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ABSTRACT

A STUDY OF GAS DYNAMICS UNDER POISEUILLE CONDITIONS:

A COMPARISON OF THE FLUID EQUATIONS AND DSMC

Charles Nathan Woods

Department of Physics and Astronomy

Bachelor of Science

We have analyzed the flow of a gas through a cylindrical tube of constant radius

for Mach number � 1 using both the fluid equations and direct-simulation-

monte-carlo (DSMC). We find that the two methods are in good agreement,

and we find that the flow velocity approximately obeys the equation

uz = −∆P

∆z

1

4µ̄

(
R2 − r2 + 2.2Rλ

) [
1− ∆n

∆z

z

n0

]
.
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Chapter 1

Introduction

The study of fluid behavior has been the source of many great advances in physics in

the last centuries. Physicists of the early 1800’s developed many of the techniques of

vector calculus to model fluids. When James Clerk Maxwell formulated his combined

theory of electricity and magnetism, he did so in the language of fluid mechanics. In

our day and age of jet travel, nano-technology, and high-precision satellites, a proper

understanding of the behavior of the fluids that surround and interact with these

technologies is even more important.

To this end, several different methods have been developed to model fluid behavior.

In the specific case of a gas, we will examine two of these methods: the Navier-Stokes

fluid equations, and Direct-Simulation Monte Carlo. We will apply these both to the

simple case of Poiseuille flow: steady flow of a gas through a cylindrical pipe. In the

end, we will compare the results we obtain from these two highly distinct treatments

of a fluid, and find that they are in excellent agreement. We will also develop formulas

that yield results that are approximately correct.

1



Chapter 2

Background

The purpose of this work is to discuss the behavior of compressible fluid flow through

a pipe, so it is important to have some understanding of the nature of a fluid. A fluid

is defined as a material that will take the shape of its container, such as a liquid or a

gas. At a microscopic level, fluids are simply conglomerates of molecules, interacting

with each other through basic forces. Water is made up of H2O molecules, argon is

made of Ar atoms, and they interact through electrostatic forces generated by their

nuclei and electron clouds. This description is conceptually very simple; all we need

is classical electrodynamics and a simple molecular model. Unfortunately, once we

extend our system to include more than a handful of molecules, it becomes very

complex. To deal with this, we can make one of several approximations.

2.1 The Continuum Hypothesis

The most common approximation is to ignore the molecular nature of the fluid alto-

gether, and instead treat it as a continuum. When we do this, we ignore the fluid’s

microscopic behavior, and only examine spatial and temporal averages of molecu-

2



2.2 The Fluid Equations 3

Table 2.1 Variables Used and their Definitions

Variable Quantity

ρ mass density ~u vector flow velocity

n number density T temperature

µ coefficient of viscosity kB Boltzmann’s constant

P thermodynamic pressure ε internal energy

λ mean free path m molecular mass

κ thermal conductivity R maximum value of r

lar quantities. For example, random particle motion is represented as temperature,

trends in particle motion become flow velocities, and so on. This is acceptable, as

long as the smallest volume scale we are interested in contains enough molecules for

these averages to make sense. For gases, the Knudsen number is defined as the ratio

of the mean free path of a molecule to the length scale of interest, and tracks the

degree to which averaging is valid. In practice, a gas can be treated as a continuum

if the Knudsen number is less than 0.1 [1].

2.2 The Fluid Equations

In fluid mechanics, there is no generally accepted notation for physical quantities.

With that in mind, I will use variables as defined in table 2.1, to which I refer

the reader. Unless otherwise noted, all quantities are assumed to be in SI units.

The behavior of a continuous, electrically neutral fluid in the absence of external

forces is described by a set of three coupled differential equations known as the fluid
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equations. [2]

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.1)

ρ

(
∂ui

∂t
+ ~u · ∇ui

)
= −∂P

∂ri

+
∂

∂rj

dij (2.2)

∂ε

∂t
+ ~u · ∇ε =

1

ρ

(
−Pδij + dij

∂ui

∂rj

)
: ∇~u +

1

ρ
∇ · (κ∇T ) (2.3)

where dij = µ
(

∂ui

∂rj
+

∂uj

∂ri
− 2

3
δij∇ · ~u

)
is the viscous stress tensor.

These equations, together with a thermodynamic equation of state and appropriate

boundary conditions, completely describe the fluid.

2.3 Boundary Conditions

Boundary conditions for fluids are very important. Pressure, temperature and flow

velocity must be defined at all boundaries, and this must be done in a self-consistent

way, or no solution will exist for the system. In our case, we examine a long, cylindrical

tube of radius r = R. We use cylindrical coordinates (r, φ, z) and assume the flow

to be axisymmetric. The tube is open at both ends, where we specify a temperature

and a pressure as well as flow velocities. Because of its length, uφ and ur must be

zero far from the ends, and if we focus on that central region, we can assume ~u = uz

at all points in our problem.

We require that axial velocity at the solid wall (uz) satisfy: [3]

uz (R) = 1.11λ
∂uz

∂r

∣∣∣∣
r=R

(2.4)

where λ is the mean free path of a molecule, or the average distance a molecule will

travel between interactions with other molecules. For liquids and dense gases, we can

effectively say λ ≈ 0, so that uz (R) = 0. We also require that the temperature of the

gas be equal to the temperature of the tube at r = R.
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Finally, we are interested in steady-state solutions, so all variables are considered

to be independent of time (t).

2.4 Poiseuille’s Law

In the case of a liquid, ρ is almost completely independent of both pressure and

temperature. Under this simplification, the energy equation decouples, and (2.1)

and (2.2) can be solved exactly for the case of steady flow in a long, cylindrical pipe.

If we rewrite these equations in cylindrical coordinates under the assumptions given

above, we have:

0 = uφ

0 =
∂uz

∂z
+

1

r

∂

∂r
(rur)

ur
∂ur

∂r
+ uz

∂ur

∂z
= −∂P

∂r
+ µ

(
∇2ur −

ur

r2

)
ur

∂uz

∂r
+ uz

∂uz

∂z
= −∂P

∂z
+ µ∇2uz

In the simplest case where ur = 0, these equations simplify dramatically:

0 =
∂uz

∂z

0 = −∂P

∂r

uz
∂uz

∂z
= −∂P

∂z
+ µ∇2uz

From this, we learn several important things about the flow of a liquid in a narrow

pipe. First, uz is a function of r only, and P is likewise a function of z only. Second,

uz and P must also satisfy the equation:

∂P (z)

∂z
= µ

1

r

∂

∂r

(
r
∂uz(r)

∂r

)
(2.5)
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Since the left-hand side depends only on z and the right-hand side depends only on

r, it follows that each must independently be constant, and we have

P = P0 + P ′z ,

where P0 and P ′ are constants. P ′ can be easily found by comparing pressures for

two values of z. From this, and applying the boundary condition uz (R) = 0, we can

see

uz(r) = −P ′ 1

4µ

(
R2 − r2

)
(2.6)

This is Poiseuille’s law for flow of an incompressible fluid in a long, thin pipe.

2.5 Gas Dynamics

Poiseuille’s Law was first obtained hundreds of years ago. However, when we tackle

the same problem for the case of a gas, it becomes much more complicated, and an

exact, analytical solution no longer exists. We examine the same situation as before,

only this time we require that ρ be related to P and T by the ideal gas law:

mP = ρkBT (2.7)

We can immediately see one consequence of this change. An examination of the

continuity Eq. (2.1) reveals that ~u is no longer guaranteed to be constant in z, but

will instead satisfy

0 =
∇ρ

ρ
· ~u +∇ · ~u (2.8)

Therefore, any gradient in density will require a corresponding nonuniformity in the

flow.

Eqs. (2.2) and (2.3) for momentum and energy can also be rewritten, such that
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the fluid equations for steady flow of an ideal gas become: [2]

0 =
∇ρ

ρ
· ~u +∇ · ~u (2.9)

ρ (~u · ∇) ~u = −∇P +∇ · µ∇~u +
1

3
∇ (µ∇ · ~u) (2.10)

(~u · ∇) T = − (γ − 1) T∇ · ~u +
m (γ − 1)

ρkB

[
∇ · (κ∇T ) + dij

∂ui

∂rj

]
(2.11)

From this point, we can go no further analytically. Zheng et al. solved a similar

system using complicated numerical solvers specifically designed to treat the fluid

equations, but they restricted themselves to a short flow region. [3]

If we restrict ourselves to the limit where deviations from Poiseuille’s law are

small, however, it is possible to use a perturbation analysis to obtain approximate

analytic results. This approach will be discussed in Chapter 3.



Chapter 3

The Perturbative Expansion

Perturbation theory is a venerable method for solving complicated systems approxi-

mately. In essence, it works by adapting a known solution to a related system, rather

than finding a new one from scratch. Here, we examine the application of perturba-

tion theory to the fluid equations (2.9) under the boundary conditions appropriate

to our cylindrical system.

3.1 The Poiseuille Limit

Before discussing the perturbative expansion itself, it is helpful to examine the Navier-

Stokes equation for conservation of momentum more closely (2.10).

ρ (~u · ∇) ~u = −∇P +∇ · µ∇~u +
1

3
∇ (µ∇ · ~u)

This equation consists of four primary terms as shown here, each of which has a

specific physical interpretation when applied to a microscopic element of fluid. From

left to right, these are:

• Inertial Momentum This term represents the rate of change of fluid momentum

that is present because the flow is nonuniform.

8



3.1 The Poiseuille Limit 9

• Pressure Momentum This term represents the change in momentum that comes

from a pressure imbalance across the fluid element.

• Viscous Momentum These two terms represent the change in momentum im-

parted to the fluid element as a result of viscous forces.

In the case of Poiseuille flow, viscous effects dominate the system and the gas does not

compress much, so we can think of our problem as a perturbation on incompressible

flow in the same system:

0 = −∇P +∇ · µ∇~u

which is equivalent to the equations we solved in 2.4 to derive Poiseuille’s law. Notice

that we will be moving from using mass density (ρ) to number density (n). This is

simple, as long as we are dealing with only one species of gas where ρ = nm.

This expansion is straightforward, but algebraically intensive; the details are given

in Appendix A, work by R. L. Spencer. The solution takes the form:

ur = 0

uz = u0 + εu1 + ε2u2 + . . .

n = n0 + εn1 + ε2n2 + . . .

T = T0 + εT1 + ε2T2 + . . .

where u is assumed to point in the z-direction, and ε is a small expansion parameter

which is discussed in detail at the end of the Appendix. There it is found that ε is of

order

∆n

n0

R4

∆z2λ2

where λ is the mean-free-path assuming density n0. Other variables, such as viscosity

(µ) and thermal conductivity (κ), are also typically functions of temperature, and
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expand in a similar way. Note that µ̄ and κ̄ are the viscosity and thermal conductivity,

respectively, in the background state having density n0 and temperature T0.

3.2 Results of the Expansion

When we substitute these expansions into the fluid equations (2.9), and collect powers

of ε, we find several interesting results.

3.2.1 0th Order

To 0th order, we recover a gas of constant density, pressure and temperature. Because

viscous damping is present in the system, and we have no force to drive flow, we have:

u0 = 0

P0 = n0kBT0

3.2.2 1st Order

To first-order, we find several useful relations. From continuity, we find that u1 is a

function of r only, or that flow velocity does not change along the length of the pipe.

The r-component of Eq. (2.10) tells us that P must be independent of r. We are

free to choose ρ and T any way we like as long as they satisfy this, but the simplest

choice is to have them both be independent of r as well. As in the case of a liquid,

the z-component of (2.10) gives us

u1 = −∆P

∆z

1

4[µ̄

(
R2 − r2 + 2.22λR

)
(3.1)

∆P = kB (n0∆T + T0∆n) (3.2)

where we have applied the boundary condition in Eq. (2.4). ∆P, ∆n, and ∆T are

the changes in quantities P, n, and T across the length of the pipe ∆z.



3.2 Results of the Expansion 11

Finally, Eq. (2.11) tells us that T1 must be linear in z. Since P1 is also linear in

z, it follows that n1 must be linear in z also. We may write this as

P1 = n0kBT0

(
∆n

n0

+
∆T

T0

)
z

∆z

So, we may drive this flow through a difference in density between the ends of the

pipe, or a difference in temperature, or a combination of the two.

It is interesting to note that this exactly reproduces Poiseuille’s law (2.6), except

that we have applied a different boundary condition on uz at r = R.

3.2.3 2nd Order

The second-order expansion of these equations poses much greater algebraic difficul-

ties than the first two. This is because viscosity and thermal conduction become

important at this order, which immensely complicates the business of finding the

second-order corrections to ρ and T . Fortunately, part of the correction to flow veloc-

ity can be found directly from the continuity equation, without taking into account

second-order effects of viscosity thermal conduction. It gives

u2 = −∆P

∆z

1

4[µ̄

(
R2 − r2 + 2.2Rλ

) [
−∆n

∆z

z

n0

]
. (3.3)

Perturbation theory has then given us an approximate solution to the problem of

flow in our geometry. This can be used in general application to gas flow in pipes,

and it can also be specifically applied as a way to check the solution given to us by a

completely different method.



Chapter 4

Direct-Simulation-Monte-Carlo

Although the fluid approximation is the most common way to deal with the complex

behavior of a gas, it is by no means the only way. In this chapter, we will introduce

the Direct-Simulation Monte Carlo (DSMC) algorithm as an alternative method for

determining the behavior of a low-density gas.

4.1 Kinetic Theory

In Chapter 2 we talked briefly about the physical description of a gas as a collection

of molecules, and the continuum approximation for simplifying the complex mathe-

matics that result. Alternatively, we can leave the gas as a collection of molecules

and instead simplify their interactions. We replace the complex electrostatic dipole

interactions with some other form of “collision,” and apply basic scattering theory.

One of the more basic collision models treats the gas molecules as perfectly elastic

spheres. We can think of this as a collection of marbles (or billiard balls, to use the

more traditional example) that bounce around in a box. Perhaps surprisingly, this

rather naive model reproduces the behavior of a gas remarkably well. The introduc-

12



4.2 DSMC 13

tion of more sophisticated collision models allows us to independently reproduce the

physical properties of gases, such as viscosity. Perhaps the most important feature of

this method is that it is not bound by the Knudsen number, as the fluid approxima-

tion is; it continues to work well, even at near-vacuum densities. In fact, it is in the

realm of low-density gases where this method truly shines.

4.2 DSMC

The computational implementation of DSMC is remarkably straightforward. First,

molecules move, and then they collide, changing their velocities. Repeat as needed.

However, there are a few characteristics of this algorithm that bear mentioning.

4.2.1 Statistical Collisions

Unfortunately, the process of tracking the motion and collision details of a large

number of molecules quickly becomes difficult. The best computers available can

only handle a few thousand molecules this way. To remedy this, DSMC abandons

an exact description of the system, and computes collisions statistically. Particles

that are near one another are considered to have a certain probability of colliding,

and a random number generator is used to determine if they in fact do. Particles

that collide have their velocities changed as a result, in accordance with the proper

statistical collision model. In this way, a computer can handle far larger numbers of

molecules. We make a trade-off, however, in statistical noise, especially in regions

with few collisions.
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4.2.2 Particles in Cells

Our discussion in the previous section begs the question, “How does the computer

determine which molecules are ‘near one another?’” Although there are many ways

of answering this, one method that works well is to divide the simulation region into

small collision cells. Any molecules that are found in the same cell are considered to

be close enough to potentially collide. For this to make physical sense, the cells must

be very small, on the order of the mean free path of the molecules. This is the reason

that this method is best-suited to treating low-density gases; at high densities, the

collision cells must be so small and so numerous that computers run out of memory.

In our cylindrical problem, the most natural way to divide the region is along

uniformly-spaced lines of constant r and z, assuming cylindrical axisymmetry. This

method has one major flaw: the volume of each cell is proportional to the radial

position of the cell. This means that cells close to the axis will have a much smaller

volume, and hence many fewer molecules than cells far from the axis. Because of

this, we are forced to make another trade-off. We can either simulate many more

particles than necessary at large radius, or we can allow the axial region to have

fewer than necessary, and thus allow the gas to do unphysical things in that part of

the simulation. Normally, we make some sort of compromise, getting many particles

near the outer radius, and ignoring strange physical behavior near the axis. We also

typically abandon a completely uniform grid, and define cells that are wider in r near

the axis.

4.2.3 Boundary Conditions

As was the case with the fluid equations, we must also specify boundary conditions

for DSMC. Pressures, temperatures and velocities must be provided at simulation
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boundaries. We must also define some algorithm for dealing with interactions between

the gas molecules and solid surfaces that accounts for thermal conduction and friction.

There is a key difference between the way DSMC handles boundary conditions and

the way that the fluid equations do. Whereas using inconsistent boundary conditions

to solve the fluid equations will result in no solution, DSMC manages to find one

anyway. Essentially, the algorithm finds a physical solution for the central regions,

and then patches that together with whatever boundary conditions it has been given.

As a practical matter, this means that all we have to do is give the simulation a

reasonable guess for boundary conditions, and it will give us a real, physical solution

for regions that aren’t too close to these boundaries. This robustness is one of the

most valuable characteristics of the algorithm.

4.3 FENIX

As part of research in conjunction with the Department of Chemistry, Dr. Spencer et

al have developed a DSMC algorithm called FENIX for use in cylindrical geometry.

It is specifically tailored to simulate argon using the variable-soft-sphere collision

model proposed by Koura [4], and we use a cell grid in which the region near the

axis is divided into larger cells than regions at larger radius. We have used FENIX

to simulate the same situation as we explored in Chapter 3.

Because DSMC is a numerical algorithm, we must now choose values for temper-

ature, density, and so on. In order to keep the mean free path long enough to be

convenient for DSMC to work with, we choose the following mean values:

T ≈ 5400 K

n ≈ 3.77 × 1022m−3
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P ≈ 0.3 atm

R = 0.5 mm

We choose to drive flow through a density gradient, keeping T constant at all boundary

points. We choose our density gradient to give us relatively high-speed flow, uz ≈

300 m/s. Under these conditions, the speed of sound is

vs =
5

3

√
kBT

m
≈ 1770m/s

This leads to a Mach number of 0.170, so M2 � 1, as required by the perturbation

expansion.



Chapter 5

Results

Since we have now developed two completely separate methods of solving the problem

of gas flow through a pipe, we now turn to a comparison of the results these two

methods yield.

5.1 Pressure

Pressure is an important aspect of this problem, as it is the pressure gradient that

actually drives the flow. one that keeps printing with a ridiculously tall colorbar. As

we can see in Fig. 5.1, perturbation theory predicts a simple linear pressure gradient

in z, and no r-dependence at all. DSMC reproduces this nearly exactly, aside from

statistical noise, everywhere except near r = 0. This is a result of the small collision

cells in that region, as discussed in section 4.2.2. This effect appears subtle here, but

it becomes much more obvious when we examine temperature.

17
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Figure 5.1 A comparison of pressure profiles from perturbation theory and

from DSMC
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5.2 Temperature and Density

The temperature of the gas is a measure of its kinetic energy, and is determined

by the temperature at the boundaries, as well as viscous heating effects. According

to first-order perturbation theory, under the boundary conditions we have provided,

the gas should remain at a constant temperature of 5400 K. If we look at a plot

of temperature as a function of radius, (Fig. 5.2) we see something very suspicious

happening near the axis. At a radius of about 0.03 mm, the temperature suddenly

Figure 5.2 Average temperature as a function of radius as obtained from

DSMC

0 0.1 0.2 0.3 0.4 0.5
5300

5350

5400

5450

5500

r (mm)

T
 (

K
)

Average T(r) from DSMC

spikes upward. This is the most obvious indicator that something is wrong with our

results from DSMC near the axis. The trend toward higher temperatures near the

wall of the tube, however, is real. Viscous heating, caused by frictional interactions

between gas molecules, is less important near the axis. Because the wall is kept at a

constant temperature of 5400 K, this forces the central region to be cooler, leading

to a radial variation in temper ature at second-order. The axial variation we see

in Fig. 5.3 is an artifact of the naive boundary conditions we supplied at the ends.
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We applied a constant radial profile in temperature, which then slowly dies out as we

move downstream. If we instead load the ends with temperature profiles derived from

second-order perturbation theory, this z-dependence of temperature should disappear.

Regardless, the effect is small, and does not significantly affect the behavior of other

variables . constant temperature gas we feed into the tube on the upstream end.

This effect is small, and enters the perturbation expansion at second-order. This

Figure 5.3 Temperature profile from DSMC, showing radial variation and

boundary influences

same variation in temperature also affects the density of the gas, which adjusts to

precisely cancel the radial variation introduced by temperature and maintain the

pressure profile we have already seen. (Fig. 5.1)

5.3 Flow Velocity

The flow velocity provides the most detailed test we have. We know the corrections

to uz out to second order, and we can use these to compare profiles of velocity both

in r and in z.
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As we can see, the radial profile of velocity very closely follows the predicted value

given by perturbation theory. We can see a clear deviation from parabolic behavior,

however it is small. The predicted behavior when plotted along the z-axis also agrees

remarkably well.
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Figure 5.4 Density profile from DSMC
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Figure 5.5 A comparison of velocity profiles from perturbation theory and

DSMC
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Figure 5.6 On the left we have a comparison of the radial variation of uz

between perturbation theory and the simulation; on the right a comparison
of the axial variation.
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Chapter 6

Conclusion

We have shown that, for the conditions we chose, the perturbative solution to the fluid

equations and DSMC give very similar results. Even to first-order, we find only small

differences in behavior. This leads us to believe that a perturbative solution that has

been carried to second- or third-order will give excellent results for most Poiseuille-

type flow, without the need for traditional computational fluid dynamics. These

results also show that the FENIX implementation of DSMC correctly reproduces the

physical behavior that we expect to find in a problem of this kind. Therefore, we can

confidently apply FENIX to problems with much more complex geometries.
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Appendix A

The Poiseuille Expansion
– By Ross L. Spencer

As referenced in Sec. 3.1, we find in this appendix an approximate solution to the

equations of gas dynamics for compressible gas flow in a pipe of length ∆z and radius

R driven by a pressure difference. Our coordinate system has z = 0 halfway between

the two ends. There are, of course, many solutions to this problem corresponding

to different boundary conditions at the inlet and the outlet of the pipe. What we

seek is a solution that has vanishing radial velocity everywhere and that has “simple”

dependence of uz, n, and T on r and z, where by simple we mean that there is no

rapid variation in z either at the inlet or at the outlet. We shall find a solution that

depends only on relatively low powers of r and z, and which therefore, hopefully,

represents the natural flow solution well away from both ends of the pipe.

We are interested in gas flow in which the viscous term in the Navier-Stokes

equation is more important than the inertial term, i.e., gas flow in which the flow

pattern is close to Poiseuille flow. (The precise meaning of this limit will be made

clear at the end of the appendix.) In what follows we shall assume that the coefficients

27



28

of viscosity and thermal conduction are given by

µ = µ̄(T/T0)
β , κ = κ̄(T/T0)

β , (A.1)

which is appropriate for monatomic gases such as argon, for which β = 0.72 to a good

approximation. [5]

A suitable perturbation expansion that will be shown to produce such a solution

is given by

n = n0 + εn1 + ε2n2 (A.2)

T = T0 + εT1 + ε2T2 (A.3)

uz = εu1 + ε2u2 , ur = 0 , uθ = 0 (A.4)

where n0 and T0 are constants. This means that we are expanding about the very

simple gas state in which density and temperature are constant and in which there

is no flow. The pressure gradient applied along the length of the tube is treated as a

first-order perturbation to which the gas responds.

Substituting this expansion into the gasdynamic equations shows that the uni-

form base state trivially satisfies the equations. The first-order equations are more

interesting. They are as follows.

Continuity:

∂

∂z
(n0u1) = 0 (A.5)

Radial Navier-Stokes

0 = −kB

(
T0

∂n1

∂r
+ n0

∂T1

∂r

)
+

µ̄

3

∂2u1

∂r∂z
(A.6)
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Axial Navier-Stokes

0 = −kB

(
T0

∂n1

∂z
+ n0

∂T1

∂z

)
+ µ̄

[
1

r

∂

∂r

(
r
∂u1

∂r

)
+

4

3

∂2u1

∂z2

]
(A.7)

Energy:

0 = −2

3
T0

∂u1

∂z
+

2κ̄

3n0kB

∇2T1 (A.8)

The boundary conditions are that n1 and T1 should produce a pressure difference ∆p

between the ends of the pipe and that T1(R, z), the temperature at the pipe, should

either be zero (if the pressure difference is produced only by a density difference) or

be a linear function of z if T1 contributes to the pressure difference. The axial velocity

at the wall must satisfy

u1(R, z) = −αλ
∂u1

∂r

∣∣∣∣
r=R

(A.9)

where α = 1.1 and where λ is the mean-free-path of molecules in the zeroth-order

state, n = n0 and T = T0. [3]

A solution to these first order equations can be found by considering them in

order. First, the continuity equation requires that the first-order velocity only be a

function of r: u1 = u1(r). The radial component of the Navier-Stokes equation then

requires that the first-order pressure,

P1 = kB(n0∆T + T0∆n) , (A.10)

only depend on z. The simplest way to meet this requirement is to set n1 = n1(z)

and T1 = T1(z). Other choices are possible but we are only trying to find one simple

solution, so we make this choice.

The energy equation then requires that T1(z) be a linear function of z, and since

the uniform state already has contant temperature we don’t want to have an additive

constant in T1. Hence

T1 =
∆T

∆z
z (A.11)
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where ∆T is the temperature change between the left and right ends of the pipe.

The axial component of the Navier-Stokes equation then consists of two terms,

one of which is only a function of z and another which is only a function of r. In

order for them to add to zero each must be a constant, which then requires that n1

also be linear in z

n1 =
∆n

∆z
z (A.12)

where ∆n is the density change from the left end of the pipe to the right end.

The axial component of the Navier-Stokes equation can now be solved to obtain

u1 =
−kB(n0∆T + T0∆n)

4∆zµ̄
(R2 + 2αRλ− r2) (A.13)

where we note that

− kB(n0∆T + T0∆n) = ∆P , (A.14)

the pressure difference between the ends of the pipe. So we see that the first order

flow is simply that predicted by Poiseuille’s law, see Eq. (3.1)

We are now ready to proceed to second order. The second-order equations are

Continuity:

∂

∂z
(n0u2 + n1u1) = 0 (A.15)

Radial Navier-Stokes

0 = −kB
∂

∂r
(n0T2 + T0n2 + n1T1) +

µ̄

3

∂2u2

∂r∂z
+

µ̄βT1

3T0

∂2u1

∂r∂z

+
µ̄β

T0

(
−2

3

∂T1

∂r

∂u1

∂z
+

∂T1

∂z

∂u1

∂r

)
(A.16)

Axial Navier-Stokes

0 = −kB
∂

∂z
(n0T2 + T0n2 + n1T1) + µ̄

[
∇2u2 +

1

3

∂2u2

∂z2

]
+

µ̄βT1

T0

[
∇2u1 +

1

3

∂2u1

∂z2

]

−mn0u1
∂u1

∂z
+

µ̄β

T0

[
4

3

∂T1

∂z

∂u1

∂z
+

∂T1

∂r

∂u1

∂r

]
(A.17)
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Energy:

0 = −u1
∂T1

∂z
− 2

3
T0

∂u2

∂z
− 2

3
T1

∂u1

∂z
+

2κ̄

3n0kB

∇2T2 +
2κ̄

3n0kB

(
βT1

T0

− n1

n0

)
∇2T1

+
2κ̄β

3n0kBT0

[(
∂T1

∂r

)2

+

(
∂T1

∂z

)2
]

+
2µ̄

3n0kB

[
4

3

(
∂u1

∂z

)2

+

(
∂u1

∂r

)2
]

(A.18)

A relatively simple particular solution to these equations can be shown to be given

by the following formulas:

u2 = −n1u1

n0

(A.19)

n2 = ν2rr
2 + ν4rr

4 + ν2zz
2 (A.20)

with

ν2r = − ∆n2

48∆z2n0µ̄κ̄
(3n2

0T0k
2
B(R2 + 2αλR) + 4µ̄κ̄)

+
∆n∆T

96∆z2T0µ̄κ̄
(3n2

0T0k
2
B(R2 + 2αλR) + 8µ̄κ̄(3β − 1))

+
−∆T 2n0

32∆z2n0T 2
0 µ̄κ̄

(3n2
0T0k

2
B(R2 + 2αλR) + 16βµ̄κ̄) , (A.21)

ν4r =
n0k

2
B

128∆z2T0µ̄κ̄
(4T 2

0 ∆n2 + 3n0T0∆n∆T − n2
0∆T 2) , (A.22)

and

ν2z =
−1

2∆z2n0T 2
0

(∆n2T 2
0 + (3− β)n0T0∆n∆T − βn2

0∆T 2) . (A.23)

T2 = τ0 + τ2rr
2 + τ4rr

4 (A.24)

with

τ4r = − kB∆p

128∆z2µ̄κ̄
(4T0∆n− n0∆T ) , (A.25)
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τ2r =
k2

B(R2 + 2αRλ)

32∆z2µ̄κ̄
(2T 2

0 ∆n2 − n0T0∆n∆T − 3n2
0∆T 2) , (A.26)

and

τ0 = −τ2rR
2 − τ4rR

4 . (A.27)

Note that τ0 is determined by the requirement that the second-order temperature

vanish at the pipe since we have already satisfied the boundary conditions there in

lowest and first order.

With these solutions in hand we may now find the meaning of our expansion

parameter ε. Its simplest meaning can be found by requiring that n1/n0 and T1/T0

both be small. This simply requires

∆n

n0

� 1
∆T

T0

� 1 (A.28)

We also note that the second-order comparison u2/u1 is also simple since u2/u1 '

∆n/n0.

More interesting requirements are found, however, by looking at the ratios n2/n1,

and T2/T1. We find

n2

n1

' 1

50

∆n

n0

R4

∆z2λ2
,

T2

T1

' 1

100

∆T

T0

R4

∆z2λ2
(A.29)

That the ratios ∆n/n0 and ∆T/T0 appear is not surprising, but it is somewhat

disconcerting to have the inverse of the Knudsen number, which is usually small,

appear (λ2 is in the denominator). The reason for this is that the coefficient of

viscosity is proportional to λ, and if the viscosity becomes too small then the gas flow

velocity will become too large for the flow to be Poiseuille-like.

For the numerical experiment reported in Sec. 5 these ratios are (over an axial

subregion where end effects are negligible):

∆n

n0

= −0.05,
∆T

T0

= 0 , and
1

50

∆n

n0

R4

∆z2λ2
= −0.5 . (A.30)
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This error estimate is rather large, but for some reason the perturbation expansion

fits the simulation data much better than expected.
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