli spin matrices. The total polarization

P is given by

P =
√
P 2
x + P

2
y + P

2
z . (2.18)

P has the range of 0 ≤ P ≤ 1, where a polarization of P = 0 corresponds to a completely

unpolarized or mixed state and P = 1 corresponds to a completely polarized or pure

state. The general density operator for spin 1/2 in terms of polarization is given by

ρ =
1

2

⎛
⎜
⎜
⎝

1 + Pz Px − iPy

Px + iPy 1 − Pz

⎞
⎟
⎟
⎠

. (2.19)

For mixed states I can also parameterize this state inside the Bloch sphere with

Px = P sin θ cosφ , Py = P sin θ sinφ , and Pz = P cos θ (2.20)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π are angles in spherical coordinates. I use this state

in Eq. (2.19) along with the parameterizations of Eq. (2.20) in all my calculations of

spin-1/2 mixed states.

Uncertainty relations also apply to the case of mixed states. In the language of

mixed states, the uncertainty relation that is equivalent to the Robertson relation [23]

is given by

σAσB ≥
1

2i
T r(ρ[A,B]) , (2.21)
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while the equivalent equation for the Schrödinger relation is

σ2
Aσ

2
B ≥ (

1

2
Tr(ρ{A,B}) − Tr(ρA)Tr(ρB))

2

+ (
1

2i
T r(ρ[A,B]))

2

, (2.22)

as alluded to—but not presented—in Ballentine [23].

2.3.2 Schrödinger Uncertainty Relation For Mixed States

I now derive the Schrödinger uncertainty relation for mixed states. I initially follow

Ballentine [23] to derive the Robertson uncertainty relation for mixed states, Eq.

(2.21), but I extend it to derive the Schrödinger uncertainty relation for mixed states.

The standard deviations for Hermitian operators Â and B̂ are defined as σ2
A =

⟨Ψ∣(Â− ⟨Â⟩)2Ψ⟩ and σ2
B = ⟨Ψ∣(B̂− ⟨B̂⟩)2Ψ⟩. To simplify the calculations, I also define

the operators Ao = Â − ⟨Â⟩ and Bo = B̂ − ⟨B̂⟩. By these two definitions and that of

the expectation value for mixed states, Eq. (2.16), I have

σ2
A = Tr(ρA2

o) and σ2
B = Tr(ρB2

o).

In a step reminiscent of that used for the derivation for pure states where I invoked

the Schwarz inequality Eq. (2.5), I now use an inequality for mixed states. For any

operator T the inequality [23]

Tr(ρTT †) ≥ 0 (2.23)

holds, where T † denotes the Hermitian conjugate of the operator T . I introduce two

real parameters γ and ε in the following manner,

T = Ao + (γ + iε)Bo and T † = Ao + (γ − iε)Bo (2.24)

where Ao and Bo are Hermitian. In order to use Eq. (2.23), I need the product of T



20 Chapter 2 Uncertainty Derivations

and T †

TT † = (Ao + γBo + iεBo)(Ao + γBo − iεBo)

= A2
o + γAoBo − iεAoBo + γBoAo + γ

2B2
o − iεγB

2
o + iεBoAo + iεγB

2
o + ε

2B2
o

= A2
o + (γ2 + ε2)B2

o + γ{Ao,Bo} − iε[Ao,Bo].

Now plugging this into Eq. (2.23) I have

0 ≤ Tr(ρTT †)

0 ≤ Tr(ρA2
o) + (γ2 + ε2)Tr(ρB2

o) + γTr(ρ{Ao,Bo}) − iεTr(ρ[Ao,Bo]). (2.25)

I seek to minimize this expression for γ and ε in order to optimize the uncertainty

relation. Thus

∂Tr(ρTT †)

∂γ
= 0 and

∂Tr(ρTT †)

∂ε
= 0

implies

2γTr(ρB2
o) + Tr(ρ{Ao,Bo}) = 0 and 2εTr(ρB2

o) − iT r(ρ[Ao,Bo]) = 0 .

I now solve for γ and ε and find that

2γTr(ρB2
o) = −Tr(ρ{Ao,Bo})

γ = −
Tr(ρ{Ao,Bo})

2Tr(ρB2
o)

and also,

2εTr(ρB2
o) = iT r(ρ[Ao,Bo])

ε =
iT r(ρ[Ao,Bo])

2Tr(ρB2
o)

.

Now I substitute the minimal values of γ and ε that I obtained back into Eq. (2.25)

and simplify the inequality to get

Tr(ρA2
o)Tr(ρB

2
o) ≥

1

4
((Tr(ρ{Ao,Bo}))

2

− (Tr(ρ[Ao,Bo]))
2

). (2.26)
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At the beginning of the proof I made the substitutions Ao = A − ⟨A⟩ or equally

Ao = A−Tr(ρA) and Bo = B−⟨B⟩ or Bo = B−Tr(ρB), so now I put these substitutions

back into Eq. (2.26). I first work out the left-hand-side of (2.26), Tr(ρA2
o)Tr(ρB

2
o),

which becomes

Tr(ρ(A2 − 2Tr(ρA)A + (Tr(ρA))
2
)Tr(ρ(B2 − 2Tr(ρB)B + (Tr(ρB))

2
)

=(Tr(ρA2) − 2Tr(ρA)Tr(ρA) + (Tr(ρA))
2
)(Tr(ρB2) − 2Tr(ρB)Tr(ρB) + (Tr(ρB))

2
)

=(Tr(ρA2) − (Tr(ρA))
2
)(Tr(ρB2) − (Tr(ρB))

2
)

=σ2
Aσ

2
B . (2.27)

I next work out the anticommutator term in the right hand side of Eq. (2.26),

{Ao,Bo} =(A − Tr(ρA))(B − Tr(ρB)) + (B − Tr(ρB))(A − Tr(ρA))

=AB − Tr(ρA)B − Tr(ρB)A + Tr(ρA)Tr(ρB)

+BA − Tr(ρB)A − Tr(ρA)B + Tr(ρA)Tr(ρB).

And now I take the expectation value for mixed states of the anticommutator, as in

Eq. (2.16),

Tr(ρ{Ao,Bo}) =Tr(ρAB) − Tr(ρA)Tr(ρB) − Tr(ρB)Tr(ρA) + Tr(ρA)Tr(ρB)

+ Tr(ρBA) − Tr(ρB)Tr(ρA) − Tr(ρA)Tr(ρB) + Tr(ρA)Tr(ρB)

=Tr(ρAB) + Tr(ρBA) − 2Tr(ρA)Tr(ρB)

=Tr(ρ{A,B}) − 2Tr(ρA)Tr(ρB). (2.28)

The commutator yields

[Ao,Bo] =(A − Tr(ρA))(B − Tr(ρB)) − (B − Tr(ρB))(A − Tr(ρA))

=AB − Tr(ρA)B − Tr(ρB)A + Tr(ρA)Tr(ρB)

−BA + Tr(ρB)A + Tr(ρA)B − Tr(ρA)Tr(ρB)
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and taking the expectation value I have,

Tr(ρ[Ao,Bo]) =Tr(ρAB) − Tr(ρA)Tr(ρB) − Tr(ρB)Tr(ρA) + Tr(ρA)Tr(ρB)

− Tr(ρBA) + Tr(ρB)Tr(ρA) + Tr(ρA)Tr(ρB) − Tr(ρA)Tr(ρB)

=Tr(ρAB) − Tr(ρBA)

=Tr(ρ[A,B]). (2.29)

Finally, I combine Eqs. (2.26)–(2.29) to get

σ2
Aσ

2
B ≥

1

4
(Tr(ρ{A,B}) − 2Tr(ρA)Tr(ρB))

2

−
1

4
(Tr(ρ[A,B]))

2

,

which can be written as

σ2
Aσ

2
B ≥ (

1

2
Tr(ρ{A,B}) − Tr(ρA)Tr(ρB))

2

+ (
1

2i
T r(ρ[A,B]))

2

, (2.30)

which is the Schrödinger uncertainty relation for mixed states.

2.4 Discussion of Uncertainty and Uncertainty Re-

lations

An analysis of the derivations contained in this chapter reveals that uncertainty first

comes into play with the Schwarz inequality (2.5) and the related inequality for mixed

states (2.23). The Schwarz inequality was used first by Weyl in his 1928 derivation of

σxσp ≥
h̵

2

in which he sought (at the suggestion of Wolfgang Pauli) to relate the two standard

deviations σx and σp [12]. The Schwarz inequality was also used by Robertson in his

1929 derivation and Schrödinger in his 1930 derivation, who both cite Weyl [2, 3].

Schrödinger’s method of derivation differed from that of Robertson. The critical

step that differentiates the two is Schrödinger’s use of the fact that the product of
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two Hermitian operators is not in general Hermitian, but can be split [24] into a

“symmetric product and half its commutator”:

AB =
AB +BA

2
+
AB −BA

2
. (2.31)

Schrödinger then comments that this splitting corresponds to a splitting of a complex

number into real and imaginary parts, and thus an expectation value can also be split

into real and imaginary parts. This corresponds directly to the step involved in Eq.

(2.7) of the pure state derivation and Eq. (2.24) of the mixed state derivation. If one

takes only the imaginary part, one recovers the Robertson relation; if one takes both

the real and imaginary parts, the Schrödinger relation results.2

The additional term in the Schrödinger relation, known as the “covariance,” was

also discussed by Schrödinger (cf. Eqs. (2.2), (2.14), and (2.30)). In an English

translation [24] of the original German paper [3], Schrödinger calls the covariance

the “mean deviations product.” Schrödinger says that in classical probability theory,

a vanishing mean deviations product is a necessary but not sufficient condition for

two values to fluctuate independently. He then asserts that because “canonically

conjugate quantum variables have some ‘independence,’” one might suppose that the

mean deviations product has a “vanishing expectation value.” However, he notes,

“this is not the case.” Schrödinger then goes on to discuss situations in which the

covariance or “mean deviations product” is non-vanishing.

As pointed out originally by Schrödinger, the Schrödinger uncertainty relation

often has the effect of raising the lower bound on uncertainty. Because the added

terms, viz., the anticommutator {A,B} and the product of expectation values ⟨A⟩⟨B⟩,

are squared, the Schrödinger additions are either positive or zero. This will obviously

2Though Schrödinger’s original method of derivation for his uncertainty relation differs from that

shown in Section 2.2, the key elements of the derivation are the same.
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either increase the uncertainty by some amount, or make no difference. Both of these

scenarios will be discussed and examples will be shown in Chapter 3 of this thesis.



Chapter 3

Uncertainty Data

3.1 Uncertainty in One Dimension

Despite the fact that the Schrödinger uncertainty relation is of a different form than

the Robertson uncertainty relation, some authors of both textbooks and papers dis-

miss the Schrödinger uncertainty relation1 because in their estimation it “doesn’t help

much” (see [9], pg. 128). A perfunctory glance would seem to justify this position;

comparing the calculations of uncertainty using the Schrödinger and Robertson rela-

tions for x̂ and p̂ in simple cases gives the uncertainty limit of h̵/2, as in Eq. (2.1)

(see Tables 3.1, 3.2, and 3.3). Yet for many quantum operators of more complexity,

in these same simple systems (e.g., x̂ + p̂ and 1
2(x̂p̂ + p̂x̂)) or for operators for spin

systems (e.g., Ŝx, Ŝy, and Ŝx+ Ŝy), the difference between Robertson and Schrödinger

is significant. These differences will be demonstrated in this chapter.

1Angelow discusses this neglect at length in [20], and then discusses certain experimental scenarios

where the Schrödinger uncertainty relation is necessary.

25
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3.1.1 The Infinite Square Well

A particle confined in an infinite square well potential of width L

V (x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if 0 ≤ x ≤ L

∞ otherwise

has stationary states given by

ψn(x) =

√
2

L
sin (

2πnx

L
) . (3.1)

Using the wave function defined in Eq. (3.1) I calculate the product of standard

deviations and the Robertson and Schrödinger uncertainties for the position and

momentum operator pairs (x̂, p̂), (1
2(x̂p̂ + p̂x̂), p̂), and (x̂ + p̂, p̂); I choose these pairs

for all the calculations in this and the following sections in one dimension because

they give a spectrum of results. Table 3.1 summarizes the results of the calculations

and a discussion of these results is contained Section 3.2. In viewing the results,

it is important to note that because the operators are atypical compared to those

found in traditional textbook calculations, the units of the results differ from common

calculations as well.

Table 3.1 Summary of results for the Infinite Square Well. The entries in the columns
under Â and B̂ are operators. The entries under σAσB are the standard deviations for the
particular operators. Here n corresponds to positive integer values used in the function
for an infinite square well, Eq. (3.1).

Â B̂ σAσB
1
2i⟨[Â, B̂]⟩

√

(1
2⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩)

2

+ ( 1
2i⟨[Â, B̂]⟩)

2

x p h̵
2

√

−2 + n2π2

3
h̵
2

h̵
2

1
2(xp + px) p nπh̵2

2L

√

1 − L
2 + n

2π2 0 n2π2h̵2

2L

x + p p h̵
2

√

−2 + n2π2

3 + 4n4π4h̵2

L4
h̵
2

√
h̵2

4 + n4π4h̵4

L4
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Figure 3.1 The figure on the left is a plot of ψn(x) given in Eq. (3.3), while the figure
on the right is a plot of ∣ψn(x)∣2. Both of these plots are for values n = 0,1,2.

3.1.2 The Harmonic Oscillator

For the harmonic oscillator, a particle is under the influence of the potential

V (x) =
1

2
mω2x2 , (3.2)

where ω is the angular frequency and m is the mass of the particle. The stationary

solutions to the Schrödinger equation for this potential are the wave functions

ψn(x) = (
mω

πh̵
)

1/4 1
√

2nn!
Hn(ξ)e

ξ2/2 , (3.3)

where ξ ≡
√

mω
h̵ x and Hn(ξ) are Hermite polynomials. As n increases, the calculations

of uncertainties increase rapidly in complexity; therefore we choose to summarize

only results for n = 0,1,2 in Table 3.2. As a reference, plots of ψn(x) and ∣ψn(x)∣2

for n = 0,1,2 are shown in Fig. 3.1. A discussion of the results is contained in the

discussion section for one dimension uncertainty, Section 3.2.

3.1.3 The Free-Particle Wave Packet

For the free-particle wave packet, V (x) = 0, I consider both a Gaussian and a

non-Gaussian wave packet. A particular normalized Gaussian wave packet centered
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Table 3.2 Summary of results for the the Harmonic Oscillator for n = 0,1,2.

n Â B̂ σAσB
1
2i⟨[Â, B̂]⟩

√

(1
2⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩)

2

+ ( 1
2i⟨[Â, B̂]⟩)

2

0 x p h̵
2

h̵
2

h̵
2

1 x p 3h̵
2

h̵
2

h̵
2

2 x p 5h̵
2

h̵
2

h̵
2

0 1
2(xp + px) p 1

4

√
7
2mωh̵

3 0 0

1 1
2(xp + px) p 1

4

√
57
2 mωh̵

3 0 0

2 1
2(xp + px) p 1

4

√
215
2 mωh̵

3 0 0

0 x + p p 1
2 h̵

√
1 +m2ω2 h̵

2
1
2 h̵

√
1 +m2ω2

1 x + p p 3
2 h̵

√
1 +m2ω2 h̵

2
1
2 h̵

√
1 + 9m2ω2

2 x + p p 5
2 h̵

√
1 +m2ω2 h̵

2
1
2 h̵

√
1 + 25m2ω2

around x = 0 is given by

ψ = (
2

π
)

1/4

e−x
2

, (3.4)

while an example of a normalized, yet non-Gaussian wave packet is given by

ψ =
4

√
3
(

2

π
)

1/4

x2e−x
2

. (3.5)

There is nothing special about this wave packet except that it is non-Gaussian and

adequately demonstrates the difference between a Gaussian and non-Gaussian wave

packet. Graphs of Eqs. (3.4) and (3.5) are shown in Fig. 3.2. For both Eq. (3.4) and

Eq. (3.5) I calculate values of uncertainty for the Robertson and Schrödinger relations

and summarize these results in Table 3.3. A discussion of the results is contained in

the discussion section for one dimension uncertainty, Section 3.2.
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Figure 3.2 The plot on the left is of the Gaussian wave packet defined by Eq. (3.4) and
the plot on the right is of the non-Gaussian wave packet defined by Eq. (3.5).

Table 3.3 Summary of results for the Gaussian free-particle wave packet defined by Eq.
(3.4).

Â B̂ σAσB
1
2i⟨[Â, B̂]⟩

√

(1
2⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩)

2

+ ( 1
2i⟨[Â, B̂]⟩)

2

x p h̵
2

h̵
2

h̵
2

1
2(xp + px) p

√

7
4 h̵

2 0 0

x + p p h̵
√

1
4 + h̵

2 h̵
2 h̵

√
1
4 + h̵

2

Table 3.4 Summary of results for the non-Gaussian free-particle wave packet defined by
Eq. (3.5).

Â B̂ σAσB
1
2i⟨[Â, B̂]⟩

√

(1
2⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩)

2

+ ( 1
2i⟨[Â, B̂]⟩)

2

x p 1
2

√
35
3 h̵

h̵
2

h̵
2

1
2(xp + px) p 1

4

√
217
3 h̵

2 0 0

x + p p
√

7
6 h̵

√
15 + 28h̵2 h̵

2
1
6 h̵

√
9 + 196h̵2



30 Chapter 3 Uncertainty Data

3.2 Discussion of One-Dimensional Data

For certain quantum systems in one dimension, the Robertson relation is clearly

insufficient. It is an incomplete relation and often gives incomplete results, as evident

from the results shown in Tables (3.1), (3.2), (3.3), and (3.4). Yet in presenting the

disparities, I have sought to give a spectrum of scenarios. Consider, for example, the

values in Table (3.2): for x̂ and p̂ both Robertson and Schrödinger are the same,

for 1
2(x̂p̂ + p̂x̂) and p̂ both are zero, and for x̂ + p̂ and p̂ the Schrödinger relation

effectively raises the lower bound on uncertainty. With greater operator complexity

comes greater difference between Robertson and Schrödinger. As briefly discussed

in Section 2.4, this greater complexity increases the covariance and thus widens the

difference between the two uncertainty relations.

3.3 Uncertainty for Angular Momentum

The differences between the Robertson and Schrödinger uncertainty relations also

extend to situations in three dimensions. In the following sections I will discuss

the concept of a general state (see Fig. 3.3) and the process of calculating angular

momentum uncertainty for j = 1/2. I will show plots of these uncertainties for some

examples with j = 1/2 and j = 2. This will be followed by a summary of all the results

that I found for j = 1/2,1,3/2,2. Lastly, I will discuss how uncertainty is affected

for the j = 1/2 case when the parameterized mixed state, Eq. (2.19), is used in the

calculations of uncertainty.

In these sections I do not included calculations and results for the three-dimensional

extensions of those systems covered in the previous sections, such as for the three-

dimensional square well or harmonic oscillator (where instead of just considering

a single dimension, one could also consider position in (x, y, z) or momentum in
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(px, py, pz)). The reason why I have not included these calculations is that there were

no significantly new or surprising results from working in three dimensions: the re-

sults were essentially the same as when I considered position and momentum in one

dimension. For example, in the three-dimensional square well the results for operator

pairs (x̂, p̂x) give exactly the same results as in the one-dimensional case (see Table

3.1). If the operator pairs are changed to (x̂, p̂y) and (ŷ + p̂x, p̂y), the results change

to:

∆x̂∆p̂y =
mh̵

2l

√

−2 +
l2π2

3
, ∆(ŷ + p̂x)∆p̂y =

h̵

2
√

3

√

−6 +m2(π2 +
12l2π4h̵2

a4
)

Robertson(x̂,p̂y) = 0 , Robertson(ŷ+p̂x,p̂y) =
h̵

2

Schrödinger
(x̂,p̂y)

= 0 , Schrödinger
(ŷ+p̂x,p̂y)

=
h̵

2
,

which are somewhat more complex, but not strikingly new. As will be shown, the

results for angular momentum are visually and mathematically more interesting.

3.3.1 Spin-1/2 Uncertainty

To calculate angular momentum uncertainty in a way more general than simply choos-

ing single eigenstates, I use generalized states (see Fig. 3.3); these states are functions

of the spherical angles (θ, φ), and along with a magnitude, they determine any state

in the space. I use these general states in my calculations of uncertainty by associ-

ating an uncertainty with the general eigenstate after calculating all the expectation

values implied by the Robertson and Schrödinger uncertainty relations. Combining

all these magnitudes of uncertainty gives us the spherical plots given in the figures of

the following sections.2

2Just like in the calculations in one dimension, all the results are in terms of h̵. For computational

purposes, all the figures in the angular momentum sections are computed with h̵ = 1.
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Figure 3.3 Representation and use of a general quantum state. (A) Like a vector, any
state ∣ψ⟩ can be denoted by a direction using the spherical angles (θ, φ) and a magnitude.
A general state represents any possible state in the space. (B)-(D) Computing with a
general state is equivalent to performing a particular computation for all possible specific
states and combining all those results together. (E) The result of computing uncertainty
using a general state. For any specific state, designated by some (θ, φ), the magnitude or
value at the surface of the spherical object shown in (E) is the value of uncertainty for
that specific state.

I proceed to construct the J(1/2)r matrix which represents the spin angular momen-

tum for an arbitrary direction r̂. I begin with the unit vector

r̂ = (sin θ cosφ, sin θ sinφ, cos θ)

and the total spin angular momentum vector

S = (Sx, Sy, Sz) ,

where Si = σih̵/2 are the spin operators. Taking the dot product and simplifying,

J(1/2)r = S ⋅ r̂ =Sx sin θ cosφ + Sy sin θ sinφ + Sz cos θ

=
h̵

2

⎛
⎜
⎜
⎝

cos θ sin θ(cosφ − i sinφ)

sin θ(cosφ + i sinφ) − cos θ

⎞
⎟
⎟
⎠

=
h̵

2

⎛
⎜
⎜
⎝

cos θ e−iφ sin θ

eiφ sin θ − cos θ

⎞
⎟
⎟
⎠

, (3.6)

which is the desired matrix. The eigenvalues of this matrix are ±h̵/2 with the corre-

sponding eigenvectors

χ
(r)
+ =

⎛
⎜
⎜
⎝

cos(θ/2)

eiφ sin(θ/2)

⎞
⎟
⎟
⎠

and χ
(r)
− =

⎛
⎜
⎜
⎝

e−iφ sin(θ/2)

− cos(θ/2)

⎞
⎟
⎟
⎠

. (3.7)
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I can use either of these eigenvectors as the states with which I take expectation

values for calculating the Robertson and Schrödinger uncertainties for spin 1/2.

I now outline the calculations of the Robertson and Schrödinger uncertainties for

spin. The left hand side of Eqs. (2.2) and (2.14) is the same, the product of standard

deviations is given by

σSxσSy =

√

(⟨Ŝx
2
⟩ − ⟨Ŝx⟩2)(⟨Ŝy

2
⟩ − ⟨Ŝy⟩2) . (3.8)

In calculating the product of standard deviations, I performed the expectation values

implied by Eq. (3.8) using the general spin state χ
(r)
+ given in Eq. (3.7) (for spin 1/2,

the results are the same if I used χ
(r)
− instead). I followed the same procedure for the

Robertson uncertainty

1

2i
⟨[Ŝx, Ŝy]⟩ (3.9)

and the Schrödinger uncertainty

√

(
1

2
⟨{Ŝx, Ŝy}⟩ − ⟨Ŝx⟩⟨Ŝy⟩)

2

+ (
1

2i
⟨[Ŝx, Ŝy]⟩)

2

. (3.10)

After performing the calculations outlined in the previous paragraphs, I obtain

functions representing uncertainty for different incompatible operators of spin 1/2.

These uncertainties are functions of θ and φ and thus can be represented by plots in

spherical coordinates. Figure 3.4 is a plot of uncertainty for the two incompatible spin

operators Ŝx and Ŝy, and Figure 3.5 is a plot for the two incompatible spin operators

Ŝx and Ŝx + Ŝy. In each of the figures, the magnitude associated with a particular

direction (θ, φ) is the uncertainty for a state in that particular direction.

3.3.2 Angular Momentum Uncertainty

I also calculate angular momentum uncertainties for j = 1,3/2,2. The process is es-

sentially the same for calculating uncertainties of higher j: I construct the matrices
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Figure 3.4 The magnitude of uncertainty for standard deviations (A), Robertson (B),
and Schrödinger (C) uncertainty relations for spin 1

2
. (A) = σSxσSy , (B) = 1

2i
⟨[Ŝx, Ŝy]⟩,

(C) =
√

( 1
2
⟨{Ŝx, Ŝy}⟩ − ⟨Ŝx⟩⟨Ŝy⟩)

2

+ ( 1
2i
⟨[Ŝx, Ŝy]⟩)

2

. These are plotted in spherical

coordinates (θ, φ) with the amount of uncertainty in any particular direction
corresponding to the value shown by the graph in that direction. The Robertson relation
(B) is missing important segments that Schrödinger in (C) picks up. The Schrödinger
relation accounts for all the uncertainty predicted by the product of the standard
deviations.

Figure 3.5 The magnitude of uncertainty for sums of operators for the case of spin 1
2
.

(A) = σSx+SyσSy , (B) = 1
2i
(⟨[Ŝx + Ŝy, Ŝy]⟩),

(C) =
√

( 1
2
⟨{Ŝx + Ŝy, Ŝy}⟩ − ⟨Ŝx + Ŝy⟩⟨Ŝy⟩)

2

+ ( 1
2i
⟨[Ŝx + Ŝy, Ŝy]⟩)

2

. The Robertson

uncertainty relation (B) is missing essential information. The Schrödinger uncertainty
relation (C) accounts for all the uncertainty predicted by the product of the standard
deviations.
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J(1)r , J(3/2)r , and J(2)r , which represent the angular momentum in an arbitrary direc-

tion r̂ (these matrices are given explicitly in Appendix A); I find their eigenvalues and

eigenvectors; and I use the eigenvectors as general states in calculating the Robert-

son and Schrödinger uncertainties. Because of the complexity of the eigenvectors, I

found it most convenient to perform all the calculations and the plotting numerically

(see Appendix B for the Mathematica code). The results of these calculations are

summarized in Table 3.5.

3.3.3 Spin Mixed State Uncertainty

The figures and discussion up to this point in Chapter 3 have only been for “pure”

quantum states, e.g. ∣f⟩ and ∣g⟩. As discussed in Chapter 2, a mixed state is different

from a pure state in that it is a statistical ensemble of pure states and cannot be

represented by a single state vector, but must be represented by a density operator.

Compared to the pure state formalism of quantum mechanics, density operators are

used to describe a much wider class of quantum states [22]. These reasons make

density operators particularly useful for practical applications of quantum mechanics.

As discussed in Chapter 2, uncertainty relations apply to mixed states as well. To

illustrate the effects of mixed state uncertainty relations (Eqs. (2.21) and (2.30)), I

show the results of computing some of the same spin-1/2 operator uncertainties that

I did in Section 3.3.1. These uncertainties are shown in Figs. 3.6, 3.7, and 3.8. Like

the spin-1/2 examples show in Section 3.3.1, the Schrödinger relation accounts for

more uncertainty, raising the lower bound from the level of the Robertson relation.

An additional insight observable from the results on mixed states is that the purer

the state, the higher the uncertainty.
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Figure 3.6 Uncertainty for the product of the standard deviations, σSxσSy . These are
plotted in spherical coordinates (θ, φ) with the amount of uncertainty in any particular
direction corresponding to the value shown by the graph in that direction. The six
graphs correspond to six different values of total polarization, P , the measure of how
“mixed” a state is. A polarization of P = 0 corresponds to a completely unpolarized or
mixed state, and P = 1 corresponds to a completely polarized or pure state.

Figure 3.7 Uncertainty for the Robertson relation 1
2i
⟨[Ŝx, Ŝy]⟩. These are plotted in

spherical coordinates (θ, φ), and the six graphs correspond to six different values of
polarization, P .

Figure 3.8 Uncertainty for the Schrödinger relation√
( 1

2
⟨{Ŝx, Ŝy}⟩ − ⟨Ŝx⟩⟨Ŝy⟩)

2

+ ( 1
2i
⟨[Ŝx, Ŝy]⟩)

2

. These are plotted in spherical coordinates

(θ, φ) and the six graphs correspond to six different values of polarization, P .
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3.4 Discussion of Angular Momentum Data

The overall effect of the Schrödinger relation is often to raise the lower bound of

uncertainty. This is the case for both pure and mixed states. The differences between

the two uncertainty relations also become more pronounced with larger values of j.

To illustrate, consider the example from Table 3.5 with j = 2 and eigenvalue m = 0.

A larger graph is given in Fig. 3.9. From Fig. 3.9(A) it can be seen that the product

of standard deviations predicts values of uncertainty similar to that of j = 1/2, Fig.

3.4(A). Yet when it comes to making a quantum mechanical prediction, the more

complete Schrödinger uncertainty relation, Fig. 3.9(C), gives values of uncertainty

when the Robertson relationship, Fig. 3.9(B), actually gives no uncertainty. For this

state of J(2) the standard Robertson uncertainty relation misses all uncertainty in

every direction. So in this situation the Schrödinger relation raises the lower bound

of uncertainty, though it does not bring the inequality of the uncertainty relation to

an equality.
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Figure 3.9 The magnitude of uncertainty for the orbital angular momentum
eigenvectors of J(2). (A) = σ

J
(2)
x
σ

J
(2)
y

, (B) = 1
2i
(⟨[J(2)x , J

(2)
y ]⟩),

(C) =
√

( 1
2
⟨{J(2)x , J

(2)
y }⟩ − ⟨J(2)x ⟩⟨J(2)y ⟩)

2

+ ( 1
2i
⟨[J(2)x , J

(2)
y ]⟩)

2

. These are plotted in

spherical coordinates (θ, φ) with the amount of uncertainty in any particular direction
corresponding to the value shown by the graph in that direction. Graph (A) corresponds
to the multiplication of two standard deviations. The Robertson uncertainty relation (B)
is zero. The Schrödinger uncertainty relation (C), captures some of the uncertainty for
the generalized eigenvectors.
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Chapter 4

Fidelity Analysis

4.1 Quantum Gate Fidelity Derivation

4.1.1 Quantum Gates

Traditional computers function using sophisticated electronic circuits that perform

logic operations: the circuits move information around and the logic gates manipu-

late the information. Similarly, a quantum circuit contains channels through which

information flows and quantum logic gates that manipulate the quantum informa-

tion [18]. For example, the not gate has the following operation on the incoming

information represented by zeros and ones:

0→ 1 and 1→ 0 .

Thus the not gate interchanges the zeros for ones and vice versa. The analogous

quantum not gate performs the operation

α∣0⟩ + β∣1⟩→ α∣1⟩ + β∣0⟩ , (4.1)

where ∣0⟩ and ∣1⟩ represent orthonormal basis states in the quantum space.

41
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The action of quantum logic gates can be represented using matrix algebra, which

is the formulation that I use throughout this chapter in dealing with quantum gate

fidelity. For example, the quantum not gate operation shown in Eq. (4.1) can be

represented in matrix form by writing the state α∣0⟩ + β∣1⟩ as

⎛
⎜
⎜
⎝

α

β

⎞
⎟
⎟
⎠

,

and the necessary matrix multiplication is given by

⎛
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

α

β

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

β

α

⎞
⎟
⎟
⎠

. (4.2)

The only constraint on the gate matrix, as in the two-by-two matrix in Eq. (4.2), is

that a gate must be unitary. A unitary matrix U has the property U †U = I, where I

is the identity.1

Besides representing logic gates as matrices, one can also represent the action of

single-qubit logic gates on the Bloch sphere, which I utilize in the remaining chapters.

As an illustrative example, the action of the non-trivial Hadamard gate

UHadamard =
1

√
2

⎛
⎜
⎜
⎝

1 1

1 −1

⎞
⎟
⎟
⎠

on the normalized state

1
√

2
(∣0⟩ + ∣1⟩) =

1
√

2

⎛
⎜
⎜
⎝

1

1

⎞
⎟
⎟
⎠

is depicted in Fig. 4.1 with the corresponding matrix multiplication

1
√

2

⎛
⎜
⎜
⎝

1 1

1 −1

⎞
⎟
⎟
⎠

1
√

2

⎛
⎜
⎜
⎝

1

1

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

1

0

⎞
⎟
⎟
⎠

.

Any single qubit gate can be found by specifying two angles (θ, φ) in the arbitrary

1From this point onward I follow the convention in the quantum computation literature of drop-

ping the hat (̂ ) above operators to simplify the notation and calculations.
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Figure 4.1 Visualization of the Hadamard gate acting on the state 1√
2
(∣0⟩+∣1⟩). Beginning

with the state in the x̂–ŷ plane, the gate rotates the state 90○ and then reflects it through
the x̂–ŷ plane.

single-qubit gate given by U = eiφ( cos(θ/2)I+i sin(θ/2)u⃗⋅σ⃗), where I is the identity, u⃗

is an arbitrary unit vector specified by two independent parameters, and σ⃗ is the Pauli

matrix vector σ⃗ = (σx, σy, σz). I use this arbitrary single-qubit gate in my derivations

and results on fidelity later in this chapter.

4.1.2 Gate Fidelity

As quantum states dynamically undergo evolutions in the process of computations,

they will inevitably encounter some noise. Quantum states live somewhat frail lives,

and the only way to absolutely ensure that no noise or decoherence is introduced

into the state is to seal the state off from the rest of the universe. That is of course

impossible and would defeat the whole point of performing a quantum computation:

one needs the state to interact with something else to calculate anything. So a delicate

balance must be maintained and the inevitable errors must be dealt with.

Gate fidelity is essentially a measure of how successfully a gate has preserved a

state from acquiring noise. For example, if as part of a quantum computation I wish

to implement a particular gate U , then I am assured that it was not exactly U that

was implemented, but a noisy version called E . By calculating the gate fidelity I



44 Chapter 4 Fidelity Analysis

can know how successful U has been in keeping noise out of the state ∣ψ⟩. The gate

fidelity F essentially keeps track of the difference between what really happened in

the computation and what was intended to happen; it is defined as

F (U,E) ≡ min
∣ψ⟩

F(U ∣ψ⟩,E(∣ψ⟩⟨ψ∣)) = Tr
√
ρ1/2σρ1/2 (4.3)

which is essentially the overlap of the two mixed states ρ and σ, and where min∣ψ⟩

indicates that the minimum over ∣ψ⟩ is to be taken.

4.2 Conservation Laws and Gate Fidelity

In addition to the customary decoherence that creeps in through environmental and

controller-induced factors, recent work [5] suggests that conservation laws limit the

accuracy of quantum gate operations. The Wigner-Araki-Yanase theorem shows that

conservation laws limit the accuracy of a quantum measurement [25, 26]. This the-

orem has been generalized to show that conservation laws also limit the accuracy

of quantum gates [27]. The inherent errors that arise due to conflicts with angu-

lar momentum conservation laws have been evaluated for some specific gates [27]

and findings were recently reported on the nature of arbitrary single-qubit gates [5].

This thesis builds upon the arbitrary single-qubit case by applying the Schrödinger

uncertainty relation.

In this section I will connect conservation laws to gate fidelity, Eq. (4.3). Following

the assumption made in the Wigner-Araki-Yanase theorem, I assume that there exists

additive conserved quantities LS and LA of the system (S) and ancilla2 (A) such that

L = LS ⊗ IA + IS ⊗LA (4.4)

2An ancilla is often used as an extra quantum system that is cast aside after it has fulfilled its

particular purpose.
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where IS and IA are the identity operators of system and ancilla respectively. I further

assume that for the additive conserved quantity L and for a unitary operator U the

conservation law

[U,L] = 0 (4.5)

must be satisfied. Our U here is arbitrary and corresponds only to what satisfies the

conservation law Eq. (4.5). Eq. (4.5) is an example of the familiar tenet of quantum

theory that when an operator commutes with the Hamiltonian it is a constant of

the motion, i.e., that operator gives rise to a conserved quantity. In the present case

however, U represents a unitary quantum gate.

According to the Wigner-Araki-Yanase theorem [26], (hereafter abbreviated as

WAY), any operator O which does not commute with an additive conserved quantity

(such as L from above) will impose a limitation on the measurement of that operator.

Thus the WAY theorem states: given the operator O and that the conservation law

[U,L] = 0 is satisfied, if [O, L] ≠ 0 then a von Neumann measurement of O is not

possible. In this paper I am concerned with a generalization of this theorem in which

the additive conserved quantity imposes a limitation on quantum gates.

In order to connect the WAY theorem with quantum gate fidelity we make use

of the deviation operator D from [5] for a system and ancilla. This deviation oper-

ator originates from a particular measurement theory formulated by M. Ozawa [28]

and effectively represents the difference between two transformations. The deviation

operator can be defined as

D = U †(LS ⊗ IA)U −U †
SLSUS ⊗ IA. (4.6)

From previous analysis [5] we use the following parameterizations for the pieces of

Eq. (4.6): LS = c l⃗ ⋅ σ⃗ where c is the eigenvalue of LS, l⃗ is an arbitrary unit vector, σ⃗

is the Pauli matrix vector σ⃗ = (σx, σy, σz), US is an arbitrary single-qubit gate given
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by US = eiφ( cos(θ/2)IS + i sin(θ/2)u⃗ ⋅ σ⃗), u⃗ is an arbitrary unit vector, and U †
S is the

conjugate transpose of US.

It can be shown using [U,L] = 0, Eq. (4.4), and Eq. (4.6) that [D,L] ≠ 0. Thus

by the WAY theorem D cannot be measured completely. Using this fact, Karasawa

et al. [5] developed a relation between the mean square ⟨D2⟩ and fidelity which is

expressed as

⟨D2⟩ ≤ 4c2(1 − F (E , US)
2) (4.7)

where the fidelity F (E , US) of the trace preserving quantum channel E is measured

relative to the arbitrary single-qubit gate US and where c is an eigenvalue of LS.

The standard deviation of D gives a lower bound of the fidelity. I observe that

σ2
D = ⟨D2⟩ − ⟨D⟩2 ≤ ⟨D2⟩ and from (4.7) I have

σ2
D ≤ 4c2(1 − F (E , US)

2) . (4.8)

This result can be used to introduce the Schrödinger uncertainty relation.

4.3 Fidelity Employing the Schrödinger Uncertainty

Relation

Since [D,L] ≠ 0, the operators D and L are incompatible observables and thus an

uncertainty relation can be defined between them. Previous work [5, 27, 28] used the

Robertson uncertainty relation

σ2
Aσ

2
B ≥ (

1

2i
⟨[A,B]⟩)

2

. (4.9)

However, as illustrated throughout this thesis, the Schrödinger uncertainty relation

given by

σ2
Aσ

2
B ≥ (

1

2
⟨{A,B}⟩ − ⟨A⟩⟨B⟩)

2

+ (
1

2i
⟨[A,B]⟩)

2

, (4.10)
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is often more complete and would give a fuller picture of the constraints on gate

operations due to conservation laws.

I now connect the Schrödinger uncertainty relation to fidelity using the incompat-

ible observables D and L. In order to develop the uncertainty relation in the most

applicable way, I consider the case of mixed states. From Chapter 2, I know that the

Schrödinger uncertainty relation can be expressed in terms of mixed states and the

operators D and L as

σ2
Dσ

2
L ≥ (

1

2
Tr(ρ{D,L}) − Tr(ρD)Tr(ρL))

2

+ (
1

2i
T r(ρ[D,L]))

2

(4.11)

where ρ is an arbitrary mixed state of the form ρ = 1
2(I + u⃗ ⋅ σ⃗) and where I is the

identity. Solving for σ2
D I have simply

σ2
D ≥

1

σ2
L

⎡
⎢
⎢
⎢
⎢
⎣

(
1

2
Tr(ρ{D,L}) − Tr(ρD)Tr(ρL))

2

+ (
1

2i
T r(ρ[D,L]))

2
⎤
⎥
⎥
⎥
⎥
⎦

. (4.12)

From the relationship between the deviation operator and fidelity (4.8), I solve for

the fidelity to get √

1 −
1

4c2
σ2
D ≥ F (E , US). (4.13)

where σ2
D is Eq. (4.12). The best case scenario is when this relation is an equality,

F (E , US) =

√

1 −
1

4c2
σ2
D (4.14)

which is the fidelity in terms of the Schrödinger uncertainty relation. For comparison,

in Chapter 5 I will use both Eq. (4.14) and a version with the Robertson relation

inserted into the equation instead of the Schrödinger relation.
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Chapter 5

Fidelity Data

5.1 Calculating Fidelity

My principal goal in calculating fidelity using the Schrödinger relation is to show that

the Schrödinger relation restricts fidelity more than the Robertson relation does. As

discussed in Section 2.4, the Schrödinger contributions either add some positive real

value to the uncertainty, or they add nothing, and more often than not, the additions

are nonzero.

However, actually carrying out the computations for the Schrödinger version of

fidelity is a difficult task and one that I have only been able to perform by making

many approximations. In this section I discuss these approximations and the results

of the calculations. I wish to emphasize that because of the approximations, I do

not make definitive claims, such as ruling out certain quantum gates from being

realizable in the lab because their fidelity is too low; rather, my results suggest that

the Schrödinger relation imposes greater and more accurate restrictions that should

be addressed more completely in future research.

Challenges arise when computing the fidelity in Eq. (4.14). If I leave the expres-

49
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sion completely general, (allowing for the operators to have complex matrix entries)

then there are up to 49 independent parameters that must be taken into account.

Judiciously picking parameters by imposing some constraints could trim this number

down. After making some assumptions (detailed in the next few paragraphs) and tak-

ing into account all the definitions discussed in Section 4.2, I cut down the number of

independent parameters to 9. The 9 parameters include the following: 4 parameters

for the generalized gate US, 2 parameters for the state (a density operator), 2 param-

eters for the operator LS, and 1 parameter for the eigenvalue c. All of this comes to

a grand total of 9 independent parameters that must be specified in the calculations.

The unitary matrix U accounts for 32 of the 49 parameters. In the paper that I

primarily use for connecting fidelity to uncertainty, Karasawa et al. [5] never specify

U because in finding the commutator [D,L] = −[U †
SLSUS, LS] ⊗ IA, U cancels out.

However, the anticommutator {D,L} works out to

{D,L} =2((U †LS ⊗ IAU)(LS ⊗ IA) + (U †LS ⊗ IAU)(IS ⊗LA)

− (U †
SLSUS ⊗ IA)(IS ⊗LA)) − {U †

SLSUS, LS}⊗ IA. (5.1)

Clearly, U does not cancel out in this case. Since the Schrödinger uncertainty relation

contains an anticommutator, it is thus necessary to either specify a U and thereby cut

out 32 parameters or keep U general and compute with all 32. In Section 5.2 I specify

and compare three different U ’s in calculating fidelity; but not only do I specify the

U ’s, but I approximate the general four-by-four U matrix with single-qubit gates

that are two-by-two matrices (I will later discuss more simplifications that make the

dimensions work out).

Furthermore, I assume that I am working with a spin-like system with eigenvalue

c = 1/2. I assume that since LA is only the conserved quantity of the ancilla and not

of the system, the total L = LS ⊗ IA + IS ⊗LA can be approximated by L = LS, which
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also cuts the dimensions of L down from four to two.1 To make the dimensions work

out, I also assume that IS and IA can be ignored. Next, I assume that σ2
L = 1 because

the division necessary to compute Eq. (5.3) makes the computations longer but does

not change the qualitative nature of the results; the primary result that I am after in

this thesis is to show that the Schrödinger relation raises the lower bound on fidelity

in comparison to the Robertson relation. Since I leave out the division by σ2
L in both

the Robertson and Schrödinger cases, the relative difference between the two remains

the same; division by σ2
L just acts like a factor that scales both relations and does not

matter when I look at the difference between the two relations.

I can also employ a simplification used by Karasawa et al. [5] by observing that

since I am interested in the worst case error, I need not calculate expectation values

but rather take the supremum for any operator X as follows:

sup
∣ψ⟩

∣⟨X⟩∣ = ∣∣X ∣∣ , (5.2)

where ∣∣X ∣∣ is the operator norm of X. Since X in the present context is a matrix,

the operator norm ∣∣X ∣∣ is defined as the square root of the largest eigenvalue of

the symmetric matrix XTX, where T denotes the transpose. Thus when I calculate

fidelity, Eq. (4.12) becomes

σ2
D ≥

1

σ2
L

[(
1

2
∣∣{D,L}∣∣ − (∣∣D∣∣)(∣∣L∣∣))

2

+ (
1

2i
∣∣[D,L]∣∣)

2

] . (5.3)

This assumption cuts the 9 parameters down to 7; in the next section I use two

methods of calculation, one that uses 9 parameters and another that uses 7. With all

of these assumptions and simplifications in hand that cut the independent parameters

down from 49 to 9 or 7, I am ready to compute the fidelity in Eq. (4.14).

1One possible issue with this assumption is that because I drop so many degrees of freedom in L,

it is possible that the condition for the WAY theorem [U,L] = 0 may not be satisfied depending on

the parameterization of U . The parameter values I choose for the figures later in the chapter ensure

that 2 of the 3 different U ’s satisfy the commutation relation [U,LS] = 0.
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5.2 Fidelity in Three Specific Cases

My goals in calculating fidelity for arbitrary single-qubit gates are first to show that

the Schrödinger relation drops the upper bound on fidelity and then to propose the

process as a computational feasibility check that would set an upper bound on fidelity

for certain quantum computations. Depending on the quantum computer and task

at hand, the required fidelity varies. For various tasks and sets of assumptions about

the quantum computing architecture, the required fidelity ranges from minima such

as 0.95 [29] to 0.99 and higher for some tasks [30]. Accordingly, one can know a priori

if a certain quantum computation will be feasible by doing some preliminary fidelity

calculations. The results of this section suggest that conservation law constraints may

actually exclude many quantum computational processes.

To illustrate that the Schrödinger relation raises the lower bound and that my

calculations constitute a rough feasibility check, in this section I present two methods

of calculating the fidelity: (1) I calculate the fidelity using the assumption discussed

in the paragraph surrounding Eq. (5.2), and (2) I calculate the fidelity by taking the

expectation value (using mixed states) implied by the uncertainty relations. For both

methods, I compare the three scenarios (1) when U is the Hadamard gate, (2) when

U is the phase gate, and (3) when U is the π/8 gate, which are all defined as

UHadamard =
1

√
2

⎛
⎜
⎜
⎝

1 1

1 −1

⎞
⎟
⎟
⎠

(5.4)

Uphase =

⎛
⎜
⎜
⎝

1 0

0 i

⎞
⎟
⎟
⎠

(5.5)

Uπ/8 =

⎛
⎜
⎜
⎝

1 0

0 eiπ/4

⎞
⎟
⎟
⎠

. (5.6)
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I choose these three gates for U simply to illustrate some possibilities.2

Method (1) has the advantage that there are fewer parameters to specify, since

I do not need two of the parameters that characterize the mixed state ρ. However,

the operator norm in Eq. (5.2) is difficult to calculate for the commutator and

anticommutator in Eq. (5.3) because the operators that result from multiplying

out the commutator and anticommutator are quite complex; they consist of two-

by-two matrices that are approximately 1/2 of a page of trigonometric functions

in Mathematica code and the exact eigenvalues—needed to calculate the operator

norm—are equally long, complex, and thus unenlightening. Consequently, I calculate

the operator norm numerically—and hence approximately—for each of the operators

individually in Eq. (5.3).

I calculate fidelity in method (1) by first inputing a range of numerical values into

the large two-by-two matrices that represent the operators. These values are in the

range of the parameters, e.g., θ has the range of values 0 ≤ θ ≤ π in a certain step

size. After inserting many values for all the independent parameters, I now have a

large number of two-by-two matrices, which for clarity in the discussion here I call

Ai. I take all the Ai matrices and calculate the operator norm of each one by taking

the square root of the largest eigenvalue for all the symmetric matrices ATi Ai. I now

compute the fidelity using these operator norm values.

The results of the calculations of fidelity for incrementally smaller step sizes is

shown in Fig. 5.1. As the step size gets smaller, the fidelity for both the Robertson and

Schrödinger uncertainty relations appears to roughly converge, with the Robertson re-

lation consistently predicting a fidelity higher than that predicted by the Schrödinger

relation. The data shown in Fig. 5.1 is discussed in more detail in Table 5.1, and the

2The parameter values I choose for Fig. 5.2 later in this section ensure that the phase gate and

the π/8 gate satisfy the commutation relation [U,LS] = 0.
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Figure 5.1 Gate fidelity numerical results. Fidelity (y-axis) is plotted as a function
a parameter that is inversely proportional to the step size (x-axis). The fidelity data
points for the Robertson relation are filled circles ● and for the Schrödinger relation they
are empty squares ◻. Lines are drawn down to the axis for reading convenience. (A)
Comparing Robertson and Schrödinger versions of fidelity for when U is the Hadamard
gate. (B) Comparing Robertson and Schrödinger versions of fidelity for when U is the
phase gate. (C) Comparing Robertson and Schrödinger versions of fidelity for when U is
the π/8 gate. In (A)-(C) it can be seen that fidelity using the Robertson relation is higher
than fidelity using the Schrödinger relation.

Mathematica code for the computations is contained in Appendix C.

Method (2) of calculating fidelity has the advantage that no further assumptions,

such as the supremum assumption in Eq. (5.2), are necessary. I simply compute Eq.

(4.14) directly. Furthermore, the result is exact and can be depicted in the Bloch

sphere (if values are given for all the parameters but two). The problem with this

method, however, is that there are many parameters in the computations and the

results (unlike method (1) which gives a single numeric answer). A result in terms

of many parameters is difficult to decipher and tends to help little in practical and
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Table 5.1 Numerical fidelity data, rounded to four significant figures. Comparison of
the fidelity for two gates calculated using operator norms for both the Robertson and
Schrödinger relations, as shown in Fig. 5.1. The standard deviation of the data is given
under σ and under the “Difference” column are the differences between the mean values.

Gate U Robertson Mean σ Schrödinger Mean σ Difference

Hadamard 0.9693 0.0017 0.9518 0.0034 0.0175

Phase 0.9702 0.0022 0.9603 0.0025 0.0100

π/8 0.9702 0.0022 0.9620 0.0033 0.0081

experimental situations—the experimenter or engineer has sufficiently many variables

of equipment and method of execution to worry about without the added hassle of

making sure they keep track of 9 independent parameters as well.

The results of method (2), calculating the fidelity in Eq. (4.14) directly and

supplying values for all parameters except for two, are shown in Fig. 5.2. These

particular plots are in the Bloch sphere representation in terms of the two parameters

that specify the conserved quantity L. By analogy to the plots in Chapter 3, they

represent the fidelity for the specific single-qubit gates given a conserved quantity

that “points” in a particular direction on the Bloch sphere. The key result is that

using the Schrödinger relation in fidelity further limits the maximum fidelity possible.

Though not shown here, I have also made dynamic plots of the results of the

fidelity calculations using method (2); these dynamic plots allow me to vary all the

parameters in terms of the others and the plots are the same in their essential features

to those given in Fig. 5.2. The dynamic plots also give slightly deformed spheres and

they deform somewhat irregularly, though never drastically, as all the parameters

are varied. I am not certain if the very subtle deformations in the spheres as the

parameters vary are meaningful or simply an artifact of the approximations I make.

As far as I have been able to ascertain, no matter the deformations, the key result
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Figure 5.2 Bloch sphere gate fidelity. Plots of fidelity in the Bloch sphere in terms of
the two parameters that specify the conserved quantity L, and where all the remaining
parameters are given the value of zero. The blue outer spherical figures are for fidelity
using the Robertson relation while the red inner spherical figures are for fidelity using
the Schrödinger relation. A segment of all the figures has been removed to reveal the
inner structure. The fidelity plots are for when U is (A) the Hadamard gate, (B) the
phase gate, and (C) the π/8 gate. These plots show that the Schrödinger relation further
limits the maximum fidelity possible because all the red Schrödinger spherical figure is
contained inside the blue Robertson spherical figure, except for the phase gate near the
“equator” and the Hadamard gate only exactly at the “equator” where both Robertson
and Schrödinger have a value of 1. In general, both the red and the blue spherical figures
slightly deform (remaining near 1) as the parameters change. For these particular plots
where all the parameters besides those for L are set to zero, the Robertson fidelity is
always 1, i.e., the Robertson plot is a unit sphere. Values of fidelity of the Schrödinger
spheres with the azimuthal angle (corresponding to φ in Fig. 1.2.2) set to zero and at
various values of the polar angle (corresponding to θ in Fig. 1.2.2) as measured down from
the ẑ axis: at 0○ (A)=(B)=(C)=0.9682; at 45○ (A)=0.9682, (B)=0.9922, (C)=0.9770; and
at 90○ (A)=1, (B)=1, (C)=0.9843.
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persists that the Schrödinger fidelity almost always remains smaller—and hence more

restrictive—than the Robertson fidelity.

5.3 Discussion of Fidelity Data

The most important result in this chapter is that using the Schrödinger relation

in fidelity further limits the maximum fidelity possible for certain single-qubit gates,

given the presence of a conserved quantity. Both methods that I employ in calculating

fidelity arrive at this same conclusion and suggest that conservation law constraints

may exclude many computations a priori. However, the process of finding the fidelity

restrictions is somewhat messy because so many parameters are involved. In both

methods I have had to make some simplifying assumptions that render the final results

less general than I would like. Therefore I am not confident enough in the results to

make detailed claims. For example, I cannot use the data from Fig. 5.1 to propose

that all single-qubit gates in the presence of a conserved quantity are restricted from

achieving fidelities of 0.99—as would be necessary for many computations [30]. I do

think, however, that my results are highly suggestive of possible restrictions and that

researchers should seriously consider conservation law constraints.

Further research on this topic could simplify the calculations, or perhaps more

significantly, adjust some of the underlying theory so that results can be more readily

usable for experimental applications. Ideally these modifications would result in fewer

parameters and greater accuracy in foreseeing which computations may be unfeasible.
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Chapter 6

Conclusions

In Chapters 2 and 3 of this thesis, I have discussed the nature of the Schrödinger

uncertainty relation for pure and mixed states. I have illustrated the discrepancies

between the Robertson and Schrödinger uncertainty relations, showing that in many

cases the Schrödinger uncertainty relation raises the lower bound on uncertainty.

I conclude that in situations where quantum uncertainty must be accounted for,

researchers should utilize the Schrödinger uncertainty relation.

In Chapters 4 and 5, I applied the Schrödinger uncertainty relation to quantum

gate fidelity and discussed two computational processes which attempt to place an

upper bound on fidelity for certain computational systems. These methods should be

seen as a possible feasibility check; by following these methods one can know a priori

if a certain quantum computation will be feasible or not. Though my final results

are less general than I would like, they are nonetheless highly suggestive of significant

fundamental restrictions and of the role that the Schrödinger uncertainty relation has

in more accurately predicting such restrictions.
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Appendix A

Angular Momentum Matrices

In this appendix I write out explicitly the angular momentum matrices J(1/2)r ,J(1)r ,

J(3/2)r , and J(2)r , which represent the angular momentum for an arbitrary direction r̂

in the J2, Jz basis. These matrices are derived according to the method in Section

3.3.1. The matrices J
(1)
i , J

(3/2)
i , and J

(2)
i , where i = x, y, z, are necessary for deriving

J(1)r , J(3/2)r , and J(2)r . The derivation of the matrices J
(1)
i , J

(3/2)
i , and J

(2)
i is discussed

in [31], pgs. 504-508. The matrix J(1/2)r has eigenvalues of ±h̵/2. The matrix J(1)r has

eigenvalues of 0 and ±h̵, the matrix J(3/2)r has eigenvalues of ±h̵/2 and ±3h̵/2, and the

matrix J(2)r has eigenvalues of 0, ±h̵ and ±2h̵

J(1/2)r =
h̵

2

⎛
⎜
⎜
⎝

cos θ e−iφ sin θ

eiφ sin θ − cos θ

⎞
⎟
⎟
⎠

(A.1)

J(1)r =
h̵
√

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
2 cos θ sin θe−iφ 0

sin θeiφ 0 sin θe−iφ

0 sin θeiφ −
√

2 cos θ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A.2)

61



62 Chapter A Angular Momentum Matrices

J(3/2)r = h̵

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
2 cos θ

√

3
2 sin θe−iφ 0 0

√

3
2 sin θeiφ 1

2 cos(θ) sin θe−iφ 0

0 sin θeiφ −1
2 cos θ

√

3
2 sin θe−iφ

0 0
√

3
2 sin θeiφ −3

2 cos θ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A.3)

J(2)r = h̵

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 cos(θ) sin(θ)e−iφ 0 0 0

sin(θ)eiφ cos(θ)
√

6
2 sin(θ)e−iφ 0 0

0
√

6
2 sin(θ)eiφ 0

√

6
2 sin(θ)e−iφ 0

0 0
√

6
2 sin(θ)eiφ − cos(θ) sin(θ)e−iφ

0 0 0 sin(θ)eiφ −2 cos(θ)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A.4)



Appendix B

Mathematica Code for Numerical

Spin Eigenvalues and Eigenvectors

Because the eigenvectors of the matrices J(1)r , J(3/2)r , and J(2)r , are quite complex, I find

it most convenient to calculate and use their eigenvectors numerically for calculating

uncertainties in the case of j = 1,3/2,2. What follows is the Mathematica code that I

used to numerically calculate and plot the uncertainties. I have included notes in the

code by using the method of including notes in Mathematica, denoted by the symbols

(* *) to surround the notes. In all my calculations I have set h̵ = 1.

B.1 Code for J(1)
r

The following is the code for calculating σ
J
(1)
x
σ
J
(1)
y

.

Clear["‘*"]

h = 25; (*step size*)m = 20;(*plot points*)

(*This matrix "M" corresponds to l=1*)

M = (1/Sqrt[2])*{{Sqrt[2]*Cos[\[Theta]], Sin[\[Theta]]*E^(-I*\[Phi]),0},

{Sin[\[Theta]]*E^(I*\[Phi]), 0, Sin[\[Theta]]*E^(-I*\[Phi])},
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{0, Sin[\[Theta]]*E^(I*\[Phi]), -Sqrt[2]*Cos[\[Theta]]}};

(*Makes the matrix M numeric*)

Flatten[Table[M, {\[Theta], 0.0, Pi, Pi/h}, {\[Phi], 0.0, 2*Pi, 2*Pi/h}], 1];

eigen = Chop[Map[Eigenvectors, %]];

dim = Dimensions[eigen];

normalizedVectors = Map[Normalize, eigen, {2}];

(*The eigenvectors with corresponding eigenvalues for +-1 are {1} and {2},

while it is 0 for {3}*)

secondVectors = Take[normalizedVectors, All, {1}];

\[Psi]\[Dagger] = Map[Conjugate, secondVectors];

\[Psi] = Map[ConjugateTranspose, \[Psi]\[Dagger]];

Table[\[Psi]\[Dagger][[i]].\[Psi][[i]], {i, 1, dim[[1]]}];

Flatten[%, 2]; (*This is a big list of values, in a long vector form*)

\[CapitalLambda]x = {{0, (1/Sqrt[2]), 0}, {(1/Sqrt[2]), 0, (1/Sqrt[2])}, {0, (1/Sqrt[2]), 0}};

\[CapitalLambda]x2 = \[CapitalLambda]x.\[CapitalLambda]x;

Lx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x.\[Psi][[i]], {i, 1, dim[[1]]}];

Lx2 = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x2.\[Psi][[i]], {i, 1, dim[[1]]}];

\[CapitalLambda]y ={{0, -I*(1/Sqrt[2]),0}, {I*(1/Sqrt[2]), 0, -I*(1/Sqrt[2])}, {0, I*(1/Sqrt[2]), 0}};

\[CapitalLambda]y2 = \[CapitalLambda]y.\[CapitalLambda]y;

Ly = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y.\[Psi][[i]], {i, 1,dim[[1]]}];

Ly2 = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y2.\[Psi][[i]], {i,1, dim[[1]]}];

\[CapitalDelta]Lx = Sqrt[Lx2 - Lx^2];

\[CapitalDelta]Ly = Sqrt[Ly2 - Ly^2];

LHS = Flatten[\[CapitalDelta]Lx*\[CapitalDelta]Ly, 2];

dir[theta_, phi_] := {Sin[theta]*Cos[phi], Sin[theta]*Sin[phi],Cos[theta]}

sphereValues =Flatten[Table[dir[\[Theta], \[Phi]], {\[Theta], 0.0, Pi, Pi/h},

{\[Phi], 0.0,2*Pi, 2*Pi/h}], 1];

(*This is a three-dimensional plot of the uncertainty*)

ListSurfacePlot3D[Chop[sphereValues*LHS], MaxPlotPoints -> m]
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The following code is for calculating the Robertson and Schrödinger uncertainties,

for J
(1)
x and J

(1)
y .

Clear["*‘"]

h = 30; (*step size*)m = 20;(*plot points*)

M = (1/Sqrt[2])*{{Sqrt[2]*Cos[\[Theta]], Sin[\[Theta]]*E^(-I*\[Phi]),0},

{Sin[\[Theta]]*E^(I*\[Phi]), 0, Sin[\[Theta]]*E^(-I*\[Phi])},

{0, Sin[\[Theta]]*E^(I*\[Phi]), -Sqrt[2]*Cos[\[Theta]]}};

Flatten[Table[M, {\[Theta], 0.0, Pi, Pi/h}, {\[Phi], 0.0, 2*Pi, 2*Pi/h}], 1];

eigen = Chop[Map[Eigenvectors, %]];

dim = Dimensions[eigen];

normalizedVectors = Map[Normalize, eigen, {2}];

secondVectors = Take[normalizedVectors,All, {1}];

(*Change which eigenvectors to use here->{?}*)

(*eigenvalue +-1 is {1,2}; eigenvalue 0 is {3}*)

\[Psi]\[Dagger] = Map[Conjugate, secondVectors];

\[Psi] = Map[ConjugateTranspose, \[Psi]\[Dagger]];

Table[\[Psi]\[Dagger][[i]].\[Psi][[i]], {i, 1, dim[[1]]}];

Flatten[%, 2]; (*This is a big list of values, in a long vector form*)

\[CapitalLambda]x ={{0, (1/Sqrt[2]), 0}, {(1/Sqrt[2]),0, (1/Sqrt[2])}, {0, (1/Sqrt[2]), 0}};

Lx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x.\[Psi][[i]], {i, 1,dim[[1]]}];

\[CapitalLambda]y ={{0, -I*(1/Sqrt[2]),0}, {I*(1/Sqrt[2]), 0, -I*(1/Sqrt[2])}, {0, I*(1/Sqrt[2]), 0}};

Ly = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y.\[Psi][[i]], {i, 1,dim[[1]]}];

\[CapitalLambda]x\[CapitalLambda]y = \[CapitalLambda]x.\[CapitalLambda]y;

LxLy = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x\[CapitalLambda]y.\[Psi][[i]], {i,1,dim[[1]]}];

\[CapitalLambda]y\[CapitalLambda]x = \[CapitalLambda]y.\[CapitalLambda]x;

LyLx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y\[CapitalLambda]x.\[Psi][[i]], {i,1, dim[[1]]}];

Com = LxLy - LyLx;

ACom = LxLy + LyLx;

Robertson = Flatten[Sqrt[(1/(2*I)*Com)^2], 2];
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Schrodinger = Flatten[Sqrt[(1/2*ACom - Lx*Ly)^2 + (1/(2*I)*Com)^2], 2];

dir[theta_, phi_] := {Sin[theta]*Cos[phi], Sin[theta]*Sin[phi],Cos[theta]}

sphereValues = Flatten[Table[dir[\[Theta], \[Phi]], {\[Theta], 0.0, Pi, Pi/h},

{\[Phi], 0.0,2*Pi, 2*Pi/h}], 1];

ListSurfacePlot3D[Chop[sphereValues*Robertson], MaxPlotPoints -> m]

ListSurfacePlot3D[Chop[sphereValues*Schrodinger], MaxPlotPoints -> m]

B.2 Code for J(3/2)
r

The following is the code for calculating σ
J
(3/2)
x

σ
J
(3/2)
y

.

Clear["‘*"]

h = 30; (*step size*)m = 22;(*plot points*)

M ={{3/2 Cos[\[Theta]],Sqrt[3]/2 Sin[\[Theta]]*E^(-I*\[Phi]), 0, 0},

{Sqrt[3]/2 Sin[\[Theta]]*E^(I*\[Phi]), 1/2 Cos[\[Theta]],Sin[\[Theta]]*E^(-I*\[Phi]), 0},

{0, Sin[\[Theta]]*E^(I*\[Phi]), -1/2*Cos[\[Theta]], Sqrt[3]/2 Sin[\[Theta]]*E^(-I*\[Phi])},

{0, 0, Sqrt[3]/2 Sin[\[Theta]]*E^(I*\[Phi]), -3/2 Cos[\[Theta]]}};

Flatten[Table[M, {\[Theta], 0.0, Pi, Pi/h}, {\[Phi], 0.0, 2*Pi, 2*Pi/h}], 1];

eigen = Chop[Map[Eigenvectors, %]];

dim = Dimensions[eigen];

normalizedVectors = Map[Normalize, eigen, {2}];

secondVectors = Take[normalizedVectors,All, {3}];

(*Change which eigenvectors to use here->{?}*)

(*eigenvalues are +-3/2 for {1,2} and +-1/2 for {3,4}*)

\[Psi]\[Dagger] = Map[Conjugate, secondVectors];

\[Psi] = Map[ConjugateTranspose, \[Psi]\[Dagger]];

Table[\[Psi]\[Dagger][[i]].\[Psi][[i]], {i, 1, dim[[1]]}];

Flatten[%, 2]; (*This is a big list of values, in a long vector form*)

\[CapitalLambda]x ={{0, (Sqrt[3]/2), 0, 0},
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{(Sqrt[3]/2), 0, 1, 0}, {0, 1, 0, (Sqrt[3]/2)}, {0, 0, (Sqrt[3]/2), 0}};

\[CapitalLambda]x2 = \[CapitalLambda]x.\[CapitalLambda]x;

Lx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x.\[Psi][[i]], {i,1,dim[[1]]}];

Lx2 = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x2.\[Psi][[i]], {i,1, dim[[1]]}];

\[CapitalLambda]y ={{0, -I*(Sqrt[3]/2), 0, 0},

{I*(Sqrt[3]/2), 0, -I, 0}, {0, I, 0, -I*(Sqrt[3]/2)}, {0, 0,I*(Sqrt[3]/2), 0}};

\[CapitalLambda]y2 = \[CapitalLambda]y.\[CapitalLambda]y;

Ly = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y.\[Psi][[i]], {i,1,dim[[1]]}];

Ly2 = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y2.\[Psi][[i]], {i,1,dim[[1]]}];

\[CapitalDelta]Lx = Sqrt[Lx2 - Lx^2];

\[CapitalDelta]Ly = Sqrt[Ly2 - Ly^2];

LHS = Flatten[\[CapitalDelta]Lx*\[CapitalDelta]Ly, 2];

dir[theta_, phi_] := {Sin[theta]*Cos[phi], Sin[theta]*Sin[phi],Cos[theta]}

sphereValues = Flatten[Table[dir[\[Theta], \[Phi]], {\[Theta], 0.0, Pi, Pi/h},

{\[Phi], 0.0,2*Pi, 2*Pi/h}], 1];

ListSurfacePlot3D[Chop[sphereValues*LHS], MaxPlotPoints -> m]

The following code is for calculating the Robertson and Schrödinger uncertainties,

for J
(3/2)
x and J

(3/2)
y .

Clear["‘*"]

h = 30; (*step size*)m = 25;(*plot points*)

M ={{3/2 Cos[\[Theta]],Sqrt[3]/2 Sin[\[Theta]]*E^(-I*\[Phi]), 0, 0},

{Sqrt[3]/2 Sin[\[Theta]]*E^(I*\[Phi]), 1/2 Cos[\[Theta]],Sin[\[Theta]]*E^(-I*\[Phi]), 0},

{0, Sin[\[Theta]]*E^(I*\[Phi]), -1/2*Cos[\[Theta]], Sqrt[3]/2 Sin[\[Theta]]*E^(-I*\[Phi])},

{0, 0, Sqrt[3]/2 Sin[\[Theta]]*E^(I*\[Phi]), -3/2 Cos[\[Theta]]}};

Flatten[Table[M, {\[Theta], 0.0, Pi, Pi/h}, {\[Phi], 0.0, 2*Pi, 2*Pi/h}], 1];

eigen = Chop[Map[Eigenvectors, %]];

dim = Dimensions[eigen];

normalizedVectors = Map[Normalize, eigen, {2}];
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secondVectors = Take[normalizedVectors, All, {3}];

(*Change which eigenvectors to use here->{?}*)

(*eigenvalues are +-3/2 for {1,2} and +-1/2 for {3,4}*)

\[Psi]\[Dagger] = Map[Conjugate, secondVectors];

\[Psi] = Map[ConjugateTranspose, \[Psi]\[Dagger]];

Table[\[Psi]\[Dagger][[i]].\[Psi][[i]], {i, 1, dim[[1]]}];

Flatten[%, 2]; (*This is a big list of values, in a long vector form*)

\[CapitalLambda]x ={{0, (Sqrt[3]/2), 0, 0}, {(Sqrt[3]/2), 0, 1, 0},

{0, 1, 0, (Sqrt[3]/2)}, {0, 0, (Sqrt[3]/2), 0}};

Lx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x.\[Psi][[i]], {i, 1,dim[[1]]}];

\[CapitalLambda]y ={{0, -I*(Sqrt[3]/2), 0,0},

{I*(Sqrt[3]/2), 0, -I, 0}, {0, I, 0, -I*(Sqrt[3]/2)}, {0, 0,I*(Sqrt[3]/2), 0}};

Ly = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y.\[Psi][[i]], {i, 1, dim[[1]]}];

\[CapitalLambda]x\[CapitalLambda]y = \[CapitalLambda]x.\[CapitalLambda]y;

LxLy = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x\[CapitalLambda]y.\[Psi][[i]], {i, 1,dim[[1]]}];

\[CapitalLambda]y\[CapitalLambda]x = \[CapitalLambda]y.\[CapitalLambda]x;

LyLx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y\[CapitalLambda]x.\[Psi][[i]], {i, 1,dim[[1]]}];

Com = LxLy - LyLx;

ACom = LxLy + LyLx;

Robertson = Flatten[Sqrt[(1/(2*I)*Com)^2], 2];

Schrodinger = Flatten[Sqrt[(1/2*ACom - Lx*Ly)^2 + (1/(2*I)*Com)^2], 2];

dir[theta_, phi_] := {Sin[theta]*Cos[phi], Sin[theta]*Sin[phi],Cos[theta]}

sphereValues = Flatten[Table[dir[\[Theta], \[Phi]], {\[Theta], 0.0, Pi, Pi/h},

{\[Phi], 0.0,2*Pi, 2*Pi/h}], 1];

ListSurfacePlot3D[Chop[sphereValues*Robertson], MaxPlotPoints -> m]

ListSurfacePlot3D[Chop[sphereValues*Schrodinger], MaxPlotPoints -> m]
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B.3 Code for J(2)
r

The following is the code for calculating σ
J
(2)
x
σ
J
(2)
y

.

Clear["‘*"]

h = 30; (*step size*)m = 22;(*plot points*)

M ={{2 Cos[\[Theta]], Sin[\[Theta]] E^(-I*\[Phi]), 0, 0,0},

{Sin[\[Theta]] E^(I*\[Phi]), Cos[\[Theta]],Sqrt[6]/2*Sin[\[Theta]] E^(-I*\[Phi]), 0, 0},

{0,Sqrt[6]/2*Sin[\[Theta]] E^(I*\[Phi]), 0,Sqrt[6]/2*Sin[\[Theta]] E^(-I*\[Phi]), 0},

{0, 0,Sqrt[6]/2*Sin[\[Theta]] E^(I*\[Phi]), -Cos[\[Theta]],Sin[\[Theta]] E^(-I*\[Phi])},

{0, 0, 0,Sin[\[Theta]] E^(I*\[Phi]), -2 Cos[\[Theta]]}};

Flatten[Table[M, {\[Theta], 0.0, Pi, Pi/h}, {\[Phi], 0.0, 2*Pi, 2*Pi/h}], 1];

eigen = Chop[Map[Eigenvectors, %]];

dim = Dimensions[eigen];

normalizedVectors = Map[Normalize, eigen, {2}];

secondVectors = Take[normalizedVectors,All, {3}];

(*Change which eigenvectors to use here->{?}*)

(*eigenvalues are +-3/2 for {1,2} and +-1/2 for {3,4}*)

\[Psi]\[Dagger] = Map[Conjugate, secondVectors];

\[Psi] = Map[ConjugateTranspose, \[Psi]\[Dagger]];

Table[\[Psi]\[Dagger][[i]].\[Psi][[i]], {i, 1, dim[[1]]}];

Flatten[%, 2]; (*This is a big list of values, in a long vector form*)

\[CapitalLambda]x = {{0, 1, 0, 0, 0}, {1, 0, (Sqrt[6]/2),0, 0},

{0, (Sqrt[6]/2), 0, (Sqrt[6]/2), 0}, {0, 0, (Sqrt[6]/2), 0,1}, {0, 0, 0, 1, 0}};

\[CapitalLambda]x2 = \[CapitalLambda]x.\[CapitalLambda]x;

Lx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x.\[Psi][[i]], {i, 1,dim[[1]]}];

Lx2 = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x2.\[Psi][[i]], {i,1, dim[[1]]}];

\[CapitalLambda]y = {{0, -I, 0, 0, 0}, {I, 0, -I (Sqrt[6]/2), 0, 0},

{0, I (Sqrt[6]/2), 0, -I (Sqrt[6]/2),0}, {0, 0, I (Sqrt[6]/2), 0, -I}, {0, 0, 0, I, 0}};

\[CapitalLambda]y2 = \[CapitalLambda]y.\[CapitalLambda]y;

Ly = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y.\[Psi][[i]], {i,1,dim[[1]]}];



70 Chapter B Mathematica Code for Numerical Spin Eigenvalues and Eigenvectors

Ly2 = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y2.\[Psi][[i]], {i,1,dim[[1]]}];

\[CapitalDelta]Lx = Sqrt[Lx2 - Lx^2];

\[CapitalDelta]Ly = Sqrt[Ly2 - Ly^2];

LHS = Flatten[\[CapitalDelta]Lx*\[CapitalDelta]Ly, 2];

dir[theta_, phi_] := {Sin[theta]*Cos[phi], Sin[theta]*Sin[phi],Cos[theta]}

sphereValues = Flatten[Table[dir[\[Theta], \[Phi]], {\[Theta], 0.0, Pi, Pi/h},

{\[Phi], 0.0,2*Pi, 2*Pi/h}], 1];

ListSurfacePlot3D[Chop[sphereValues*LHS], MaxPlotPoints -> m]

The following code is for calculating the Robertson and Schrödinger uncertainties, for

J
(2)
x and J

(2)
y .

Clear["‘*"]

h = 30; (*step size*)m = 25;(*plot points*)

M ={{2 Cos[\[Theta]], Sin[\[Theta]] E^(-I*\[Phi]), 0, 0,0},

{Sin[\[Theta]] E^(I*\[Phi]), Cos[\[Theta]],Sqrt[6]/2*Sin[\[Theta]] E^(-I*\[Phi]), 0, 0},

{0,Sqrt[6]/2*Sin[\[Theta]] E^(I*\[Phi]), 0,Sqrt[6]/2*Sin[\[Theta]] E^(-I*\[Phi]), 0},

{0, 0,Sqrt[6]/2*Sin[\[Theta]] E^(I*\[Phi]), -Cos[\[Theta]],Sin[\[Theta]] E^(-I*\[Phi])},

{0, 0, 0,Sin[\[Theta]] E^(I*\[Phi]), -2 Cos[\[Theta]]}};

Flatten[Table[M, {\[Theta], 0.0, Pi, Pi/h}, {\[Phi], 0.0, 2*Pi, 2*Pi/h}], 1];

eigen = Chop[Map[Eigenvectors, %]];

dim = Dimensions[eigen];

normalizedVectors = Map[Normalize, eigen, {2}];

secondVectors = Take[normalizedVectors, All, {3}];

(*Change which eigenvectors to use here->{?}*)

(*eigenvalues are +-3/2 for {1,2} and +-1/2 for {3,4}*)

\[Psi]\[Dagger] = Map[Conjugate, secondVectors];

\[Psi] = Map[ConjugateTranspose, \[Psi]\[Dagger]];

Table[\[Psi]\[Dagger][[i]].\[Psi][[i]], {i, 1, dim[[1]]}];

Flatten[%, 2]; (*This is a big list of values, in a long vector form*)

\[CapitalLambda]x = {{0, 1, 0, 0, 0}, {1, 0, (Sqrt[6]/2),0, 0},
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{0, (Sqrt[6]/2), 0, (Sqrt[6]/2), 0}, {0, 0, (Sqrt[6]/2), 0,1}, {0, 0, 0, 1, 0}};

Lx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x.\[Psi][[i]], {i, 1,dim[[1]]}];

\[CapitalLambda]y ={{0, -I, 0, 0, 0}, {I, 0, -I (Sqrt[6]/2), 0, 0},

{0, I (Sqrt[6]/2), 0, -I (Sqrt[6]/2),0}, {0, 0, I (Sqrt[6]/2), 0, -I}, {0, 0, 0, I, 0}};

Ly = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y.\[Psi][[i]], {i, 1, dim[[1]]}];

\[CapitalLambda]x\[CapitalLambda]y = \[CapitalLambda]x.\[CapitalLambda]y;

LxLy = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]x\[CapitalLambda]y.\[Psi][[i]], {i, 1,dim[[1]]}];

\[CapitalLambda]y\[CapitalLambda]x = \[CapitalLambda]y.\[CapitalLambda]x;

LyLx = Table[\[Psi]\[Dagger][[i]].\[CapitalLambda]y\[CapitalLambda]x.\[Psi][[i]], {i, 1,dim[[1]]}];

Com = LxLy - LyLx;

ACom = LxLy + LyLx;

Robertson = Flatten[Sqrt[(1/(2*I)*Com)^2], 2];

Schrodinger = Flatten[Sqrt[(1/2*ACom - Lx*Ly)^2 + (1/(2*I)*Com)^2], 2];

dir[theta_, phi_] := {Sin[theta]*Cos[phi], Sin[theta]*Sin[phi],Cos[theta]}

sphereValues = Flatten[Table[dir[\[Theta], \[Phi]], {\[Theta], 0.0, Pi, Pi/h},

{\[Phi], 0.0,2*Pi, 2*Pi/h}], 1];

ListSurfacePlot3D[Chop[sphereValues*Robertson], MaxPlotPoints -> m]

ListSurfacePlot3D[Chop[sphereValues*Schrodinger], MaxPlotPoints -> m]



72 Chapter B Mathematica Code for Numerical Spin Eigenvalues and Eigenvectors



Appendix C

Mathematica Code for Numerical

Calculations of Fidelity via

Operator Norms

The following code is for when the quantum gate U is the Hadmard gate. The code

for when U is one of the two other U ’s is exactly the same except U and U † are

replaced with the particular U instead.

Clear["‘*"]

c1 = 1/2;(*Eigenvalue*)h = 6.4;(*Step Size: Memory is exhausted at step size of 6.4*)

\[Sigma]x = {{0, 1}, {1,0}}; \[Sigma]y = {{0, -I}, {I, 0}}; \[Sigma]z = {{1, 0}, {0, -1}};

\[Sigma] = {\[Sigma]x, \[Sigma]y, \[Sigma]z};

u = {Sin[\[Theta]] Cos[\[Phi]], Sin[\[Theta]] Sin[\[Phi]], Cos[\[Theta]]};

l = {Sin[\[Omega]] Cos[\[Chi]],Sin[\[Omega]] Sin[\[Chi]], Cos[\[Omega]]};

Ls = c1*l.\[Sigma];

U = 1/Sqrt[2] {{1, 1}, {1, -1}}; U\[Dagger] = 1/Sqrt[2] {{1, 1}, {1, -1}};

Us = E^(I*\[Zeta]) (Cos[\[Xi]/2]*IdentityMatrix[2] + I*Sin[\[Xi]/2] (u.\[Sigma]));

Us\[Dagger] = E^(-I*\[Zeta]) (Cos[\[Xi]/2]*IdentityMatrix[2] - I*Sin[\[Xi]/2] (u.\[Sigma]));

73



74
Chapter C Mathematica Code for Numerical Calculations of Fidelity via Operator

Norms

Ddi = U\[Dagger].Ls.U - Us\[Dagger].Ls.Us;

Flatten[Chop[Table[Ls, {\[Theta], 0, Pi, Pi/h}, {\[Phi], 0, 2 Pi, 2 Pi/h},

{\[Omega], 0, Pi, Pi/h}, {\[Chi], 0, 2 Pi, 2 Pi/h}, {\[Xi], 0, Pi, Pi/h}, {\[Zeta], 0, 2 Pi, 2 Pi/h}]], 5];

dimLs = Dimensions[%];

Table[Eigenvalues[Transpose[%%[[i]]].%%[[i]]], {i, 1, dimLs[[1]]}];

LsV = Sqrt[Max[Re[%]]];(*Ls is 0.5*)

Flatten[Chop[Table[Ddi, {\[Theta], 0, Pi, Pi/h}, {\[Phi], 0, 2 Pi,2 Pi/h},

{\[Omega], 0, Pi, Pi/h}, {\[Chi], 0, 2 Pi,2 Pi/h}, {\[Xi], 0, Pi, Pi/h}, {\[Zeta], 0, 2 Pi, 2 Pi/h}]], 5];

dimDd = Dimensions[%];

Table[Eigenvalues[Transpose[%%[[i]]].%%[[i]]], {i, 1, dimDd[[1]]}];

DdV = Sqrt[ Max[Re[%]]] ;

Comi = -Us\[Dagger].Ls.Us.Ls + Ls.Us\[Dagger].Ls.Us;

Flatten[Chop[Table[Comi, {\[Theta], 0, Pi, Pi/h}, {\[Phi], 0, 2 Pi, 2 Pi/h},

{\[Omega], 0, Pi, Pi/h}, {\[Chi], 0, 2 Pi, 2 Pi/h}, {\[Xi], 0, Pi, Pi/h}, {\[Zeta], 0, 2 Pi, 2 Pi/h}]], 5];

dimCom = Dimensions[%];

Table[Eigenvalues[Transpose[%%[[i]]].%%[[i]]], {i, 1, dimCom[[1]]}];

Com = Sqrt[Max[Re[%]]];

AComi = U\[Dagger].Ls.U.Ls - Us\[Dagger].Ls.Us.Ls +Ls.U\[Dagger].Ls.U + Ls.Us\[Dagger].Ls.Us;

Flatten[Chop[Table[AComi, {\[Theta], 0, Pi, Pi/h}, {\[Phi], 0, 2 Pi, 2 Pi/h},

{\[Omega], 0, Pi, Pi/h}, {\[Chi], 0, 2 Pi, 2 Pi/h}, {\[Xi], 0, Pi, Pi/h}, {\[Zeta], 0, 2 Pi, 2 Pi/h}]], 5];

dimACom = Dimensions[%];

Table[Eigenvalues[Transpose[%%[[i]]].%%[[i]]], {i, 1, dimACom[[1]]}];

ACom = Sqrt[ Max[Re[%]]];

Rob = Sqrt[1 - (1/(4 c1^2)) ((1/(2) Com)^2)]

Schrod = Sqrt[ 1 - (1/(4 c1^2)) ((1/(2) Com)^2 + (1/2 ACom - DdV*LsV)^2)]



Index

angular momentum matrices, 61

Bloch sphere, 9, 18, 42

conservation law, 4, 8, 44, 45, 47
covariance, 14

density operator, 17, 18, 35, 50
deviation operator, 45–47

fidelity, 9, 42–45, 47, 49, 52, 59

Hawking, 2
Heisenberg, 2, 14
Heisenberg uncertainty principle, 2, 3, 13

incompatible observables, 46

orbital angular momentum, 4–7

Planck, 2
polarization, 18

Robertson uncertainty relation, 3, 4, 13,
14, 25, 30, 35, 38, 46, 59

Schrödinger uncertainty relation, 3, 4, 8,
14, 16, 19, 22, 25, 30, 35, 38, 44,
46, 47, 50, 59

Schwarz inequality, 15, 19, 22
spin, 4–7, 18, 25, 32, 33, 50, 63

trace, 17

Weyl, 3, 13, 22
Wigner-Araki-Yanase theorem, 44–46

75



76 INDEX



Bibliography
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[6] W. Heisenberg, “Über die Grundprinzipien der Quantenmechanik,” Forsch.
Fortschr. 3, 83 (1927).

[7] Quantum Theory and Measurement, 1st ed., J. A. Wheeler and W. H. Zurek,
eds., (Princeton U.P., Princeton, N.J., 1983).

[8] A. Whitaker, Einstein, Bohr and the Quantum Dilemma (Cambridge U.P., Cam-
bridge, UK, 2006).

[9] D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Pearson, New Jer-
sey, 2005).

[10] S. Hawking, The Universe in a Nutshell (Bantam, Princeton, N.J., 2002).

[11] M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum,” Ann.
Phys. 309, 553–563 (1901).

[12] H. Weyl, Gruppentheorie Und Quantenmechanik (Hirzel, Leipzig, 1928).

[13] D. Lindley, Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the
Soul of Science, 1st ed. (Doubleday, New York, N.Y., 2007).

77



78 BIBLIOGRAPHY

[14] W. C. Price, S. S. Chissick, and W. Heisenberg, The Uncertainty Principle and
Foundations of Quantum Mechanics: A Fifty Years Survey, 1st ed. (Wiley, New
York, N.Y., 1977).

[15] NASA/JPL-Caltech, “PIA12505: Probing Exoplanets From the Ground,” http:
//photojournal.jpl.nasa.gov/catalog/PIA12505 (Accessed 8 April 2010).

[16] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).

[17] E. Knill, “Quantum computing with realistically noisy devices,” Nature 434,
39–44 (2005).

[18] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information
(Cambridge U.P., Cambridge, 2000).

[19] E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York, 1998).

[20] A. Angelow, “Evolution of Schrödinger Uncertainty Relation in Quantum Me-
chanics,” NeuroQuantology 7, 325–331 (2009).

[21] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics
and Engineering, 3rd ed. (Cambridge U.P., Cambridge, UK, 2006).

[22] M. B. Mensky, Quantum Measurements and Decoherence: Models and Phe-
nomenology (Kluwer, Dordrecht, Netherlands, 2000).

[23] L. Ballentine, Quantum Mechanics (World Scientific, Singapore, 1998).

[24] A. Angelow and M. Batoni, “Translation with Annotation of the Original Paper
of Erwin Schrödinger (1930) in English,” Bulg. J. Phys. 26, 193–203 (1999).

[25] E. P. Wigner, Z. Phys. 133, 101 (1952).

[26] H. Araki and M. M. Yanase, “Measurement of Quantum Mechanical Operators,”
Phys. Rev. 120, 622–626 (1960).

[27] M. Ozawa, “Conservative Quantum Computing,” Phys. Rev. Lett. 89, 057902
(2002).

[28] M. Ozawa, “Uncertainty Principle For Quantum Instruments and Computing,”
Int. J. Quant. Inf. 1, 569–588 (2003).

[29] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on
entanglement purification,” Phys. Rev. A 59, 169–181 (1999).

[30] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum
computation with linear optics,” Nature 409, 46–52 (2001).

http://photojournal.jpl.nasa.gov/catalog/PIA12505
http://photojournal.jpl.nasa.gov/catalog/PIA12505
http://photojournal.jpl.nasa.gov/catalog/PIA12505
http://photojournal.jpl.nasa.gov/catalog/PIA12505


BIBLIOGRAPHY 79

[31] R. L. Liboff, Introductory Quantum Mechanics, 4th ed. (Addison Wesley, San
Francisco, 2003).


	Title Page
	Copyright
	Department Approval
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Quantum Uncertainty
	1.2 Spin Systems
	1.2.1 Classical and Quantum Spin
	1.2.2 Quantum Angular Momentum Operators
	1.2.3 Quantum States

	1.3 Quantum Computing
	1.3.1 Limitations
	1.3.2 Qubit States
	1.3.3 Thesis Overview


	2 Uncertainty Derivations
	2.1 Heisenberg and Robertson Uncertainty Relations
	2.2 Schrödinger Uncertainty Relation
	2.3 Uncertainty for Mixed States
	2.3.1 Mixed States, the Density Operator, and Uncertainty
	2.3.2 Schrödinger Uncertainty Relation For Mixed States

	2.4 Discussion of Uncertainty and Uncertainty Relations

	3 Uncertainty Data
	3.1 Uncertainty in One Dimension
	3.1.1 The Infinite Square Well
	3.1.2 The Harmonic Oscillator
	3.1.3 The Free-Particle Wave Packet

	3.2 Discussion of One-Dimensional Data
	3.3 Uncertainty for Angular Momentum
	3.3.1 Spin-1/2 Uncertainty
	3.3.2 Angular Momentum Uncertainty
	3.3.3 Spin Mixed State Uncertainty

	3.4 Discussion of Angular Momentum Data

	4 Fidelity Analysis
	4.1 Quantum Gate Fidelity Derivation
	4.1.1 Quantum Gates
	4.1.2 Gate Fidelity

	4.2 Conservation Laws and Gate Fidelity
	4.3 Fidelity Employing the Schrödinger Uncertainty Relation

	5 Fidelity Data
	5.1 Calculating Fidelity
	5.2 Fidelity in Three Specific Cases
	5.3 Discussion of Fidelity Data

	6 Conclusions
	A Angular Momentum Matrices
	B Mathematica Code for Numerical Spin Eigenvalues and Eigenvectors
	B.1 Code for J(1)r
	B.2 Code for J(3/2)r
	B.3 Code for J(2)r

	C Mathematica Code for Numerical Calculations of Fidelity via Operator Norms
	Index
	Bibliography

