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ABSTRACT

Pair Distribution Function Analysis of the Short-Range Magnetic and
Atomic Correlations in Manganese Telluride

Jacob Andrew Christensen
Department of Physics and Astronomy, BYU

Bachelor of Science

The antiferromagnetic semiconductor MnTe has recently been identified as a candidate high-
performance thermoelectric, with its short-range magnetic correlations playing a crucial role in
this technological application. Previous research has shown that these correlations are a significant
contributor to the high thermoelectric figure of merit zT in MnTe through a mechanism known
as paramagnon drag. However, a clear picture of the nature of these correlations has not been
developed up until this point. Here, we present three-dimensional atomic and magnetic pair
distribution function (PDF) analysis of neutron total scattering data collected from a single crystal
of MnTe, along with PDF data obtained from pure and doped MnTe powders. These complementary
data sets allow us to analyze the nanometer-scale magnetic and atomic correlations directly in real
space, revealing the behaviors of paramagnons in a unique and intuitive way. The three-dimensional
PDF reconstructed the MnTe atomic structure and visually showed that the magnetic correlations
exhibit anisotropy, with longer correlation lengths along the crystallographic c axis than within the
ab plane. The one-dimensional PDF confirmed and quantified these results, demonstrating that
the enhancement to zT will be higher along the c axis where paramagnon drag is the strongest.
Additionally, we present magnetic models in real space which reproduce the observed atomic and
magnetic PDF patterns with quantitative accuracy. The significance of these results is discussed in
the context of existing work on MnTe and other magnetically enhanced thermoelectric materials.

Keywords: Thermoelectric, Manganese Telluride, Spin Wave, Paramagnon, Neutron Scattering,
Diffuse Scattering, Pair Distribution Function, Fourier, Anisotropy, Spin Correlation
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Chapter 1

Introduction

In this chapter, we describe the physics needed to understand the methods and results of this study.

In Sec. 1.1, we explain how thermoelectric materials work and why they are useful for energy-

related applications. The relevant characteristics of manganese telluride are explained in the context

of paramagnon drag, a phenomenon through which magnetic correlations enhance an induced

thermoelectric voltage. In Sec. 1.2, the physics of neutron scattering is explained. In Sec. 1.3, we

give an introduction to real-space correlation evaluation through pair distribution function analysis.

1.1 Thermoelectric Materials and Manganese Telluride

Technological advancements made in the 21st century will largely be determined by our ability

to address the energy and environmental challenges created by modern society. Innovations in

materials science will play a critical role in this, with thermoelectric materials being one promising

avenue for energy efficiency. Thermoelectric materials operate by the Seebeck effect, where a

temperature gradient across a material can cause a voltage, or vice versa [1]. This effect allows

thermoelectric materials to be used in a variety of environmentally friendly applications, including

waste heat harvesting (such as converting car engine waste heat into usable energy) and solid state

3



1.1 Thermoelectric Materials and Manganese Telluride 4

refrigeration (advantageous due to the lack of moving parts needed).

The effectiveness of a thermoelectric material is quantified by zT , known as the thermoelectric

figure of merit, a dimensionless number representing the maximum efficiency of energy conversion

[2]. The thermoelectric figure of merit is defined as

zT =
σS2T

κ
(1.1)

where σ is the electrical conductivity (how easily a current flows through a material), S is the

Seebeck coefficient (i.e. thermopower, governing the magnitude of an induced thermoelectric

voltage), T is the temperature, and κ is the thermal conductivity (the rate of heat transfer in a

material). Materials which can achieve a zT of at least 1 are generally considered to be high-

performance thermoelectrics. Both σ and κ rely on the transport of electrons through a material,

creating an interdependence that makes it difficult to increase zT beyond this threshold. The thermal

conductivity κ also depends on phonons (vibrations in an atomic structure which propagate in a

wave-like manner), but this varies from material to material. In metals, where electrons freely move

around, κ has a stronger dependence on the transport of electrons over phonons, and thus correlates

with σ—when one is increased, the other tends to increase as well. These effects cancel out in

Eq. 1.1. In semiconductors, where electrons do not move as freely, κ will depend more strongly

on phonons to transport heat, which decreases how much κ and σ compete with one another. The

difficulty in increasing zT has resulted in a relative scarcity of high-performance thermoelectric

materials which have practical application [3].

A material’s magnetic structure provides an avenue to circumnavigating this problem. Just like

vibrations can propagate through a lattice of atoms in wave-like fashion, so can disturbances in a

material’s magnetic structure. Each atom in a material contains a net magnetic moment caused by

a quantum mechanical property known as spin. This allows an atom to act like a classic magnet

with a north and south pole, characterized by both a direction and magnitude. The spins within

a material will often have a preferred orientation which is driven by a system’s desire to be in
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the lowest energy state possible. The two kinds of spin configurations which are relevant to this

paper are ferromagnetic (FM) and antiferromagnetic (AF) ordering. FM ordering is when spins

tend to point parallel with each other, while AF ordering is when spins tend to point anti-parallel

with each other. When the direction of a spin in a well-ordered configuration is perturbed by some

means (such as by an external magnetic field), its deviation will influence the spins around it. Much

like a domino effect, the initial disturbance propagates as a wave throughout the spin lattice, a

phenomenon called a magnon (see Fig. 1.1). Through the transfer of linear momentum, a magnon

can help drag electrons through the lattice, thus increasing the induced thermoelectric voltage across

a material. This translates to an increase in the Seebeck coefficient S as seen in Eq. 1.1, making

"magnon drag" appear to be an effective way to manipulate a material’s thermoelectric properties

[4–6].

Unfortunately, magnons are only defined for spin ordering which occurs over hundreds or

thousands of unit cells of the material, known as long-range ordering. At high temperatures, where

thermoelectric materials are most likely to be used, magnetic order tends to be weakened as thermal

energy causes spins to become randomly aligned. It appears that this would severely limit the use of

magnon drag. However, the concept of magnon drag is not reserved to only long-range ordering.

Recent studies have shown that thermopower can be increased from short-range magnetic ordering

as well, through a separate process known as "paramagnon drag" [6, 8]. Paramagnons, analogous

to magnons, are thermal excitations which occur over short-range spin ordering present when a

material has entered the paramagnetic state. This state is achieved when a material’s temperature

increases past its critical temperature T C, a value marking where long-range magnetic ordering is

lost but short-lived and short-range magnetic structures can still appear. The critical temperature

for an antiferromagnetic material is known as the Neel temperature T N. See Fig. 1.1 for a visual

depiction of spin wave types. Paramagnons may be the key to magnetic enhancement of zT , as long

as the local magnetic structures have sizes and lifetimes relatively large compared to the times and
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Figure 1.1 A visual aid to help understand the mechanism of paramagnon and magnon
drag. The red spheres represent atoms, the black arrows represent spins, and the cones
represent perturbations of these spins. The top spin chain shows the effects of magnon
drag when a material is within the ordered state (temperature below T N), where the spins
are ordered over long distances. The perturbations of the spins propagate in a wave-like
fashion, dragging electrons through the lattice. The bottom spin chain shows the effects
of paramagnon drag when a material is within the paramagnetic state (temperature above
T N), where the spins are only ordered for a few atoms at a time. Paramagnons may appear
like small magnon packets which can similarly drag electrons through the lattice. (Adapted
from original image by Renee Ripley, Ohio State University [7])



1.2 Neutron Scattering 7

lengths with which the paramagnon interacts with the electron. Under this condition, a paramagnon

will appear indistinguishable from a magnon, resulting in a similar transport of electrons [6, 8].

The first material discovered to show an enhancement of thermopower through paramagnon

drag was manganese telluride (MnTe) [8]. MnTe is a semiconductor with a hexagonal crystal

structure, whose unit cell is shown in Fig. 1.2. The unit cell is the simplest portion of a crystal

which still exhibits a repeating pattern, acting as the building block for the larger lattice. The three

crystallographic axes, a, b, and c, are shown with directions, representing the edge lengths of the unit

cell. The ground state of MnTe is classified as AF, seen by how the Mn2+ spins change directions

along the c axis. Within the sheets formed by the a and b axes, the spins have FM ordering instead.

MnTe has been shown to have a high thermoelectric figure of merit of zT ≈ 1 at temperatures

near 850 K, making it a candidate high-performance thermoelectric material. With a T N of about

307 K, the regime where zT is large is well within the paramagnetic state; as such, magnon drag

cannot be the source of the MnTe thermoelectric efficiency. Instead, there is strong theoretical and

experimental evidence that this high zT value is due to paramagnon drag [8]. Despite our confidence

in the contributions of paramagnon drag in MnTe, a clear picture of the short-range magnetic

structure leading to the phenomenon is still lacking. Our objective is to study these short-range

magnetic orderings to gain more insight into the nature of paramagnons in the paramagnetic state

of MnTe using the experimental techniques of neutron scattering and pair distribution function

analysis. These results may be used to inform future research concerning magnetically enhanced

thermoelectric materials.

1.2 Neutron Scattering

One of the most effective experimental tools for probing a material’s magnetic and atomic structure

is neutron scattering. The process consists of passing a beam of neutrons through a sample and
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Figure 1.2 The unit cell of MnTe, showing its magnetic and atomic structure. The blue
spheres are Mn2+ atoms with spin magnetic moments shown, while the red spheres are
tellurium (Te) atoms. The Mn2+ spins have AF alignment along the c axis, and FM
alignment within the ab plane. The unit cell parameters are defined to be a = 4.193 Å,
b = 4.193 Å, and c = 6.752 Å.

measuring which angles the neutrons scatter into. Neutrons have neutral charge, so they do not

interact with the charge of electrons, but they do interact with nuclei through the strong force,

providing information about the arrangement of atoms in the material. Additionally, neutrons have a

spin, which means they will interact with the magnetic fields present in a material. Matter containing

unpaired electrons will have a net magnetic field due to the contributions from an electron’s spin

magnetic moment, and the neutron is a useful probe for determining how these spins tend to order

themselves.

When neutrons enter a sample, information about a material’s structure and dynamics are

encoded in the details of how the neutrons scatter from the atoms and spins. If a neutron’s kinetic

energy is conserved upon scattering, we call this elastic scattering or neutron diffraction. This type

of collision can be roughly visualized as the interaction between a ball launched at a rigid wall. The

ball bounces off the wall with a change in momentum only by direction and not magnitude, since

the wall is fixed. However, because the atoms and spins in a real material are free to move to some

extent, a neutron’s kinetic energy will often be changed upon scattering. This is defined as inelastic
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scattering. An experimenter’s goal is to often isolate the elastic scattering since it gives information

only about the material’s structure, while inelastic scattering gives information about how a neutron

may exchange energy with the lattice, a process that lends insight into the dynamics of a material.

In addition to energy considerations, we can also categorize scattering by long-range and short-

range ordering. Materials like MnTe have crystal structures, where atoms are well-organized into a

repeating pattern over numerous repetitions. This long-range ordering results in elastic scattering

patterns representing the material’s average structuring. Many materials will also have short-range

ordering which deviates from the average, such as one atom being substituted for another, missing

atoms, and even disorder caused by thermal energy. Neutron scattering is powerful because it

can help us detect both of these orderings. Long-range atomic and magnetic ordering manifests

itself through Bragg scattering, as demonstrated in Fig. 1.3a. Bragg’s law describes the conditions

required for a wave to diffract constructively from the layers of a well-ordered lattice, and was first

discovered through X-rays [9]. Due to the quantum mechanical concept of matter waves defined

by the de Broglie wavelength (λ = h/p), subatomic particles such as the neutron can experience

the same phenomenon. As long as a neutron’s de Broglie wavelength is comparable in size to the

distance between lattice layers, it diffracts in a similar manner to how light waves bend around

obstacles. Short-range atomic and magnetic ordering manifests itself through diffuse scattering,

defined as scattering resulting from deviations from the crystal structure. In other words, diffuse

scattering encompasses any scattering that is not Bragg scattering. Diffuse scattering can be inelastic,

unlike Bragg scattering, and is the key to studying the short-range ordering causing paramagnons in

MnTe. Total scattering is defined as Bragg and diffuse scattering mixed together [10].

Upon diffracting with the lattice, a neutron experiences a change in momentum. According to

the de Broglie relation, this change of momentum is related to a change in the k-vector, or wave

number of the neutron. If we find the change in the k-vector given by the angle the neutron scatters

into, we have effectively found the change in momentum of the neutron as demonstrated in Fig. 1.3b.
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(a) (b)

Figure 1.3 (a) Bragg’s Law, describing how an incoming wavefront may interact con-
structively after diffracting from a lattice. (b) The change in k-vector defines Q-space
(momentum space) where neutron diffraction is recorded. When scattering is elastic,
|ki|= |k f | and |Q|= 2∗ |ki| ∗ sin(θ).

This difference in k-vector is defined as Q in neutron sciences, a vector with magnitude in units of

inverse angstroms. As such, Q-space (the space spanned by vectors Q) is the reciprocal of real space,

and encodes all the information needed to map out the scattering structures. In Q-space, Bragg

scattering is recorded in highly localized repeating positions because length scales are inverted—the

regular, long-range ordering found in a lattice becomes sharp features in reciprocal space called

Bragg peaks. In contrast, diffuse scattering appears exactly as its name suggests; as extended,

diffuse features interspersed among the Bragg peaks.

Bragg scattering is closely tied with a material’s reciprocal lattice, which is a set of points

in reciprocal space with periodic positions given by the momentum transfer shown in Fig. 1.3b.

The reciprocal lattice is defined and constructed by the three reciprocal lattice parameters b1, b2,

and b3, whose units are the inverse of the real-space lattice parameters a, b, and c. Figure 1.4

shows the equations for the reciprocal lattice vectors as well as the reciprocal lattice unit cell

calculated for MnTe. In a typical scattering experiment, we will find Bragg peaks at locations

given by the reciprocal lattice because these points are where the difference in k-vector allows
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Figure 1.4 The reciprocal lattice and associated parameters b1, b2, and b3 calculated from
the MnTe unit cell. Because the reciprocal lattice vectors have inverse length units, the
longer c crystallographic axis in real space becomes confined in reciprocal space. (Images
created with Wolfram demonstration project "Crystal Lattices in Reciprocal Space" by
Bianca Eifert [11])

constructive interference to occur. However, diffuse scattering cannot be predicted by a material’s

reciprocal lattice in the same way that Bragg scattering can be. Diffuse scattering happens because

of impurities and deviations in a crystal’s structure, resulting in patterns at places other than the

reciprocal lattice points. A reciprocal lattice is an infinite and regular pattern, so it will only capture

average behaviors and ignore any short-range ordering [10].

An alternative way to discuss locations in reciprocal space is through the Miller indices H, K,

and L. The Miller indices are collectively a crystallographic notation which describes different

lattice planes of the unit cell [12]. The indices themselves are proportional to the reciprocal of

the unit cell parameters, meaning that one unit of H, K, or L is equal to 2π/a, 2π/b, or 2π/c,

respectively. Miller indices given in the form (HKL) represent the plane in real space that intercepts

the three points a/H, b/K, and c/L of the unit cell. For instance, the point H = 1, K = 0, and L

= 0 in reciprocal space, when written in the notation (100), would represent the real-space plane

with intercepts a, ∞, and ∞ along the axes a, b, and c, respectively (infinity meaning the plane
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Figure 1.5 Miller index demonstration for the MnTe unit cell. (a) Plane with associated
Miller indices (100), where the intercepts are a= 1, b=∞, c=∞. (b) Plane with associated
Miller indices (011), where the intercepts are a = ∞, b = 1, c = 1. (c) The H0L plane
shown over the MnTe unit cell. The H, K, and L reciprocal lattice vectors have well-defined
directions relative to the real-space lattice. These directions are given by the reciprocal
lattice vectors b1, b2, and b3, with equations shown in Fig. 1.4.

never intercepts that axis). This plane is shown in Fig. 1.5, along with the plane (011) for the

MnTe hexagonal symmetry. Miller indices given in the form [H,K,L] represent a vector direction in

reciprocal space rather than a plane. For instance, designating [0,0,1] gives a vector which points

along the b3 reciprocal lattice direction. The three-dimensional neutron scattering patterns collected

from our experiments are presented with this notation, where two reciprocal lattice vectors are given

to define a reciprocal space plane. In Fig. 3.1, the 2D data slice with axes labeled [H,0,0] and [0,0,L]

tell us that we are looking at the H0L plane in reciprocal space which is spanned by the [H,0,0] and

[0,0,L] reciprocal lattice vectors. Because most of the scattering presented in this thesis is shown on

the H0L plane, a comparison to real-space positions can aid in visualization. Figure 1.5c shows the

H0L plane overlaid on the MnTe unit cell.
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1.3 Pair Distribution Function Analysis

Neutron scattering data can be difficult to intuitively understand in momentum space. The Pair

Distribution Function (PDF) method aims to alleviate this by transforming neutron scattering data

from momentum space to real space [10]. This transition is done through the Fourier transform, a

technique often used in signal processing where the frequency domain representation of a dataset

can be extracted. As a simple example, consider a sound wave recorded in time from a trumpet.

This sound wave is composed of multiple different frequencies which are essential to know for

an analysis of the trumpet’s harmonics and tonal quality. The Fourier transform extracts the exact

frequencies of this wave by transforming the data from the time domain to the frequency domain.

Each frequency’s amplitude and relative phase is also recorded, allowing for a full reconstruction

of the wave. This method also works in reverse. If we instead started with measurements of the

frequencies, amplitudes, and phases from a sound wave, we could Fourier transform the data to

receive its full waveform in the time domain. The frequency domain of a sound wave is analogous

to neutron scattering momentum space, which tells us the number of neutrons (amplitudes) which

experienced a specific change in momentum (frequencies). Using the PDF method, we Fourier

transform the neutron scattering into real space to give a more intuitive visualization of the structure

of a sample, similar in idea to the waveform of the trumpet.

The PDF method is consistent with how we predict the positions of Bragg peaks from a

diffraction experiment. Section 1.2 explained that the reciprocal lattice with imaginary points

determined by constructive interference tells us the possible locations of Bragg peaks in the

scattering signal. But how do we transform between the reciprocal and real-space lattices? The

reciprocal lattice can be manually constructed by calculating the reciprocal lattice vectors using the

equations in Fig 1.4 and translating the lattice points. However, we can also obtain the reciprocal

lattice more gracefully through a Fourier transform of the positions of the atoms in a real-space

lattice, which is exactly what the PDF method entails. And once again, this process is reversible; if
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we instead start with a reciprocal lattice given by the Bragg peaks of an experiment, the PDF method

(Fourier transform) will let us retrieve information about the average real-space ordering. It is

important to remember that diffuse scattering results in signal at locations other than the reciprocal

lattice points, so PDF analysis of diffuse scattering will give information about the deviations from

the average real-space ordering.

Both one-dimensional PDF (1D-PDF) and three-dimensional PDF (3D-PDF) methods have been

developed for neutron scattering, and either method can include magnetic and atomic contributions.

If we Fourier transform the neutron scattering resulting only from the atoms and nuclei in a sample,

then we obtain the atomic PDF which tells us about the placement of atoms in the lattice [13]. If

we instead Fourier transform the neutron scattering from magnetic moments, then we obtain the

magnetic PDF which tells us about both the placement of spins and their orientations in the lattice

[10, 14, 15].

First we consider how to interpret the 1D atomic PDF. Atomic scattering appears as positive

and negative peaks in the PDF pattern representing probabilities of finding pairs of atoms, also

known as atomic correlations. The probabilities are weighted by the neutron scattering lengths of

the atoms in the pair. Figure 1.6 demonstrates how an atomic PDF pattern can be deduced from a

given lattice. Starting at an arbitrary atom within the lattice, the 1D atomic PDF considers radial

distances as shown by the concentric circles in the figure. When another identical atom is found,

a positive peak is recorded in real space at the radial distance between the pairing. If the pairing

consists of two different atoms, then the 1D atomic PDF records a negative peak. Next we consider

the interpretation of the 1D magnetic PDF (1D-mPDF), which is derived in a similar fashion but

concerns magnetic (spin) correlations instead. Once again, we start with an arbitrary position of

one of the atoms with its spin. When another spin is found at a certain radial distance away, the

1D-mPDF records a sign and strength of signal based on the relative orientation of the spins. If the

spins tend to have a net FM ordering like the configuration shown in Fig. 1.7a, then the signal will be
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Figure 1.6 A visual demonstration of how to interpret an atomic PDF pattern. Each
colored circle in the left figure represents a radial distance from an arbitrary atom where
other atoms are found. The radii of the circles correspond to the color coded peaks in the
right figure. Since all of the atoms are identical in this lattice, all of the atomic PDF peaks
are positive.

positive. If the spins tend to have a net AF ordering like the configuration shown in Fig. 1.7b, then

the signal will be negative. Finally, we can have a mix of positive and negative peaks if multiple spin

pairings alternate between parallel and anti-parallel alignment, as seen in Fig. 1.7c. The strength of

the signal depends on how strongly the pairings at a specific radial distance tend to point parallel or

anti-parallel, meaning that spins pointing along the axis that joins them results in a weak signal in

the 1D-mPDF.

One challenge of the 1D-PDF is peak overlap. Because the information recorded by this method

is restricted to a single dimension, multiple atoms or spins can be found at the same radial distance

from an arbitrary position and thus have their signals overlap with each other. This problem is

largely eliminated by the spatial information given by the 3D-PDF. Interpreting the 3D-PDF is

similar to the 1D-PDF; positive and negative peaks tell us the same information about atoms and

spins, but instead of considering only the radial distance from an arbitrary point, we now consider
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(a) (b)

(c)

Figure 1.7 Source: figures 2, 3, and 4 from Frandsen et al. [14]. Demonstrates the expected
1D-mPDF patterns from different spin configurations. The 1D-mPDF signal is sensitive to
the exact orientation of the spins, but has rotation invariance over the axis joining the spins.
(a) Resulting 1D-mPDF from FM alignment of spins. (b) Resulting 1D-mPDF from AF
alignment of spins. (c) Resulting 1D-mPDF from chain of alternating spins. The dashed
line seen in all three panels represents averaging over all orientations while retaining the
direction of ordering.
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Figure 1.8 Source: upper panel from Fig. 1 of Roth et al. [16]. Demonstrates the expected
3D-mPDF patterns from different spin configurations. Each configuration has a positive
peak at the center of the 3D-mPDF pattern because the spins have perfect FM alignment
when shifted by the zero vector (a) Resulting 3D-mPDF from FM alignment of spins.
Positive peaks are found at the separation vectors. Because a separation vector can start
and end from either spin, two peaks are seen besides the center peak. (b) Demonstrates
that the 3D-mPDF signal is sensitive to the exact orientation of the spins just as the 1D-
mPDF shown in Fig. 1.7. (c) Resulting 3D-mPDF from averaging over all orientations.
(d) Resulting 3D-mPDF from AF alignment of spins. Besides the positive center peak,
negative peaks are found at the separation vectors.

three-dimensional separation vectors. Figure 1.8 shows the simulated 3D magnetic PDF (3D-mPDF)

results we would expect from a few different spin configurations. Because the data received by

the 3D-PDF is three-dimensional, visualizing the patterns requires projecting onto a 2D plane. To

understand how the resulting pattern is obtained, imagine shifting the given spin configuration over

itself with a separation vector. Whenever there is overlap of atoms or spins, a strong signal will be

recorded in the 3D magnetic or atomic PDF at the position of the separation vector. Unlike the 1D-

mPDF, the 3D-mPDF will record multiple peaks for a single spin pairing because separation vectors

can point between the spins in either direction. This detail is important because it demonstrates how

a 3D-PDF pattern does not result in a perfect map of the lattice from which it is derived. Instead, it

tells us the nature of spin and atomic correlations.
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As explained in Sec. 1.2, neutron scattering can occur from both long-range and short-range

ordering. If we derive PDF from total scattering (containing both Bragg and diffuse), the features

resulting from Bragg and diffuse scattering may overlap with each other, making it difficult to

identify paramagnon behaviors based on short-range magnetic ordering. Therefore, it is imperative

in our study that we isolate the diffuse scattering. The 3D-mPDF of isolated magnetic diffuse

scattering is known as the three-dimensional magnetic difference pair distribution function (3D-

∆mPDF). If the isolation is done correctly, the 3D-∆mPDF should only show short-range magnetic

correlations representing deviations from the average structure. Above T N, the average magnetic

structure will be weak because the spins are in an uncorrelated state over long-range, resulting in

strong signals from the 3D-∆mPDF because short-range spin correlations still exist. Below T N, the

3D-∆mPDF would show weak signals because the spin structure should be strongly ordered in the

configuration shown in Fig. 1.2, having very few deviations from the average.

1.4 Goals

Our primary objective is to provide a clear picture of the short-range magnetic correlations in MnTe

through neutron scattering and PDF analysis. Understanding how spins tend to order themselves

over short distances in the paramagnetic state of MnTe will clue us into the formation and behavior

of paramagnons, short-range spin waves which drag electrons through the lattice, increasing zT . We

also intend to provide additional support for the presence and relevancy of paramagnons in MnTe.

We must show that the paramagnons are present at the temperatures where zT is large, despite the

possibility of losing all correlations due to thermal energy. Finally, we hope to showcase the value

of magnetic PDF techniques for probing short-range magnetic correlations, especially for those

with an untrained eye for interpreting scattering data.

Now that the groundwork of physics has been laid out, a discussion of our neutron scattering
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experiments on MnTe can begin. Chapter 2 will focus on the methods and procedures used to

gather and analyze neutron scattering data, including instrumentation, software, and techniques for

isolating diffuse scattering and PDF analysis. Chapter 3 will focus on the results of applying the

principles outlined in chapter 2, discussing the implications of the presented data and suggesting

future directions of work.



Chapter 2

Methods

In this chapter, our methods for collecting, reducing, and analyzing neutron scattering data are

explained. In Sec. 2.1 we give brief overviews of how the neutron diffraction instrumentation

operates, as well as how we prepared the samples for data collection. In Sec. 2.2 we describe

how we used crystallographic software to combine, normalize, and fit our data along with the PDF

algorithms used for real-space analysis. Additionally, our methods for visualizing three-dimensional

data are presented.

2.1 Experimental Methods/Procedure

Here we discuss the nature of our single-crystal and powder samples of MnTe. We detail the

process of preparing, mounting, and inserting the single-crystal sample into the neutron beam-

line. We identify the powder and single-crystal diffractometers used at the Spallation Neutron

Source, and explain how a correlation chopper is able to distinguish between elastic and inelastic

scattering. Finally, the steps carried out by the instrumentation for collecting the single-crystal

neutron scattering data is presented.

20
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Figure 2.1 An image of the single-crystal MnTe sample used for experimentation.

2.1.1 Crystal and Powder Sample Fabrication

We prepared both single-crystal and powder samples of MnTe for experimentation, since the two

forms of MnTe provide different kinds of data which are complementary. When neutrons are

diffracted from a powder, the resulting patterns are one-dimensional due to the isotropic nature of

the sample—that is, every crystalline orientation possible is equally represented in the powder. In

contrast, a single-crystal specimen has a highly ordered crystal structure, so diffraction patterns

provide three-dimensional structural details. The single-crystal sample consisted of pure MnTe,

with a mass of 96.4 mg and dimensions of 3 mm on every side, as shown in Fig. 2.1. The single

crystal was grown out of Te flux by keeping a mixture of Mn:Te = 36:64 at 890 C for 12 days. The

powder samples consisted of both pure and 2% Na-doped MnTe. Doping, the process of introducing

impurities into a material intentionally, was accomplished by mixing Mn powder, Te pieces and Na

pieces in an argon glove box, sealing the mixture in an evacuated quartz vial, and holding it at 950

C for 6 hours. Then, the vial was cooled in cold water to 650 C and held for another 72 hours. After

this treatment, the mixture was ground into a fine powder with a mortar and pestle. The unit cell of

Na-doped MnTe is shown in Fig. 2.2.
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Figure 2.2 The unit cell of Na-Doped MnTe, showing its magnetic and atomic structure.
The blue spheres are Mn2+ atoms with spin magnetic moments shown, while the red
spheres are tellurium (Te) atoms. The Mn2+ spins have been reoriented to point along the
c direction rather than in the ab plane, but the AF ordering is retained.

2.1.2 Neutron Diffraction Instrumentation

We conducted neutron scattering experiments on the samples of MnTe at the Spallation Neutron

Source (SNS) at Oak Ridge National Laboratory located in Oak Ridge, Tennessee (Fig. 2.3). The

SNS produces neutrons by accelerating protons into a mercury target, where the energy of the

bombardment strips the mercury nuclei of neutrons in a process called spallation. These free

neutrons are then directed down several beam-lines with different scattering instruments. For our

single-crystal experiments, we used the CORELLI beam-line, or the Elastic Diffuse Scattering

Spectrometer [17]. For our powder diffraction experiments, we use the NOMAD beam-line, or

the Nanoscale-Ordered Materials Diffractometer [18]. Both instruments accept neutrons that are

delivered in microsecond-long pulses with a spectrum of energies. As these pulses arrive at the

sample within each instrument’s chamber, the neutrons are scattered onto detectors which record

impact positions and time-of-flight (an indirect measurement of energy).

The CORELLI instrument is able to distinguish between elastic and inelastic scattering. This

energy discrimination is accomplished by the CORELLI correlation chopper, a rotating wheel made
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Figure 2.3 A picture of the instrument hall at the SNS. The CORELLI instrumentation is
housed inside the blue building, while the NOMAD instrumentation is in the rear of the
facility (not visible in photo).

of carbon fiber and fitted with 255 open/closed elements randomly distributed around its perimeter.

When operated asynchronously from the pulses, the correlation chopper modulates the beam by

only allowing neutrons with certain energies to pass at certain times. The instrument records the

chopper phase (where the wheel is currently at in its rotation) and time-of-flight associated with each

neutron, allowing for reconstruction of the elastic scattering through cross-correlation methods. See

[17] for more information on how the cross-correlation is used. Although the data collected from

both the CORELLI and NOMAD instruments are complementary in our work, the bulk of this paper

will focus on the methods and results associated with the single-crystal CORELLI experiment.

2.1.3 Sample Preparation and Data Collection

The single-crystal sample was prepared for experimentation by first being hand-mounted on a

post using an epoxy adherent (Fig. 2.4a). The orientation of the crystal is important because it
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determines the volume of reciprocal space obtained from the scattering. In this case, we mounted

the crystal such that the H0L plane of reciprocal space coincided with the horizontal scattering plane.

Aluminum foil was wrapped around both the sample and post to act as an anchor if the adherent

were to fail (Fig. 2.4b). Scattering from the aluminum is a concern, so the foil was made thin

enough to ensure that the neutron beam had little mass to interact with. Additionally, aluminum is

adequately "transparent" to neutrons—that is, aluminum’s neutron scattering cross section is small

enough to allow neutrons to pass through with little interaction. To further limit the interference of

scattering from anything but the crystal, a cadmium foil was wrapped around exposed parts of the

mounting post to absorb incoming neutrons. The prepared sample was then attached to the end of

a rotating rod (Fig. 2.4c) which was injected into the tank shown in Fig. 2.5. The chamber where

the sample sits is filled with a helium exchange gas held at a pressure of a few millibars, allowing

transfer of heat to the sample for testing at different temperatures.

Once in place, the sample was cooled down to a base temperature and data collection commenced.

At each temperature, the sample was rotated through 360 degrees in steps of 3 degrees, resulting

in 120 scattering patterns. This step size was chosen to account for the range in wavelengths of

the incident neutrons (∼ 0.64 – 2.86 Å), allowing for continuous coverage of reciprocal space

without any gaps. Each individual scattering pattern obtained was saved as both total scattering

and elastic scattering versions. Upon completing 120 measurements, the sample was heated to

the next target temperature to complete another full rotation, resulting in data at the temperatures

of 6 K, 250 K, 330 K, 370 K, 400 K, and 445 K. It is important to note that these temperatures

were measured by the instrument itself; due to limitations of precision at low pressure, along with

a temperature gradient along the rod, they overshoot actual temperatures by as much as 30 K.

Therefore, measurements we took at 330 K and 370 K are closer to 300 K and 340 K, respectively,

lying below and above T N. From now on in this thesis, the approximate actual temperatures will be

used in place of instrument measurements.
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(a) (b) (c)

Figure 2.4 (a) Sample attached to the mounting post wrapped in cadmium. (b) Magnified
view of the sample wrapped with aluminum foil. (c) The rods used to inject the sample
into the beam-line and rotate the sample during the experiment. The mounting post shown
in (a) is attached to the bottom end of these rods (where the bronze disk is seen).
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Figure 2.5 The tank where the sample is injected into the beam-line. The rod (Fig. 2.4c)
is inserted through the top after the three black knobs are unscrewed, marked by a yellow
circle over the image. The visible dial on the bottom right of where the rod is injected
measures the pressure within the chamber.

2.2 Computational Data Reduction and Analysis

This section’s purpose is to describe the tools we used to analyze experimental data. Mantid

crystallographic software used for 3D data reduction, analysis, and visualization is presented, along

with descriptions of 3D pair distribution function algorithms. Neutron scattering data is normalized

using the MnTe crystal symmetry and a vanadium scattering reference. We explain how the KAREN

and punch-and-fill methods provided by Mantid isolate diffuse scattering through Bragg peak

removal. The process used to sequentially obtain the best 1D-mPDF fit through the diffpy.mpdf

package is also briefly reviewed.
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2.2.1 Mantid Crystallographic Software

The reduction and analysis of the diffraction data collected during the single-crystal experiment

was done using Mantid crystallographic software [19] . A large international collaboration between

several organizations including the SNS, the project provides a framework based on Python archi-

tecture for high-performance computing and visualization of neutron scattering data, including pair

distribution function analysis. Data in Mantid is stored within a workspace as an event-based NeXus

file, ready to be manipulated by the wide range of algorithms available to the user. Workspaces

come in several forms based on the nature of the data and hold metadata such as specific instrument

geometry, associated data errors, and workspace histories detailing which algorithms have acted on

a particular workspace.

Once the data is obtained from the experiment it needs to be properly oriented and normalized

to account for the sample’s symmetry and instrument bias. All of this is done in Mantid. First,

orientation matrices using the UB matrix formalism are created for each temperature (called the UB

matrix for historical reasons, see [20]). These orientation matrices are determined by the positions

of the diffraction peaks and are used to map the scattering angles obtained in the laboratory frame

to the reciprocal lattice of the sample. For the normalization, each run at a particular temperature is

loaded in along with a vanadium scattering reference and adjusted by the UB matrix. Vanadium

results in a uniform, featureless incoherent scattering signal with no Bragg peaks, so it is useful for

calibrating detector efficiencies and the instrument’s solid angle (field-of-view of the detector). The

individual runs are added together, divided by the vanadium scattering, and symmetrized according

to the hexagonal structure of MnTe to obtain the final normalized signals. During the process, the

user has the choice to isolate the elastic scattering by loading in the statistical chopper data, which

then uses the elastic scattering patterns obtained at each temperature rather than the total scattering

patterns.
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2.2.2 Three-Dimensional Pair Distribution Function Algorithms

Mantid provides its own algorithm for 3D-∆PDF calculations, called DeltaPDF3D. The algorithm

utilizes the Fast Fourier Transform (FFT) from the Numpy library in Python to compute the discrete

Fourier transform on the data we receive from our experiment. The algorithm takes binned data in

reciprocal space as input with the requirement that the dimensions, called H, K, and L, be ordered as

such. Our data was recorded with the order of the L and K dimensions flipped, so we transposed the

data before sending it through the algorithm. Although DeltaPDF3D employs a window function

to smooth out the edges of a scattering workspace before calculating the FFT, we still found an

unacceptable amount of noise present in the resulting patterns. Therefore, we restricted the input

scattering to a cube of reciprocal space with side lengths of approximately 18 Å−1 by slicing off

the ends of the data set. This does not exclude any meaningful scattering because the magnetic

form factor suppresses scattering far away from the center of the Q-space. Care must be taken to

slice each dimension of the scattering evenly because the DeltaPDF3D algorithm requires the data

remain centered on zero.

In order to obtain the 3D-∆mPDF, the diffuse magnetic scattering must be isolated from the

Bragg peaks and any background signal found in the data. To do this, we subtracted data collected at

a temperature below T N from data collected above T N, effectively removing the background signal.

However, the subtraction on its own is not sufficient to remove the Bragg peaks. The DeltaPDF3D

algorithm provides two different methods for removing these peaks: the punch-and-fill and KAREN

[21] methods. The punch-and-fill method works by identifying locations of Bragg peaks based on

unit cell parameters. Once found, these reflections are removed or “punched” out of the data using a

sphere or cube with size determined by the user, leaving a hole. The DeltaPDF3D algorithm then

fills in these holes with a smooth Gaussian convolution, which serves as an approximation to what

the diffuse scattering around the peak would have looked like. The KAREN method, in contrast,

does not require previous knowledge of the crystal’s parameters; instead, it employs a moving
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window of defined width used to identify outliers in the data. When an outlier is found, it is removed

and filled in by a value determined by the median of all values within the window. The more surgical

procedure of the KAREN algorithm considers the possibility that diffuse scattering is not always

approximated well by a Gaussian function. For this reason, we primarily used the KAREN method.

Once reflection removal is completed by either of the two methods, an intermediate scattering

pattern is created with the isolated diffuse scattering. This is the pattern used in the 3D-∆mPDF

calculation.

Despite the advantages of the KAREN algorithm, it presented a major challenge by often failing

to fully remove a Bragg peak. The algorithm succeeds in scaling down and smoothing out the peaks,

but the peaks remain partially intact even after several iterations of the KAREN algorithm is used

on the same data. These signals are unwanted when calculating the 3D-∆PDF since they may result

in patterns from both long-range atomic and magnetic scattering, making it more difficult to identify

short-range correlations. See Sec. 3.3 for evidence of this limitation.

2.2.3 Three-Dimensional Data Slicing and Visualization

The initial analysis of our single-crystal diffraction data was done in Mantid using the Slice Viewer

tool, which provides an interactive 2D slice of the 3D data array. The Slice Viewer also allows for

integrated line cuts to be taken through the data, projecting the signal onto a one-dimensional view

useful for analyzing peaks. Despite its ease of use, the Slice Viewer is limited by only allowing

slices to be taken along any of the three axes, making diagonal slices impossible. Additionally,

there is no option for saving high-quality images of the slices in a format appropriate for publishing.

For this reason, I developed a standalone Python Visualization package used for slicing through

3D data sets. By inputting the signal matrix, along with spatial arrays, a user can specify any size,

resolution, and orientation of slice to be taken through the data. The slice is made by interpolation

and then returned to the user as a 2D matrix, ready to be plotted as needed (see Appendix A for
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code). The Visualization package is the primary way that we created figures of the 3D scattering

and 3D-PDF patterns for presentations and publications.

2.2.4 One-Dimensional Pair Distribution Function with DIFFPY

We reduced the total neutron scattering data obtained from the powder samples using the NOMAD

automatic data reduction scripts, setting a maximum extent in momentum space of Qmax = 25 Å−1.

The experimental PDF were then obtained by Fourier transforming the normalized scattering data.

Part of our powder diffraction analysis involved creating theoretical PDF fits to compare against

the experimental PDF and validate our data. Our initial fits and analyses were done using PDFgui

[22], a graphical interface which organizes fits and helps simplify plotting. PDFgui is available

in the DIFFPY suite [23], a Python-based software for diffraction analysis. Our final fits were

created through the diffpy.mpdf package, also included in DIFFPY, which allowed us to directly

input magnetic structures and parameters to calculate theoretical magnetic PDF.

The procedure we followed to calculate the 1D-mPDF fits with diffpy.mpdf started with calcu-

lating an atomic PDF fit using the published atomic structure for MnTe [24]. We then subtracted

this atomic PDF fit from the total experimental PDF data, leaving the mPDF signal and any imper-

fections introduced by the atomic PDF fit. In order to improve our fits by removing some of these

imperfections, a second atomic PDF fit was calculated using the total PDF experimental data minus

the mPDF signal we just isolated as the input data. This gives us an improvement over using only

the atomic structure as a reference. The new atomic PDF fit is then subtracted from the original total

PDF experimental data, giving us a second mPDF fit. This procedure was repeated once more to

obtain a third and final mPDF fit with the most accuracy. Any subsequent repetitions of this process

did not give any noticeable reduction in the residuals between the experimental and theoretical PDF.
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Results

In this chapter, we present the results from our neutron scattering experiments. In Sec. 3.1, we show

the normalized 3D and 1D neutron scattering patterns. In Sec. 3.2, we conduct our short-range

magnetic and atomic PDF analysis on both one and three-dimensional data, finding anisotropic

correlation lengths which survive to high temperatures. Experimentally derived spin correlations

and PDF calculations are shown to match theoretical predictions, lending legitimacy to our results.

We conclude that paramagnons remain relevant in the temperature regime where MnTe achieves

a high thermoelectric figure of merit, and that the enhancement to zT should be strongest along

the crystallographic c axis. In Sec. 3.3, we describe the limitations of our methods based on

experimental results. Finally, in Sec. 3.4 we discuss the possible directions for future work on MnTe

and other magnetically enhanced thermoelectric materials.

3.1 Neutron Scattering Experimental Results

Here we present the normalized scattering data obtained from our single-crystal and powder neutron

scattering experiments at the Spallation Neutron Source. We explain how short-range magnetic

correlations are evidenced by the evolution of features as T N is crossed. The probable causes of key

31
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differences seen in elastic, inelastic, and doped MnTe scattering are identified.

3.1.1 Single-Crystal Diffraction Data

Most of our data analysis was done on scattering obtained at temperatures of approximately 300 K

and 340 K, capturing both the ordered and paramagnetic state of MnTe since these two temperatures

are below and above T N = 307 K. Figure 3.1 shows the data gathered at ∼ 300 K and ∼ 340 K,

comparing the elastic scattering (a, c) and inelastic scattering (b, d). The inelastic scattering was

obtained by subtracting the elastic scattering from the total scattering. Interpretation of these figures

is simple: any point where intensity is shown is a position in reciprocal space where a number of

neutrons were detected. The larger the intensity of the signal, the more neutrons that were detected.

The largest signals are found at the Bragg peaks, which appear as bright localized spots at regular

intervals surrounded by diffuse scattering signal. Because the Bragg and diffuse scattering has not

been separated in these patterns, the full extent of diffuse scattering is not shown. The difference

in the scattering patterns between the elastic and inelastic data is attributed to scattering signals

from phonons (lattice vibrations) and magnons (propagating spin waves) in the inelastic channel.

By using the CORELLI correlation chopper’s energy discrimination (as described in Sec. 2.1.2),

these lattice vibrations and spin waves can be ignored, resulting in the elastic scattering. Both the

inelastic and elastic scattering show rings of scattering intensity, which are a result of the aluminum

sample holder as shown in Fig. 2.4b. Aluminum contains domains of well-ordered crystals, but is

disordered over several crystals (polycrystalline), so scattering from it causes rings to appear rather

than discrete spots.

3.1.2 Powder Diffraction Data

The powder diffraction data obtained for several temperatures for both pure and doped MnTe

is shown in Fig. 3.2. The one-dimensional powder diffraction data has the advantage of clearly
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(a) (b)

(c) (d)

Figure 3.1 Neutron diffraction shown for the H0L plane. (a) Elastic at T ∼ 300 K. (b)
Inelastic at T ∼ 300 K. (c) Elastic at T ∼ 340 K. (d) Inelastic at T ∼ 340 K.
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(a) (b)

Figure 3.2 (a, b) Powder neutron diffraction curves for various temperatures for MnTe and
Mn0.98Na0.02Te respectively.

showing us the magnetic transition in MnTe due to its simplicity compared to the three-dimensional

crystal diffraction data. Well-defined magnetic Bragg peaks are found in the pure MnTe plot below

the temperature of ordering around positions such as 0.9 Å−1 and 1.9 Å−1 (Fig. 3.2a). These peaks

diminish in size as temperature increases, with an abrupt decrease when T N is crossed. Afterwards,

the sharp peaks become diffuse broad features, a sign of short-range magnetic correlations. The

doped MnTe plot (Fig. 3.2b) is missing the large magnetic Bragg peaks at 0.9 Å−1, a result of the

spins in the compound being reoriented to point along the c direction rather than in the ab plane

as seen in Fig. 2.2. Despite the absence of the strong peaks, the doped MnTe data shares similar

diffuse features with the pure MnTe data above T N. These features are important to us because they

indicate the possible presence of paramagnons.
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3.2 Real-Space Magnetic and Atomic Correlation Analysis

In this section, the 3D-PDF and 1D-PDF are calculated and analyzed at multiple temperatures for

insight into the MnTe magnetic and atomic correlations. The experimental PDF are compared to

theoretical PDF fits to support our findings and identify possible anomalies. An analysis of 3D

atomic PDF demonstrates how we can reconstruct an atomic lattice through neutron scattering. The

3D-∆mPDF visually reveals anisotropic magnetic correlation lengths, with a longer correlation

length along the crystallographic c axis than within the ab plane. The correlation lengths are

quantified by extraction from the 1D-mPDF, showing a tendency for magnetic correlations to

survive to high temperatures. This confirms the relevance of paramagnons in the temperature

regime where the MnTe thermoelectric figure of merit becomes large. The shortcomings of the

KAREN algorithm of Bragg peak removal are investigated, along with the challenges of our method

for isolating diffuse scattering, demonstrating that these limitations may be the cause of warping

effects seen in the experimental 3D-PDF. The breakdown of correlations by thermal scattering is

demonstrated with higher temperature PDF calculations.

3.2.1 Three-Dimensional Correlation Evaluation

Analysis of the neutron diffraction and 3D-∆mPDF gives us insight into the short-range magnetic

correlations above T N. The diffraction pattern shown in Fig. 3.3 was obtained at a temperature of

∼340 K—this is an intermediate total scattering pattern viewed in the H0L plane after subtracting

the 300 K data and removing the Bragg peaks. In this pattern, bright signals from diffuse scattering

clearly remain around the original positions of the magnetic Bragg peaks, a good sign that our

isolation method was a success. Additionally, the rings present in the normalized scattering are

decreased in intensity from the subtraction, which helps eliminate the effects of noise in our

subsequent PDF analysis.
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Figure 3.3 Diffuse magnetic scattering in MnTe at 340 K, shown for the H0L plane.

Figure 3.4a shows a slice of the 3D-∆mPDF at ∼ 340 K in the xz plane, where the a crystallo-

graphic direction is parallel to the horizontal axis, and the c crystallographic direction is parallel to

the vertical axis. This 3D-∆mPDF was obtained by passing the intermediate scattering shown in

Fig. 3.3 through the DeltaPDF3D module in Mantid, providing us a real-space view of the short-

range AF correlations present within the paramagnetic state of MnTe. As explained in Sec. 1.3, the

orientation of spin pairs manifests themselves as positive and negative peaks in a magnetic PDF

pattern; a positive peak represents FM alignment, while a negative peak represents AF alignment.

The strength of the correlation is represented by the magnitude of these peaks. In this particular

pattern, notice that the bright and dark regions alternate along the z axis, indicating that the spins

in the c direction are antiferromagnetically ordered. Meanwhile, the horizontal direction exhibits

rows with uniform color, indicative of FM alignment in the ab plane. Another visualization of

this is shown in Fig. 3.4b, which displays the 3D-∆mPDF pattern in the xy plane at z = 0. Here,

the hexagonal structure of the MnTe unit cell can clearly be seen. The a and b axes are naturally

non-orthogonal to each other due to the hexagonal symmetry, so one of these axes needed to be
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(a) (b)

(c) (d)

Figure 3.4 3D-∆mPDF calculation at T ∼ 340 K. (a) The experimental short-range AF
correlations of MnTe in the xz plane where y = 0. (b) The experimental short-range FM
correlations in the xy plane where z = 0. (c, d) Simulated short-range magnetic correlations
of the yz and xy planes.

rotated by 120◦ to avoid warping the pattern. These figures together reveal that the planes alternate

between uniform positive and negative peaks in c/2 steps along the z axis. This is consistent with

the crystal and magnetic structure of MnTe shown in Fig. 1.2, where the spins are all aligned with

each other in-plane (ab plane) but alternate in direction out-of-plane (c direction).
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Besides confirming the MnTe spin structure, the patterns of Fig. 3.4 provide evidence of

anisotropic correlation lengths, seen by how the bright and dark spots remain visible for a longer

distance along the z axis than along the x or y axes. This can be quantified and visualized more

easily by taking linecuts through the 3D-∆mPDF along the x = 0 and z = 0 lines by projecting the

signal down to a single dimension through integration, as seen in Fig. 3.5. Exponential envelopes

are fitted to the peak profiles, giving us a correlation length of 7.7(4) Å for the z direction and a

correlation length of 4.3(2) Å for the x direction. This anisotropy tells us that the ordering of spins

in the paramagnetic state of MnTe is stronger along c, leading to a more pronounced paramagnon

drag effect in this direction. As a result, thermoelectric devices utilizing MnTe would be able to

maximize efficiency of energy transfer by orienting the material to operate along c.

With these quantified correlation lengths, a theoretical 3D-∆mPDF was calculated for com-

parison to the experimental results, shown in Fig. 3.4(c,d). The model assumed a standard MnTe

AF structure, built to match the structure in Fig. 1.2 while also incorporating the anisotropy we

discovered experimentally. The calculations were done by a home-built extension of the diffpy.mpdf

python package (courtesy of Parker Hamilton, graduate physics student at Brigham Young Univer-

sity), which calculates the 3D-∆mPDF per the definition given by Roth et al. [16]. In short, the

model works by using a vector autocorrelation of a given spin configuration. Each position in the

3D-∆mPDF of Fig. 3.4(c,d) represents a separation vector which shifts the lattice of spins over itself.

When this separation vector causes spins to overlap, a signal is recorded with strength based on

the similarity between the orientations of the spins. This method allows deriving the 3D-∆mPDF

straight from the magnetic structure shown in Fig. 1.2, bypassing the need for obtaining scattering

data and performing a Fourier transform. However, a theoretical model like this is unable to capture

behavior such as anisotropy in correlation lengths, which is why the experimental data was needed

prior to theoretical calculations. The validity of our experimental data is bolstered given that the

experimental and theoretical PDF exhibit the same basic patterns. One important distinction is
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(a)

(b) (c)

Figure 3.5 (a) Arrows overlaid on the 3D-∆mPDF as described in Fig 3.4a, demonstrating
the difference in correlation lengths along the z-direction (red arrow) and x-direction
(yellow arrow). (b) Linecut taken through the 3D-∆mPDF along the z direction with x = y
= 0. The best-fit exponential envelope is shown by the dashed-lines, giving a correlation
length of 7.7(4) Å. (c) Same as (b), but with the linecut taken along the x direction with y
= z = 0, giving a correlation length of 4.3(2) Å.
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the difference in the sign of the peak at the origin between the two patterns. The theoretical PDF

has a positive peak at the origin, something we would predict since all spins perfectly align when

the separation vector is the zero vector. The experimental PDF has a negative peak instead, which

we attribute to noise in the data rather than a physically meaningful result. Another prominent

difference is the warping effect on Fig. 3.4a, seen by the correlations which diminish in brightness

along the x axis, not unlike hyperbolic functions in appearance. The effect is not seen in the

theoretical pattern, and will be discussed in more detail later on in Sec. 3.3.

We can also examine the short-range atomic correlations using the PDF method. To do this,

we need to remove all contributions given by both the Bragg peaks and magnetic scattering. We

start with scattering obtained from below T N, where MnTe is in the ordered state and all magnetic

scattering is contained within the Bragg peaks. Therefore, removing the Bragg peaks with the

DeltaPDF3D algorithm should also remove all magnetic scattering, leaving us with only the atomic

diffuse scattering contributions. Figure 3.6 shows the results of this procedure for elastic scattering

at T ∼ 300 K. Important features to look for within the short-range atomic correlations are positive

peaks surrounded by negative signal, and vice versa, indicating the possibility of an atom’s tendency

to displace itself from the regular position. Unfortunately, these kinds of interesting features do not

show up in Fig. 3.6. It is possible that the features are too subtle to be detected over the noise in our

data. However, we can at least confirm that the atomic correlations match with our MnTe unit cell.

Looking at xz planes, we find that all the correlations are positive at integer values of b along the y

axis (Fig. 3.6a), telling us that every atom within these planes are identical to one another. Then, at

steps of b/3 along the y axis we find a more interesting pattern of alternating negative and positive

peaks (Fig. 3.6b). This is consistent with the MnTe unit cell shown in Fig. 1.2, where the Te atoms

(red) are found at a distance of b/3 and 2b/3 away from the Mn+2 atoms in the ac plane, giving

us the negative peaks in the pattern. The positive peaks are given by the two Te atoms paired with

themselves. Here, a PDF pattern helped us reconstruct the exact atomic structure of MnTe. This is a



3.2 Real-Space Magnetic and Atomic Correlation Analysis 41

(a) (b)

Figure 3.6 Three-dimensional atomic PDF calculated for T ∼ 300 K. (a) slice in the xz
plane where y = 0. (b) slice in the xz plane where y = 1.3843 Å, which is a third of a unit
cell parameter in the b direction.

remarkable result; just like the magnetic PDF lets us visualize the magnetic correlations directly in

real space starting with a diffraction pattern, so does the atomic PDF let us visualize the atomic

correlations.

3.2.2 One-Dimensional Correlation Evaluation

The 1D-PDF of MnTe obtained from the powder diffraction experiments support the features we

find in the 3D-PDF. Figure 3.7a shows the PDF obtained for MnTe at 320 K. Interpretation of the

1D-PDF is similar to the 3D-PDF; the peaks represent atomic and magnetic correlations found at

some radial distance from any one atom. In the atomic 1D-PDF, positive peaks are pairings of

identical atoms, while negative peaks are pairings of different atoms. In the magnetic 1D-PDF,

positive peaks represent FM spin pairs, while negative peaks represent AF spin pairs. On its own,

the 1D-mPDF is difficult to decipher visually, but we can still extract information such as the

magnetic correlation lengths. Figure 3.7b is the result of making additional PDF fits to the powder
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(a) (b)

Figure 3.7 (a) Combined atomic and magnetic PDF fit for MnTe at 320 K, with the
short-range AF correlations evidenced in the mPDF data (gray curve). (b) Temperature
dependence of the best-fit correlation length along c (red circles) and within the ab plane
(blue squares) in the paramagnetic regime, obtained from fits over 1.5 - 20 Å.

data at temperatures well beyond 320 K over a range of 1.5 - 20 Å. By allowing the models to have

distinct correlation lengths along the c direction and within the ab plane, we were able to extract

best fit values to demonstrate the anisotropy we see in the 3D-∆mPDF. For all temperatures tested,

the out-of-plane correlation lengths (red dots) were consistently about 50 percent larger in size than

the in-plane correlation lengths (blue dots). This matched what we see visually in the 3D-∆mPDF.

Additionally, Fig. 3.7(b) shows that both correlation lengths experience a sharp drop up until about

350 K, but afterwards they stay relatively stable up to our highest temperature tested, 500 K. Based

on the stability lasting for a large range of temperatures, it is highly probable that the correlation

lengths should remain more-or-less constant at elevated temperatures beyond the ones tested here.

This means that short-range ordering should be present at the temperatures where MnTe attains

a high zT value, confirming the presence and contributions of paramagnons. The preservation of

anisotropy tells us that the paramagnon drag enhancement of zT should be strongest along the c

axis, even at high temperatures where thermoelectric materials are typically used.
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The magnetic anisotropy in MnTe can be viewed as a result of the difference in strength of the

exchange interactions along different directions. The exchange interaction is a way to quantify the

strength and orientation that spins tend to align with; it is a quantum mechanical effect resulting

from the symmetry requirements of overlapping wave functions. A positive exchange interaction

means that it is energetically favorable for spins to align parallel, while a negative value means

spins tend to be anti-parallel. Previously acquired inelastic neutron scattering data and calculations

have found that the out-of-plane exchange interaction of MnTe is J1 =−21.5 K, while the in-plane

interaction is J2 = 0.7 K [24, 25]. The signs of these values confirm that spins should have AF

alignment along c, and FM alignment within the ab plane. The relative strength of the out-of-plane

value compared to the weaker in-plane value tells us that spins will align with more strength along

the c axis, supporting the anisotropy we have found experimentally.

The 1D-PDF results can be compared to theoretical predictions, just like we did with the 3D-PDF.

Using the DLM-DFT-SIC approach [26], we were able to calculate the correlation function ⟨S0 ·Sn⟩

for the first 9 nearest neighbors, where S0 is some arbitrary spin and Sn is the nth nearest neighbor

spin. This correlation function is simply an inner product, calculating the strength and orientation

of a correlation; positive and negative values correspond to FM and AF spin pairings, respectively.

Figure 3.8 shows these correlation function values. At higher temperatures (beyond T ∼ 350 K),

the experimental and theoretical results remarkably agree with one another, giving legitimacy to

our experimental data. At lower temperatures, the agreement breaks down, but the experimental

results still identify the correct sign for the correlations. Fortunately, thermoelectric applications

are usually done in the high temperature regime, so the agreement here demonstrates that we have

an accurate, first-principles model of MnTe. This model can help us conduct future theoretical

investigations of paramagnons in MnTe, even without any experimental data available.
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Figure 3.8 Theoretical (dashed lines) and experimental (diamonds) spin correlation
functions ⟨S0 ·Sn⟩ versus temperature for the first 9 nearest neighbor spins.

3.3 Challenges With Data Analysis

The method we used for isolating diffuse scattering was not without its challenges. For instance,

oversubtraction causes the “butterfly” formations seen in multiple figures such as Fig. 3.3, with

one located at H = 1, K = 0, L = 1. These features reveal that the scattering below T N has a

stronger signal in a ring intersecting the positions of some of the Bragg peaks. Although we

do not currently understand the cause of this excess signal, we can identify its warping effects

in our calculated PDF. First, we note that the 3D-∆mPDF pattern of Fig. 3.4(a,b) was collected

without any energy discrimination on the instrument, which means that it probes both the elastic

and inelastic scattering contributions. By starting with the normalized elastic scattering, we can

derive PDF which ignore the effects of lattice vibrations, as shown in Fig. 3.9. Figure 3.9c shows

that the inelastic intermediate scattering contains pronounced butterfly features, while the elastic

intermediate scattering of Fig. 3.9a does not. Then, the 3D-∆mPDF for the inelastic scattering

shown in Fig. 3.9d exhibits a pinching effect on the visibility of its correlations, giving the overall

pattern a peanut shape, while the elastic 3D-∆mPDF shown in Fig. 3.9b does not show this effect.
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(a) (b)

(c) (d)

Figure 3.9 (a, c) Intermediate scattering (post subtraction and peak removal) at 340 K in
the H0L plane for elastic and inelastic scattering, respectively. (b, d) 3D-∆mPDF at 340 K
in the (x, 0, z) plane for elastic and inelastic scattering, respectively.

This suggests that the pinching in the calculated PDF is tied to the prominence of the wedges. This

is supported by the theoretical 3D-∆mPDF (Fig. 3.4(c,d)) which lacks the warping effect since its

calculation did not rely on our method of isolating diffuse scattering. We are currently investigating

why the prominence of the butterfly formations differ between elastic and inelastic scattering.



3.3 Challenges With Data Analysis 46

As discussed earlier in Sec. 2.2.2, the use of KAREN also presents the challenge of Bragg peak

removal. To demonstrate how KAREN fails to fully remove Bragg peaks, we took linecuts through

the positions of some of the Bragg peaks for elastic scattering at 340 K, both before and after

KAREN. The results for scattering with no subtraction is shown in Fig. 3.10(a,b). Notice that the

peaks, although diminished in size, still remain sharp and prominent after KAREN is used, which is

unlike how diffuse scattering would appear. The results for scattering with 300 K data subtracted

from 340 K data are shown in Fig. 3.10(c,d), where the Bragg peaks start out as negative due to

over-subtraction. For this scattering, KAREN is able to fill in the negative peaks with positive signal,

and does a better job of decreasing the size of the peaks. However, sharp peaking does still remain,

and subsequent applications of KAREN only serve to slightly reduce and smooth out the peaks each

time. In order to fully isolate the diffuse magnetic scattering, the Bragg scattering contributions

need to be fully removed, so the KAREN algorithm’s inability to do this may introduce some

uncertainty in our 3D-∆mPDF results. We do not know the full implications of this issue, so future

investigations could include a comparison between the PDF obtained while using KAREN and PDF

obtained using an unrelated Bragg peak removal method. We would be able to identify how the

limitations of KAREN manifest themselves in the resulting PDF patterns. As an aside, these linecuts

are good evidence that our subtraction eliminates much of the background noise in the scattering

data. Figure 3.10d is missing the rising and falling baseline seen in Fig. 3.10b. Additionally, the

small peaks seen in Fig. 3.10b between H = -2 and H = -1, as well as between H = 1 and H = 2, are

removed during subtraction. These are two of the bright rings found in the normalized scattering of

Fig. 3.1, which were identified as scattering from the aluminum sample holder.

Most of our data analysis was done on temperatures near T N and below it. Besides the transition

at T N being important to our research question, this is also because of the increasing effects of

thermal scattering as the temperature of scattering increases. Figure 3.11 shows the intermediate

scattering received by subtracting 300 K data from T∼ 370 K, along with the calculated 3D-∆mPDF.
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(a) (b)

(c) (d)

Figure 3.10 (a, b) Cuts taken through the T ∼ 340 K scattering along the H direction
with K = 0 and L = 1 for before and after Bragg peak removal, respectively. (c, d) Cuts
taken through the data where the T ∼ 300 K scattering was subtracted from the T ∼ 340 K
scattering before and after Bragg peak removal, respectively.
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Figure 3.12 shows similar information, but instead where 300 K is subtracted from T∼ 415 K.

Notice how in general the quality of data deteriorates; both the scattering and the correlations

become less defined with each jump in temperature. However, certain trends remain. Both the

370 K and 415 K 3D-∆mPDF show the warping effect in the inelastic data as discussed earlier

in Sec. 3.3. But more importantly, these higher temperature 3D-∆mPDF exhibit anisotropy in

correlation lengths, supportive of the claims that the anisotropic paramagnetic correlations exist up

to high temperatures. The strength of these correlations do decrease with increasing temperature,

as seen by the lower scaling needed to bring out the features, but this is consistent with the sharp

decrease in correlation length as seen in Fig. 3.7(b).

3.4 Conclusion and Future Work

These results give us a unique and intuitive way of analyzing magnetic and atomic structure by

providing a real-space view of the atomic correlations in the ordered state of MnTe, and the short-

range magnetic correlations in the paramagnetic state of MnTe. Our calculated 3D atomic PDF did

not show any definitive signs of short-range atomic features, but still demonstrated that the MnTe

atomic lattice could be reconstructed by neutron scattering analysis. Through the 3D-∆mPDF we

were able to visually identify and quantify anisotropy in the magnetic correlations. Then, 1D-mPDF

measurements showed that these correlations survive to at least 500 K, and suggest they persist to

even higher temperatures due to correlation length stabilization. The consequence is a presence of

paramagnons at temperatures where MnTe attains a high zT value, consistent with the proposed

theory that paramagnon drag increases thermopower in MnTe. The anisotropic magnetic correlation

lengths mean that this enhancement in thermopower is stronger along the c direction than it is within

the ab plane. These insights into the nature of the short-range magnetic correlations in MnTe are

integral to exploiting the material to its full potential in thermoelectric applications.
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(a) (b)

(c) (d)

Figure 3.11 (a, c) Intermediate scattering (post subtraction and peak removal) at T ∼ 370
K in the H0L plane for elastic and inelastic scattering, respectively. (b, d) 3D-∆mPDF at T
∼ 370 K in the (x, 0, z) plane for elastic and inelastic scattering, respectively.
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(a) (b)

(c) (d)

Figure 3.12 (a, c) Intermediate scattering (post subtraction and peak removal) at T ∼ 415
K in the H0L plane for elastic and inelastic scattering, respectively. (b, d) 3D-∆mPDF at T
∼ 415 K in the (x, 0, z) plane for elastic and inelastic scattering, respectively.
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Computing power and time was a limiting factor in the analysis that could be done during this

experiment. The SNS provides a virtual machine (VM) for its users, allowing access to the facility’s

cluster with plenty of computing power and memory to process our scattering data. However, each

3D-PDF calculation could still take as many as 4 hours to complete, depending on whether or not the

input scattering was sliced to be smaller in size. Certain packages and software were not installed

on this VM either, such as the astropy.convolution package which enables the punch-and-fill method

to be used. Because of these limitations, most of the resulting scattering data and PDF had to be

transported over to our research group’s VM in order to visualize data, save high quality figures,

and test the punch-and-fill method. Our VM’s lack of memory and computing power relative to

the SNS VM made it difficult to properly test the punch-and-fill method. With each file of MnTe

single-crystal scattering data being upwards of 6 GB in size, working on multiple files at once was

not possible, and time became a factor. If given more time and better computer resources, we could

continue to investigate the Mantid punch-and-fill method to possibly find the proper way to use it

on our data. Additionally, with more time we could investigate other methods of isolating diffuse

scattering besides the ones provided by Mantid. The punch-and-fill method has been implemented

in many different ways by other groups, and it is possible that one of these alternative algorithms

could provide us with cleaner PDF results.

The powder diffraction data of Fig. 3.2 reveals that doping has an effect on the magnetic structure

of MnTe. At this point, not much work has been done to investigate how doping effects the short-

range correlations in more detail. This would be important future work, as most semi-conductors

are not used in their pure form but only when doped.

The strong foundation laid by our work on MnTe will help us look for similar paramagnon

effects in other magnetic semiconductors that could be potential high-zT thermoelectrics. During

the time of writing this thesis, our team had the chance to conduct another neutron scattering

experiment at the SNS, this time on a single-crystal of TbSb (Terbium Antimony). TbSb is a rare-
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earth cubic compound which orders antiferromagnetically below its Neel temperature of TN = 15K.

TbSb shows many features which are well-suited for an analysis by the 3D-mPDF method. Like

MnTe, the AF interactions found in TbSb are anisotropic in nature [27]. Additionally, intense

scattering has been observed while the material is near the Neel temperature transition due to strong

short-range correlations just above T N [28]. The experiment we conducted will allow us to measure

the short-range spin correlations in TbSb directly, providing a much more detailed picture of the

correlated paramagnetic state above T N. The information yielded from both the MnTe experiment

as well as this experiment will help build a more complete picture of the behaviors of short-range

magnetic structures in magnetically enhanced thermoelectrics.



Appendix A

Visualization Package

The purpose of this appendix is to present the code of the Python Visualization package as described

in Sec. 2.2.3. Some of the code is not shown as it is unnecessary for understanding functionality.

The class contains 4 instance attributes, as shown below.

class Visualize:

"""create object containing three-dimensional data

Args:

m (numpy array): signal array (3D)

x (numpy array): x-dimension coordinates (1D)

y (numpy array): y-dimension coordinates (1D)

z (numpy array): z-dimension coordinates (1D)

"""

The main function in the package is make_slice.

def make_slice(self, len_a=None, len_b=None, dr=None, use_norm=None,

cen_pt=None, normal=None, p1=None, p2=None, p3=None):

"""generate a slice through the dataset
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Args:

side_len (float): the side length of the square slice

to be taken through the data

dr (float): determines the spacing of the grid

(if dr=0.5, then there are 2 measurements every unit)

use_norm (boolean): when True, will create slice from a normal vector

and center point. When False, will create slice from three points

cen_pt (numpy array): the center of the desired slice.

Used when use_norm is True

normal (numpy array): the normal vector to desired plane.

Used when use_norm is True

p1, p2, p3 (numpy array): three points in 3D space, each a numpy array.

The plane goes through these points. Used when use_norm is False

Returns:

2D array, along with space arrays, representing slice through 3D dataset

"""

First, the function checks if the user desires to designate a plane by using a center point with normal

vector to the plane, or by three points which intersect the plane. If the user desires to use three

points, the three_points function is accessed.

def three_points(self, p1, p2, p3):

"""find normal vector to the plane created by the three given points

"""
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# find two vectors from the three points which lie on the desired plane

vec1 = p2 - p1

vec2 = p3 - p1

# now cross these two vectors to find a vector normal to the plane

normal = np.cross(vec1, vec2)

# now calculate the centroid of the three points given

x_pos = (p1[0] + p2[0] + p3[0]) / 3

y_pos = (p1[1] + p2[1] + p3[1]) / 3

z_pos = (p1[2] + p2[2] + p3[2]) / 3

cen_pt = np.array([x_pos, y_pos, z_pos])

print('Center Point:', cen_pt)

return normal, cen_pt

The function returns a center point and normal vector to the make_slice function. Now the goal is to

create two vectors which lie in the desired plane using the center point and normal vector given by

the user.

# ensure that our basis vector v1 is not the same as normal

v1 = np.array([1, 0, 0])

if np.allclose(v1, normal):

v1 = np.array([0, 1, 0])

# now make a matrix which will reflect any vector onto the orthogonal

# complement of the normal vec, which is our desired plane

# This is done by subtracting from the vector its

# component along the normal vector

m_norm = np.eye(3) - (np.outer(normal, normal.T) / normal.T.dot(normal))
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# now reflect v1 using m_norm

v1 = m_norm.dot(v1)

# and create a new vector v2 that is orthogonal to both v1 and normal

v2 = np.cross(normal, v1)

# we now have 2 vectors to form our plane

These two vectors are used to create a transformation matrix Q which rotates any arbitrary slice to

the orientation we want.

# now create and normalize Q, which will rotate an arbitrary

# slice to the orientation we desire

Q = np.column_stack((v1, v2, np.zeros_like(v1)))

Q[:,:2] /= np.linalg.norm(Q[:,:2], axis = 0)

We now create an arbitrary slice with the side lengths and resolution given by the user.

# now create an arbitrary slice

a = np.arange(-len_a / 2, len_a / 2, dr)

b = np.arange(-len_b / 2, len_b / 2, dr)

a = np.append(a, len_a / 2)

b = np.append(b, len_b / 2)

A,B = np.meshgrid(a, b)

# the slice starts on the x-y plane

locations = np.array([A.reshape(-1), B.reshape(-1), np.zeros(A.size)])

And we use our transformation matrix Q to rotate the slice, and the center point given by the user to

translate the slice into its final position.

# now move locations onto our two vectors,
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# and add cen_pt to move slice into position

locations = Q.dot(locations).T + (cen_pt)

Finally, we need to interpolate the 3D data array over this slice

# now we need to interpolate our 3D data array over this slice

points = (self.x, self.y, self.z)

# find the values of the 3D data array at the slice locations

interp = interpn(points, self.m, locations)

# obtain the final 2D slice

slice1 = interp.reshape(len(b),len(a))

return slice1, a, b

The 2D slice and its 1D spatial arrays are returned to the user to be plotted and analyzed as desired.



Appendix B

Punch-and-fill Method

The purpose of this appendix is to present results using the alternative method of Bragg peak

removal, the punch-and-fill method.

Figure B.1 shows the results of using the DeltaPDF3D punch-and-fill method to calculate the

3D-∆mPDF, for both inelastic and elastic scattering at T ∼ 340 K. In order to properly identify the

locations of the Bragg peaks, the MnTe space group (194) was passed to the function, a designation

for the symmetry of the crystal in three-dimensions. Additionally, the user can choose the size

of the holes to punch out as well as the width of the Gaussian functions used to fill those holes.

The punch-and-fill method as implemented by Mantid had difficulties in giving reasonable and

meaningful results. Adjusting the Gaussian width was the most challenging aspect. When the

Gaussian width was set to match the size of the punched holes, the resulting 3D-∆mPDF pattern was

noisy and extensive, filling up the entire space. In order to obtain the results shown in Fig. B.1(b,d),

the Gaussian width had to be set to a size which inevitably engulfs some of the magnetic diffuse

scattering. Because the elastic diffuse scattering confines itself around the Bragg peak locations

more than inelastic diffuse scattering, almost all of the diffuse scattering in Fig. B.1a is covered by

the Gaussian functions. Additionally, the punch-and-fill algorithm is meant to fill in the holes with

smooth, gradual Gaussian functions. Our results show abrupt signal changes where the Bragg peaks
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used to be, behavior that may have adverse effects on the PDF.

The punch-and-fill method fails to fully capture the anisotropy we have confirmed to exist from

the KAREN method and 1D-mPDF. Although not certain, this could be because the punch-and-fill

method covers up some of the diffuse scattering, and fills in holes with values that may not follow

the trend of the diffuse scattering near the Bragg peaks. Also, notice how the Gaussians in the

intermediate scattering are negative rather than positive like the signal from scattering should appear.

This happens because of the over-subtraction causing negative Bragg peaks before the algorithm is

ran. Because the punch-and-fill algorithm makes no attempts to find the trend in the data around the

Bragg peaks, it simply fills in the negative signal with a negative Gaussian, resulting in a flipped

pattern in the 3D-∆mPDF (Fig. B.1(b,d)), not representative of the MnTe magnetic structure.

The 3D-∆mPDF from the inelastic scattering is missing the "peanut" effect found in all other

inelastic 3D-∆mPDF analyzed in this thesis. Analysis of the inelastic intermediate scattering of

Fig. B.1c shows that the wedges so prominent in the intermediate scattering resulting from KAREN

are mostly filled in by the Gaussian functions. This is supportive of the hypothesis that the warping

effect is caused by the wedges themselves.
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(a) (b)

(c) (d)

Figure B.1 (a, c) Intermediate scattering (post subtraction and punch-and-fill) at T ∼ 340
K in the H0L plane for elastic and inelastic scattering, respectively. (b, d) 3D-∆mPDF at T
∼ 340 K in the (x, 0, z) plane for elastic and inelastic scattering, respectively.
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