
CALCULATING THE SAMPLING CONE GAS FLOW IN AN

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER

by

Daniel E. Wilcox

A senior thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics and Astronomy

Brigham Young University

March 2009





Copyright c© 2009 Daniel E. Wilcox

All Rights Reserved





BRIGHAM YOUNG UNIVERSITY

DEPARTMENT APPROVAL

of a senior thesis submitted by

Daniel E. Wilcox

This thesis has been reviewed by the research advisor, research coordinator,
and department chair and has been found to be satisfactory.

Date Ross L. Spencer, Advisor

Date Eric Hintz, Research Coordinator

Date Ross L. Spencer, Chair





ABSTRACT

CALCULATING THE SAMPLING CONE GAS FLOW IN AN

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER

Daniel E. Wilcox

Department of Physics and Astronomy

Bachelor of Science

Inductively coupled plasma mass spectrometers contain a sampling cone which

accelerates an atmospheric-pressure gas to supersonic speeds. Calculating the

flow properties as the gas passes through the cone is challenging because of

the difficulty in specifying upstream boundary conditions and because the

gas exhibits non-ideal effects as it passes through the cone. To calculate the

flow, the Direct Simulation Monte Carlo algorithm was used on the BYU

supercomputing cluster using about 200 processors and 600 million simulation

particles with a three-week calculation time. Carefully crafted velocity and

temperature boundary conditions were necessary. Evidence is presented that

the calculated flowfield is a good solution to the problem.
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Chapter 1

Introduction

Inductively coupled plasma mass spectrometers (ICPs) have a hollow ‘sampling cone’

with atmospheric pressure conditions outside the cone and low vacuum conditions in-

side (see Figure B.1). The cone has a nozzle at its apex through which gas accelerates

to supersonic speeds and low number densities. Non-ideal effects are observed such as

viscosity and heat conduction, which prevent the use of simple fluid-flow calculation

methods. (DSMC) was chosen as the computational method to simulate the gas.

DSMC is a stochastic method for finding solutions to the Boltzmann equation,

which describes the flow of gases. DSMC is a particle-based technique that is valid for

all mean free path lengths significantly longer than the molecular diameter. It uses

enormously fewer computational resources than Molecular Dynamics (MD), which

attempts to simulate every atom. DSMC is more completely described in Appendix

A. If the reader is not familiar with DSMC, it is strongly recommended that Appendix

A be read before continuing.

The Navier-Stokes equations—which describe non-ideal fluid flow when the fluids

can be considered continuous—could have been used to calculate the upstream flow

properties, but they were not used for several reasons. First, writing software to solve

1



2 Chapter 1 Introduction

the Navier-Stokes equations is difficult because of the equations’ non-linearity. While

a commercial or open-source computational fluid dynamics software package could

have been used, these packages are still very difficult to use.

Second, providing adequate boundary conditions for solving the Navier-Stokes

equations is challenging because slightly inconsistent boundary conditions can make

the equations yield no answer. It often takes a very long time to craft boundary

conditions for these equations.

Finally, in the future we will perform calculations downstream of the sampling

cone which will feature non-continuum effects, requiring a technique like DSMC. It

was thought wise to use DSMC upstream as well, where the software could be tested

by seeing if its results satisfy the Navier-Stokes equations.

1.1 Complete specification of the situation

Upstream of the sampling cone, an inductively coupled argon plasma is generated at

atmospheric pressure. The plasma has a low ionization rate but very high temperature

(4000-6000K). A fine mist of the desired sample is injected into the plasma, almost

completely ionizing the sample. As the plasma flows toward the sampling cone, the

majority splashes against the cone; the remainder is sucked through the nozzle and

accelerated to supersonic speed. After flowing through the nozzle, part of the low-

density supersonic flow is sent to the mass spectrometer.

The purpose of the calculation described in this thesis is to characterize the flow

through the sampling cone before it goes on to the rest of the mass spectrometer.
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1.2 Assumptions to enable calculating the flow

Due to the difficulty of calculating the flow, assumptions were made to simplify the

calculation:

• The flow is rotationally symmetric, allowing us to reduce the problem to two

dimensions (cylindrical coordinates)

• The inductively coupled plasma has a low ionization rate so plasma effects are

negligible

• The gas is nearly pure argon so the sample ions do not affect gas flow

• The flow rate is a uniform +20 m/s toward the sampling cone far upstream of

the cone

• The upstream flow pressure is 105 Pa, approximately atmospheric pressure

• The upstream velocity boundary conditions (outside the cone) do not need to

be exact, because flow through the cone’s nozzle mainly depends on upstream

pressure and temperature

• The downstream boundary conditions (inside the cone) can be approximated

by true vacuum since the flow through the sampling cone nozzle is supersonic,

so it has no dependence on downstream conditions

• The sampling cone has a uniform temperature of 1500 K



4 Chapter 1 Introduction



Chapter 2

Methods

Graeme Bird [2] provides a free DSMC program named DS2V, which provides a

graphical user interface for setting up the problem of interest and calculating flows

(http://www.aeromech.usyd.edu.au/dsmc gab/). However, his software is not usable

for our problem for two reasons. First, his software does not allow complex enough

boundary conditions for our problem. Only the most simple boundary conditions

are possible; very complex boundary conditions are required to avoid needing an

unreasonably large computation region.

Second, Bird’s software is not parallel and our problem is large enough that sev-

eral hundred million particles are needed, requiring approximately 40GB of memory.

Because so many particles are needed, computation time becomes intractable unless

one or two hundred processors work on the simulation simultaneously.

2.1 FENIX

Due to the limitations of Bird’s software, a new DSMC program named FENIX was

developed. FENIX performs three-dimensional DSMC over a thin cylindrical wedge,

5
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6 Chapter 2 Methods

r z

8.23134 mm 4.152 mm

6.0204 mm 0.520384 mm

6.5394 mm 0.520384 mm

6.5394 mm 0.887144 mm

8.891508 mm 4.152 mm

Table 2.1 Vertices of the polygon used to represent the sampling cone, mea-
sured from the lower-left corner of the simulation

making it essentially two-dimensional DMSC. It uses the variable soft sphere collision

model. It allows arbitrary boundary conditions, including ones that ‘adapt’ to the

flow. Surface interactions can be any combination of the specular reflection and

thermalization models. Refer to Appendix A for the definition of these terms.

2.2 General information for this simulation

This simulation used 220 processors and 600 million simulated particles. All surface

interactions with the sampling cone were modeled with full thermalization, at 1500 K.

For those familiar with the internals of FENIX, the number of real particles per

unit simulated particle (Nef ) was 1.690 × 105. The extent of the simulation was

4.152 mm in r, 8.9268 mm in z, and 0.001 radians around the cylindrical axis. The

polygon used to represent the sampling cone had vertices as specified in table 2.1.

The variable soft sphere (VSS) collision model dictates

σ(θ) =
αAv−2ν

r

4π

[

cos2(θ/2)
]α−1

(2.1)

as its differential collision cross-section [5], where vr is the relative speed of the

colliding particles, θ the center-of-mass scattering angle, and α, ν, and A are the
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VSS parameters. The chosen parameters were α = 1.66, ν = 0.22, and A =

7.924 × 10−18 m2.44/s0.44, as described by Spencer [5].

2.3 Introduction to the boundary conditions

It is observed that the flow upstream from the sampling cone is a combination of

splash flow and sink flow: some of the gas splashes against the sampling cone and the

rest is sucked through the nozzle. We modeled this flow as the sum of an analytical

splash flow and an analytical sink flow. Since solving the Euler or Navier-Stokes equa-

tions for the analytical form of the splash and sink flows is difficult—especially when

including the boundary layers near the sampling cone surface—we developed a set of

approximate formulas for the flow. These formulas have the following structure: there

are relatively simple components that describe the splash and sink flows, multiplied

by ‘adjustment’ formulas that describe the boundary layers and the upstream tem-

perature profile. We are confident that the inaccuracies in our boundary conditions

do not significantly affect the flow through the nozzle because we have performed

this calculation using a wide range of boundary conditions which all yielded the same

flowfield through the sampling nozzle.

There are two main purposes of having these complicated boundary conditions.

First, we would like the calculated flow to be accurate for more than just the nozzle:

at some point we will be including more effects in our calculations, and we need to

know that the flow is fairly accurate for a few millimeters away from the nozzle.

Second, comparing the nozzle flow with these complicated boundary conditions to

nozzle flow with simple boundary conditions gives us confidence that the nozzle flow

does not depend on boundary conditions.

Both the splash flow and the sink flow formulas we developed are approximate,
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but they behave the way they intuitively should. The formulas were constrained to

yield the correct flux through the boundaries, which allows a self-consistent steady

state to occur.

The remaining boundary is downstream of the nozzle. The condition for this

boundary was much simpler: particles that cross that boundary are simply allowed

to leave.

2.4 Complete description of the upstream bound-

ary conditions

Several features needed to be included in the sink and splash flow formulas:

• There is a temperature boundary layer close to the cone—the temperature goes

down and the number density goes up as the gas approaches the sampling cone

• There is a velocity boundary layer close to the cone—the speed decreases and

approaches zero as the gas approaches the sampling cone

• There is a constant-pressure flow far upstream of the sampling cone in the +z

direction at a uniform 20 m/s

• A temperature profile is possible at this far upstream position that is only a

function of the distance from the axis

• The upstream reference number density is n0 = 1.45 × 1024 m−3, and the up-

stream stagnation temperature is T0 = 5000 K

We define several variables as depicted in Figure B.2. The origin from which these

variables are measured is the theoretical apex of the sampling cone, as if the nozzle
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weren’t there. z0 is the location of the zmin boundary of the simulation (it is negative).

r0 is the location of the rmax boundary of the simulation. At a given point, r is the

distance from that point to the z axis, z is the Euclidean z-coordinate, θ is the angle

about origin (the theoretical cone apex) measured from the −z axis, R is the vector

from the origin to that point, and R is the magnitude of that vector. α—a different

α than the symbol used in the variable soft sphere collision model—is the angle of

the sampling cone from its axis to its surface. θ0 = π − α is the maximum value of

θ the gas can have (upstream of the nozzle). zc = r0/ tan α is the intersection of the

cone with the rmax boundary of the simulation. φ is a flow angle; it only applies to

the splash-flow formulas and represents the angle of the splash flow at a given point

in space with respect to the +z axis.

2.4.1 Splash flow

The basic splash flow formula is composed of two parts: a flow angle part and a flow

speed part. The flow angle φ is given below:

φ(θ) = α

(

θ

θ0

)2

(2.2)

The flow speed v is given by:

v(splash)(r, θ) = v0

(

1 − a

(

θ

θ0

)2
)

H(θ) (2.3)

where v0 ≈ 20 m/s such that v0 + v(sink) = 20 m/s at (r, z) = (0, z0). A formula for

v(sink)—the portion of the upstream flow speed due to sink flow—will be provided

later in this paper. Observe that φ approaches α as the flow approaches the sampling

cone. a is an adjustable parameter to allow the flux of the splash flow through the

simulation boundaries to be zero. A formula to find a will be derived a few paragraphs

down. Note the presence of the function H(θ). It is an approximate function that
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models how the speed decreases as the gas approaches the sampling cone—it models

the velocity boundary layer near the sampling cone. It will be defined in Section

2.4.3.

Combining φ and v(splash) yields

v(splash)
z = v0

[

1 − a

(

θ

θ0

)2
]

H(θ) cos φ (2.4)

and

v(splash)
r = v0

[

1 − a

(

θ

θ0

)2
]

H(θ) sin φ (2.5)

To find a, observe that the flux through the zmin boundary due to splash flow is

given by

Γb = 2πv0

[

∫ r0

0

n0M(r) cos φrdr − a

∫ r0

0

n0M(r) cos φ

(

θ

θ0

)2

rdr

]

(2.6)

where n0M(r) is the number density on the zmin boundary as defined in Section

2.4.3. The above equation is only true since H(θ) ≈ 1 on the zmin boundary. The

flux through the rmax boundary due to splash flow is given by

Γt = 2πv0r0

[

∫ z0

zc

nt(θ)H(θ) sin φdz − a

∫ z0

zc

nt(θ)H(θ) sin φ

(

θ

θ0

)2

dz

]

(2.7)

where nt(θ) is an adjustment function that describes how the number density increases

in the temperature boundary layer, and is defined in Section 2.4.3. Requiring the two

fluxes to be the same—requiring that the splash flow not yield any flux through the

nozzle—yields the following expression for a:

a =

∫ r0

0

n0M(r) cos φrdr + r0

∫ z0

zc

nt(θ)H(θ) sin φdz

∫ r0

0

n0M(r) cos φ

(

θ

θ0

)2

rdr + r0

∫ z0

zc

nt(θ)H(θ) sin φ

(

θ

θ0

)2

dz

(2.8)

The value of this expression is determined by numeric integration. Determining a

ensures that the splash flow does not contribute to any flow through the nozzle.
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2.4.2 Sink flow

The basic sink flow formula is simple:

v(sink) = − S

R2
H(θ)R̂ (2.9)

which is similar to the formula for ideal incompressible spherical sink flow. S is a

constant that reflects how much flow goes through the nozzle. S can be found by

noting that the particle flux through the nozzle is given by

dN

dt
= Gn0CsD

2 (2.10)

according to ideal duct theory [4], but where G = 0.38 is a modified duct flow constant

found by Spencer et al [5]. n0 = n0M(0.0) is the upstream stagnation number density,

Cs =
√

5kBT0/3m is the speed of sound, and D = 2×0.519 mm is the nozzle diameter.

M(r) is a zmin number density profile defined in Section 2.4.3. Since the splash flow

contributes no flux through the nozzle, the particle flux through the nozzle is also

given by

dN

dt
= 2πS

∫ θ0

0

n0M(z0 sin θ)H(θ) sin θdθ (2.11)

so long as θ0 is not much greater than π/2. Equating the two formulas for dN/dt

leads to the following formula for S:

S =
Gn0CsD

2

2π
∫ θ0

0
n0M(z0 sin θ)H(θ) sin θdθ

(2.12)

which can be numerically solved once H(θ) and M(r) are specified.

2.4.3 Definition of the adjustment functions

The velocity boundary layer adjustment function H(θ) was defined as

H(θ) = erf (β1k(θ0 − θ)) (2.13)
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where k =
√

v0 ∗ 10−3/ν and β1 = 0.6 is a dimensionless parameter for adjusting

the thickness of the velocity boundary layer. ν is a different ν than the symbol used

in the collision model; it is the kinematic viscosity and is given by Macrossan and

Lilley [8] as

ν =
3.758 × 10−7

mn0

T 0.72
0 (2.14)

where m is the atomic mass of argon and n0 and T0 are in SI units.

This definition of k yields a circular dependency: k depends on v0, S depends on

k, and v0 depends on S. An iterative scheme was used to find (v0, k, S) such that k

and S are correct relative to v0, and v0 + v(sink) = 20 m/s at (r, z) = (0, z0).

To model the temperature boundary layer, a function T (θ) was defined that models

how the temperature decreases as the gas approaches the sampling cone:

T (θ) = Ts + (T0 − Ts) erf (β2k(θ0 − θ)) (2.15)

where Ts = 1500 K is the temperature of the sampling cone and β2 = 1.2 is a second

dimensionless parameter for adjusting the thickness of the temperature boundary

layer.

Due to the constant-pressure boundary condition, the temperature boundary layer

also yields a number density boundary layer: nt(θ) is given by:

nt(θ) = n0
T0

T (θ)
(2.16)

Finally, the temperature profile at zmin is represented as a number density profile

M(r) which goes to 1 at r0. As such, it is a fractional number density profile. In

other words, the number density at zmin is given by n0M(r) and the temperature at

zmin is given by P/(n0M(r)kB) where P = 105 Pa is the upstream pressure. For this

research, M(r) was defined to be 1 for all r.
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2.4.4 Summary of the boundary conditions

The total velocity boundary condition is given by the sum of the sink and splash

velocity terms: (vr, vz) = (−‖v(sink)‖ sin θ + v
(splash)
r , ‖v(sink)‖ cos θ + v

(splash)
z ).

The number density boundary condition at zmin is n0M(r), and at rmax is n0nt(θ).

The temperature boundary condition is P/(nkB) where n is given above by the

number density boundary condition, kB is the Boltzmann constant, and P = 105 Pa.
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Chapter 3

Results

3.1 General results

Figures B.3–B.17 summarize the flowfield.

The gas is at nearly constant pressure over the entire upstream region (Figure B.5),

except very close to the nozzle. This is the expected gas behavior. The streamlines

(Figure B.3) reveal a separatrix, showing some of the gas going into the nozzle and

the rest splashing against the sampling cone, as expected. The temperature (Figure

B.4) and velocity (Figure B.8) boundary layers are clearly visible, and exhibit little

or no pinching at the rmax boundary of the simulation. This required adjustment of

β1 and β2; the final values are as reported in Section 2.4.3.

Figures B.12–B.17 show what goes on inside the nozzle. There is a very large

acceleration through the nozzle, tempered by velocity boundary layers near the nozzle

surface. There are prominent temperature boundary layers near the nozzle surface

as well. The flow becomes supersonic (mach number equal to one) about halfway

through the nozzle: this is the expected result [6].

15
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3.2 DSMC conditions

DSMC has three main requirements for it to be valid (see Appendix A); each require-

ment is discussed below.

3.2.1 Requirement 1

The first requirement is that the mean molecular spacing must be much larger than the

molecular diameter. The highest mean molecular spacing happens near the sampling

cone, where T = 1500 K. There, n = 4.833× 1024 m−3 so the mean molecular spacing

is 5.914 × 10−9 m.

The average collision cross-section is 〈σ〉 = 0.749A/v2ν
th where A and ν are the VSS

paramters, and vth =
√

kBT/m. At 1500 K, 〈σ〉 = 3.67×10−19 m2 which corresponds

to an effective diameter of 3.42 × 10−10 m, which is much smaller than the mean

molecular spacing.

3.2.2 Requirement 2

The second requirement is that the mean distance between collision partners must

be much less than the mean free path. The mean distance between collision partners

is the mean distance between a simulated particle and its nearest neighbor, since

collisions only happen between nearest neighbors. This condition is most difficult to

satisfy on the axis. The mean free path is given by l = (
√

2〈σ〉n)−1, which is equal

to 1.73× 10−6 m on-axis since n = 1.45× 1024 and 〈σ〉 = 2.816× 10−19 m2 at 5000 K.

The mean collision separation is given by Equation A.10 to be n
−1/2
s /2, where ns

is the two-dimensional number density of the simulated particles. ns = 2πrwn/Nef ≈

8.577 × 1015 m−3 · r where w = 0.001 radians is the cylindrical wedge width, so the

radial distance at which the mean collision separation is one-third the mean free
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path is 8.8 × 10−5 m, which is about one sixth of the nozzle radius. While this may

seem significant, it is not for two reasons. First, the cross-sectional area in the x-

y plane of the invalid region is about one thirty-fifth of the cross-sectional area of

the sampling nozzle. Second, physically speaking the gradients in r of the number

density, temperature, pressure, and velocity must go to zero as r approaches zero.

Longer separations between collision partners just tends to force this condition a

little more strongly.

In the nozzle, T ≈ 3000 K and n ≈ 6 × 1023 m−3, so 〈σ〉 = 3.15 × 10−19 m2 and

the mean free path is about 3.74 × 10−6 m. On the other hand, the mean simulated

particle density decreases to ns ≈ 3.549× 1015 m−3 · r, so the radial distance at which

the mean collision separation is one-third the mean free path is 4.53×10−5 m—slightly

better than the upstream case and less than a tenth of the nozzle radius.

3.2.3 Requirement 3

The third requirement is that there must be enough particles per collision cell to

obtain good statistics. The collision cells that border the axis have the smallest

volume and therefore the fewest particles. On average, they have about 3.8 particles,

and all other collision cells have more than twice as many on average. In the nozzle

the number density is lower, about 6 × 1023 m−3, making the first collision cell have

about 1.6 particles, and the second collision cell about 3.6 particles. However, the

first collision cell only extends to r = 2.076 × 10−5 m, so the invalidity very close to

the axis is essentially negligible.
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3.3 Reasonableness of the boundary conditions

There are four different evidences that the boundary conditions we provided are

reasonable.

3.3.1 Evidence 1

The first evidence is that the total flux through the upstream simulation boundaries

equals the flux through the nozzle. In general, the particle flux through a surface S

is given by
∫

S

nv · dA (3.1)

where v is the flow velocity and n is the number density. Therefore, the particle flux

through the nozzle at a given position zf is given by

Φn =

∫ rn

0

n(r, zf )vz(r, zf )2πrdr (3.2)

where rn = 0.519 mm is the radius of the nozzle. Evaluating this integral numerically

via the midpoint rule at zf = 6.25914 mm yields Φn = 7.7459 × 1020 s−1. Refer to

Figures B.32 and B.34 for the relevant information.

The flux through the zmin boundary is given by a similar integral:

Φz =

∫ r0

0

n(r, z0)vz(r, z0)2πrdr (3.3)

which yields Φz = 1.5101 × 1021 s−1 when evaluated by the midpoint rule. Refer to

Figures B.20 and B.23.

The flux through the rmax boundary is given by a slightly different integral:

Φr =

∫ zc

z0

n(r0, z)vr(r0, z)2πr0dz (3.4)

which yields Φr = 7.2495 × 1020 s−1 when evaluated by the midpoint rule. Refer to

Figures B.26 and B.28.



3.3 Reasonableness of the boundary conditions 19

The flux through the upstream boundaries is therefore given by Φz − Φr. Evalu-

ating the supposed equality, Φz −Φr = Φn to within 0.352% of the total flux because

the difference between the two sides is 1.0601 × 1019 s−1. The fact that the flux in

through the boundaries is nearly identical to the flux through the nozzle is evidence

that the simulation has reached a steady-state solution.

3.3.2 Evidence 2

The second evidence that the boundary conditions are reasonable is that the flux

through the nozzle is the correct amount. In the boundary-condition specification

section, a ‘constant’ S was introduced, under the assumption that it is fairly inde-

pendent of upstream boundary conditions. This constant S was solved for by equating

two formulas for flux through the nozzle:

dN

dt
= Gn0CsD

2 = 2πS

∫ θ0

0

n0M(z0 sin θ)H(θ) sin θdθ (3.5)

This yields S = 6.912 × 10−5 m2/s, with the numerical result of these formulas for

flux through the nozzle yielding 7.8208× 1020. This result can be checked since there

is yet another way to calculate the flux through the nozzle once the simulation has

run: computing Φn as defined in Equation 3.2. The fact that Φn = 7.8208 × 1020 to

within 1% implies that it is reasonable to call S a constant, and to base the sink-

flow portion of the boundary conditions on S, especially when combined with the

other simulations that yielded identical flows through the nozzle independent of the

upstream velocity boundary conditions.

3.3.3 Evidence 3

The third evidence that the boundary conditions are reasonable is that the boundary

conditions are obeyed. As mentioned in Appendix A, DSMC finds a solution even
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if the boundary conditions are inconsistent. In a sense, it modifies the boundary

conditions to find a solution.

Observe Figures B.18 through B.23. They plot the requested zmin boundary con-

dition against the computed zmin boundary characteristics. Figures B.24 through

B.29 plot the same quantities along the rmax boundary. The fact that the requested

boundary conditions agree extremely well with the computed boundary characteris-

tics implies that the provided boundary conditions were consistent, or nearly so.

3.3.4 Evidence 4

The final evidence that the computed solution is acceptable is that the boundary

conditions make sense. Upstream, the velocity is a nearly steady 20 m/s, as expected.

Figures B.4 and B.8 reveal the computed temperature and velocity boundary layers

near the sampling cone. Notice their contours go smoothly into the boundary without

bending. This is evidence that the fudge factors and the boundary layer terms in the

boundary conditions adequately approximate the boundary layers. While the velocity

boundary layer contours do not go into the boundary as smoothly as the temperature

boundary layer contours, this is acceptable because the discrepancies are on the order

of a few m/s, while the flow through the nozzle is approximately 1500 m/s.

In fact, it is remarkable that DSMC is providing any sort of velocity resolution at

all at the 1 m/s scale. The thermal velocities of the particles are
√

kbT/m ≈ 1000 m/s,

requiring about 106 samples in a given location to provide velocity resolution at the

1 m/s scale for that location.
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Conclusions

4.1 Significance

These results do not directly affect the design of an ICP very much. However, these

results enable other very important calculations: downstream calculations and trace

element flow calculations.

4.1.1 Downstream calculations

By carefully observing the flow through the nozzle, very good upstream boundary

conditions can be generated for downstream simulations. In other words, there is

more gas-flow apparatus that needs simulating which is downstream of the sampling

nozzle, and the upstream simulation allows a near-exact upstream boundary condition

for the downstream simulation. These downstream simulations can more directly

affect the design of an ICP.

To use the upstream simulation as an upstream boundary condition for a down-

stream simulation, the code is modified to store positions and velocities of particles

as they cross a plane in the nozzle. These particles are then fed into the sampling

21
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nozzle boundary of the downstream simulation.

4.1.2 Trace element flow calculations

Although the sample ions do not affect the argon flow much, the argon flowfield affects

the sample ion flow and the sample ion diffusion rate. Applying elementary kinetic

theory to the sample ion flow neglecting ion-ion interactions yields a fairly simple

partial differential equation for ion flow which is valid for most of the upstream region

(everywhere the continuum fluid equations are valid).

It is also possible to use DSMC directly on the particle ions to compute the ion

flow. This requires the collision model to be modified so the ions stochastically collide

with the pre-computed argon flowfield instead of with each other.

The trace element flow calculations are important for the design of an ICP since

the nozzle size and shape affects how the trace elements flow, and a major design goal

of any mass spectrometer is to accelerate as much of the sample as possible and get

it to the parts of the machine that actually measure mass.

4.2 Further Work

There are several computations that need to succeed this one. The downstream region

is the obvious example, using the results of the nozzle flow from this computation

for the upstream boundary condition. Also, trace-element flow calculations need to

be done. Finally, work can be done to include more effects in the simulation. For

example, as the argon comes out of the inductively coupled plasma source, the argon

spins slightly about the axis. Further, it may be possible to include some plasma

effects in the simulation, especially near the nozzle where they are more likely to

affect the outcome.
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Appendix A

A Description of DSMC

DSMC [2] is a method invented by Graeme Bird to compute rarefied gas flows. It is a

time-stepping particle-based method that models collisions stochastically, and decou-

ples particle movement from collisions. This method does not attempt to simulate

every gas particle, but it simulates ‘representative’ gas particles. Each simulated par-

ticle ‘represents’ some number Nef ∼ 105–109 of physical particles. DSMC is accurate

for all mean free paths λ ≫ d where d is the molecular diameter [9], provided enough

particles are used to make the mean separation between collision partners much less

than the mean free path [3]. Further, DSMC automatically includes viscous and heat

conduction effects.

DSMC has two phases, which are cycled through alternately. In the first phase,

particles are not allowed to collide, but are moved a displacement τv, where τ is a

time step somewhat less than the mean time between collisions and v is the given

particle’s velocity. In the second phase, particles do not move, but are allowed to

‘collide’ with their nearest neighbors in a fashion that conserves energy and linear

momentum, thus giving random new velocities to the particles. Collisions between

particles of high relative velocities are favored, since in a real gas collisions between

25
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particles of high relative velocity are more likely than collisions between particles of

low relative velocity.

Particles are sorted into ‘collision cells,’ which are small spatial regions much

smaller in extent than a mean free path. Collisions are only allowed to happen between

particles in the same collision cell. Collisions are two-body; three-body collisions are

not allowed. Each time step, a certain number of ‘candidate collisions’ are evaluated

in each collision cell. The number of candidate collisions in a particular cell is a

function of the size of the particles, τ , the number of particles in the cell, the volume

of the cell, and how many real particles each representative particle represents. For

each candidate collision, a random particle in the cell is selected, and the nearest

neighbor of that particle within the collision cell is termed its ‘collision partner.’

Each candidate collision is stochastically accepted or rejected, with the probability of

acceptance dependent on relative velocity, the size of the particles, and the collision

model (see below). If a candidate collision is accepted, new velocities are assigned to

the particles, in a manner that assigns random velocities but conserves energy and

linear momentum.

A.1 Validity

DSMC requires several assumptions to be valid for it to be applicable [9]:

• The mean molecular spacing must be much larger than the molecular diameter

• The mean simulated collision separation must be much less than the mean free

path [3]

• There must be enough particles per collision cell to obtain good statistics
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The number of particles per collision cell doesn’t need to be very high for a tolerable

level of statistics; Bird claims that five to ten simulated molecules per collision cell is

adequate when using nearest-neighbor collision models [3].

Notice that the mean molecular spacing is related to but not the same as the mean

simulated collision separation. The mean molecular spacing is simply n−1/3, where n

is the number density. However, the mean simulated collision separation is talking

about representative particles, and is somewhat lower than the mean spacing between

representative particles since only collisions between nearest neighbors are allowed.

The distribution of the mean simulated collision separation is derived below.

According to Santos [10], the distribution of the distance to a particle’s nearest

neighbor in a three-dimensional gas is

f3(r) = 4πr2n exp

(

−4

3
πr3n

)

(A.1)

which has a mean value of

1

9

35/6π2/3

21/3Γ(2/3)
n−1/3 (A.2)

which is approximately 0.554n−1/3.

Referring to the derivation given by Santos, if N evenly-distributed particles are

in a large box of size V the probability of having K particles within a distance r of

some point inside the box is

p(K) =

(

N

K

)(

4

3
πr3 1

V

)K (

1 − 4

3
πr3 1

V

)N−K

(A.3)

as given by the binomial distribution. The probability that no particles occur (K = 0)

in this region of radius r is the same as one minus the probability that a particle does

occur in that region:

1 −
∫ r

0

f3(r
′)dr′ =

(

1 − 4

3
πr3 1

V

)N

(A.4)
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Taking the limit N → ∞ while fixing n = N/V yields

1 −
∫ r

0

f3(r
′)dr′ = exp

(

−4

3
πr3n

)

(A.5)

Differentiating both sides with respect to r yields f3(r) as given above. Extending

this technique to two-dimensional gases (N evenly-distributed particles over an area

A) yields

p(K) =

(

N

K

)(

πr2

A

)K (

1 − πr2

A

)N−K

(A.6)

so

1 −
∫ r

0

f2(r
′)dr′ =

(

1 − πr2

A

)N

(A.7)

Taking the limit N → ∞ while fixing the two-dimensional number density n2 = N/A

yields

1 −
∫ r

0

f2(r
′)dr′ = exp

(

−πr2n
)

(A.8)

Differentiating both sides yields

f2(r) = 2πrn2 exp
(

−πr2n2

)

(A.9)

which has mean value

1

2
n
−1/2
2 (A.10)

A.2 Collision Models

There are several different collision techniques (models) discussed here: hard sphere,

variable hard sphere, and variable soft sphere. They differ in the the probability that

a particular candidate collision is accepted and in the manner of assigning new ve-

locities to collision partners. In all cases, linear momentum and energy are conserved

by computing the center of mass velocity and the relative velocity of the collision

partners. The center of mass velocity and the magnitude of the relative velocity are

conserved, but the direction of the relative velocity is randomly reassigned [2].
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A.2.1 Hard Sphere

The hard sphere collision model dictates the cross section of candidate collisions to

not depend on the relative speed of the particles. In other words, the molecules

are all modeled by billiard balls with fixed mass and diameter. Once a collision is

accepted, the direction of relative velocity is randomly reassigned according to an

isotropic spherical distribution. This is the simplest model, but it usually cannot

properly account for the temperature dependence of viscosity, nor can it properly

describe diffusion [2].

A.2.2 Variable Hard Sphere

The variable hard sphere model allows for viscosity dependence on temperature by

altering the cross-section of a candidate collision to depend on the relative speed of

the particles. In this model, the molecules are modeled by billiard balls, but their size

is re-determined for each possible candidate collision according to the relative speed

of the molecules in question. However, the post-collision relative velocity direction

is still isotropically distributed. This model can allow viscosity to vary in a more

realistic fashion, but no improvements are made to alter the diffusion coefficients [2].

A.2.3 Variable Soft Sphere

The variable soft sphere model extends the variable hard sphere model by allowing

the post-collision velocity direction distribution to depend on the relative speed of

the particles. More precisely, the relative velocity direction change is pulled from

a distribution that is not isotropic, but depends on the original relative velocity

direction and speed. In this way, one can imagine that the dynamically growing and

shrinking billiard balls of the Variable Hard Sphere model are replaced by dynamically
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growing and shrinking soft foam balls. This model allows the diffusion coefficients to

be corrected in addition to viscosity [2]. Because of the additional accuracy, this is

the model we have chosen to use.

A.3 Boundary Conditions

Boundary conditions in DSMC are the mechanism for allowing particles to enter in at

the sides of the simulation. After all, particles are constantly leaving the simulation

due to the dynamic nature of gases, so a mechanism must be in place to allow particles

to enter the simulation in a way consistent with the problem of interest.

Boundary conditions can be implemented in DSMC by surrounding the simulation

region by ‘ghost cells’ full of particles. At each time step, during the moving phase,

particles in the ghost cells are allowed to migrate into the simulation region. Collisions

do not occur in ghost cells. At each time step, after the moving phase, all of the

particles in the ghost cells are removed, and are replaced with new particles according

to the desired distribution [1] [7]. Thus, DSMC allows the user to specify arbitrary

gas conditions.

It is entirely possible to specify inconsistent boundary conditions. For example,

one can specify constant flow outward from the simulation region, at atmospheric

pressure and temperature. However, this condition cannot be satisfied over any sig-

nificant period of time. Once the pressure in the simulation reaches somewhat less

than the boundary pressure, the flow into and the flow out from the simulation will

equalize. This will result in a compromise—DSMC will find a solution to the fluid

flow that approximates your boundary conditions, but will not actually follow the

boundary conditions, since the specified boundary conditions are inconsistent. In

this manner, DSMC may be termed ‘forgiving:’ it finds a solution to the fluid flow
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even if the specified boundary conditions are incorrect or inconsistent.

We observe that when DSMC disobeys the specified boundary conditions, veloc-

ity is the most affected quantity, but pressure and number density are also slightly

affected. Temperature tends to be the least disobeyed.

In order to create particles in the ghost cells, the user must specify number density,

temperature, and velocity (all three components of it) at every boundary position.

Velocities of the particles in the ghost cells are distributed according to the ‘drift-

ing’ local Maxwell-Boltzmann distribution. That is, at a particular location each

component vi of the velocities of the particles is independently distributed:

f(vi) =

√

m

2πkBT
exp

(

−1

2

m

kBT
(vi − vi0)

2

)

(A.11)

where kB is the Boltzmann constant, T is the local specified temperature, i ∈ {x, y, z},

and vi0 is the local specified flow velocity in the i direction. This makes the following

joint distribution of particles’ positions r and velocities v:

f(r,v) = n(r)

√

m

2πkBT (r)
exp

(

−1

2

m

kBT (r)
‖v − v0(r)‖2

)

(A.12)

where n(r is the specified number density as a function of position, T (r) is the specified

temperature as a function of position, and v0(r) is the specified flow velocity as a

function of position.

A.3.1 ‘Adaptive’ boundary conditions

Sometimes, a DSMC user knows certain aspects of a flow but not others. It is some-

times possible in DSMC to ‘adapt’ some of the boundary conditions to the flow as

it is happening. For example, maybe the pressure, temperature, and number density

are known, but not the flow velocity as a function of position. In some cases like this,

it may be possible to have the ghost cells be populated according to the known pres-

sure, temperature, and number density distribution, but use the flow velocity from
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the simulation region to specify that aspect of the gas distribution in the ghost cells.

To avoid instability, adaptive boundary conditions need to be averaged over a few

thousand time steps before updating. The larger the simulation region, the longer

the averaging period between adaptive updates needs to be.

A.3.2 Flux

When designing boundary conditions, it can be useful to keep in mind that the total

flux into and out of the simulation must be zero. This can help prevent instability in

adaptive boundary conditions, and can help ensure that the specified velocities are

obeyed, and that the specified pressures and number densities are obeyed.

A.4 Solid Interaction Models.

It is usually of interest in a fluid flow to have solid objects in the flow. There are

three models of solid interaction with fluid particles discussed here.

Specular Reflection

The first solid-interaction model is specular reflection. This model treats objects

as particle mirrors. If a particle hits an object, its velocity is just reflected off the

object like a mirror reflects light. This model does not allow an object to have a

temperature, and corresponds to a frictionless surface into which no heat can flow

(thermal insulation).

A.4.1 Thermalization

The second solid-interaction model is thermalization. This model allows objects to

have a temperature, and transmit temperature information to particles. This model
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treats an object surface as if it were a planar boundary with a reservoir of gas with

a perfect Maxwellian distribution of particles, at the specified object temperature.

Given this definition, when a particle hits an object, its velocity is randomly reas-

signed according to a distribution that is related to the Maxwell distribution. The

distribution of the particle’s new velocity is the distribution of velocities of particles

that cross an imaginary plane surrounded by a Maxwellian distribution of particles—

in one direction only. The parallel components of the distribution are identical to

that of a Maxwell distribution. The perpendicular component of the distribution is

proportional to the radial component of a two-dimensional Maxwell distribution.

A.4.2 Linear Combinations.

It is possible to define an interaction model as a linear combination of the specu-

lar and thermalization models. A combination model seems especially appropriate

in a rarefied gas situation, where a particle bouncing off an object may thermalize

somewhat, but may also specularly reflect somewhat. In this case, some parameter p

ranging from 0 to 1 could indicate how much of each model is being used.

A.4.3 Other Models.

Other models can also be envisioned. For example, several types of diffuse reflection

may be appropriate, depending on the roughness of the surface and if the surface

is more rough in some directions than others. An absorption model could also be

necessary, should the material be slightly porous or have an affinity for the gas. Since

these other models are not needed for our problem, they are not further discussed

here.
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Figure B.1 Diagram of the sampling cone
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Figure B.2 Diagram of the sampling cone with parameter labels



38 Chapter B Figures

0 2 4 6 8
0

1

2

3

4

Z (mm)

R
 (

m
m

)

Figure B.3 Streamlines of the gas flow
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Figure B.4 Temperature in K
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Figure B.5 Pressure in 104 Pa



41

Z (mm)

R
 (

m
m

)

 

 

0 2 4 6 8
0

1

2

3

4

1 2 3 4

Figure B.6 Number density in 1024 m−3
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Figure B.7 Flow speed in m/s
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Figure B.8 Flow speed in m/s (slow-moving gas only)
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Figure B.9 vr in m/s (slow-moving gas only)
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Figure B.10 vz in m/s (slow-moving gas only)
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Figure B.11 Mach number
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Figure B.12 Streamlines near the nozzle
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Figure B.13 Temperature in K near the nozzle
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Figure B.14 Pressure in 104 Pa near the nozzle
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Figure B.15 Number density in 1024 m−3 near the nozzle
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Figure B.16 Flow speed in m/s near the nozzle
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Figure B.17 Mach number near the nozzle
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Figure B.18 Temperature on the left boundary (z = z0); solid line the
requested boundary condition
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Figure B.19 Pressure on the left boundary (z = z0); solid line the requested
boundary condition
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Figure B.20 Number density on the left boundary (z = z0); solid line the
requested boundary condition
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Figure B.21 Speed on the left boundary (z = z0); solid line the requested
boundary condition
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Figure B.22 Radial speed (vr) on the left boundary (z = z0); solid line the
requested boundary condition
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Figure B.23 Axial speed (vz) on the left boundary (z = z0); solid line the
requested boundary condition
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Figure B.24 Temperature on the top boundary (r = r0); solid line the
requested boundary condition
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Figure B.25 Pressure on the top boundary (r = r0); solid line the requested
boundary condition
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Figure B.26 Number density on the top boundary (r = r0); solid line the
requested boundary condition
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Figure B.27 Speed on the top boundary (r = r0); solid line the requested
boundary condition
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Figure B.28 Radial speed (vr) on the top boundary (r = r0); solid line the
requested boundary condition
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Figure B.29 Axial speed (vz) on the top boundary (r = r0); solid line the
requested boundary condition
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Figure B.30 Pressure at z = 6.25914 mm (halfway through the nozzle)
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Figure B.31 Temperature at z = 6.25914 mm halfway through the nozzle)
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Figure B.32 Number density at z = 6.25914 mm (halfway through the
nozzle)
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Figure B.33 Flow speed at z = 6.25914 mm (halfway through the nozzle)
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Figure B.34 Axial speed (vz) at z = 6.25914 mm (halfway through the
nozzle)
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Figure B.35 Mach number at z = 6.25914 mm (halfway through the nozzle)
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