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ABSTRACT

DOMAIN GROWTH LAW VIOLATIONS IN A COMPRESSIBLE

2D ISING MODEL

Matthew Robert Wright

Department of Physics and Astronomy

Bachelor of Science

Phase separation is the process when a homogeneous mixture separates into

two (or more) different phases. This process is found in systems such as

binary alloys where it affects properties such as hardness. We study domain

growth tendencies of a phase-separating binary alloy using a two-dimensional,

spin-exchange Ising model. The model obeys the asymptotic domain growth

law (of the form R ∝ t
1
3 , where R is the size of the domain and t is time)

when the model is allowed to respond to compressive forces. However, when

compressibility and different atomic sizes are introduced into the model, the

domain growth law is violated and we observe qualitatively different domain

growth patterns. The exponent in the growth law is found to be less than 0.27

for the simulations with different atomic sizes. This violation indicates a lack

in the current theory of domain growth and suggests fundamental properties

of precipitate hardening processes in alloys are still not understood.
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Chapter 1

Introduction

Phase separation is the process when a homogeneous mixture separates into two (or

more) different phases. This process is found in systems such as binary alloys where

it affects properties such as hardness. One example of phase separation occures in

duralumin, an alloy of aluminum with 4% copper. With the addition of copper, the

aluminum becomes much harder and has greater tensile strength than pure aluminum.

Small amounts other additives may be included to further strengthen the alloy or to

produce other results. There are two stable phases in duralumin (when containing

just aluminum and copper) at room temperature: the pure aluminum phase and

the CuAl2 phase. At a sufficiently high temperature, the CuAl2 phase dissolves and

the copper disperses evenly throughout the alloy. If the mixture is heated to this

temperature and then slowly cooled, large grains of the CuAl2 phase will form. These

large grains do not strengthen the aluminum very much. However, heating the alloy

then quickly cooling it facilitates the formation of many small grains of CuAl2 which

strengthens the alloy significantly.

Immediately after the rapid cooling, small, isolated particles of the CuAl2 phase

form throughout the material. To form small grains of the CuAl2 phase, the alloy

1



2 Chapter 1 Introduction

is put through a process called “age-hardening” or “aging.” After cooling the alloy,

its temperature is increased, but not to the point where the CuAl2 phase dissolves

again. This temperature is held for a while. During this aging process, the particles

of the CuAl2 phase come together to form grains. If this temperature is held for too

long, these grains would become very large and our alloy would not be as strong.

However, if aging is controlled properly, many small grains of the CuAl2 phase will

form. These small grains of the CuAl2 phase dispersed throughout the alloy help

reduce dislocations. This results in the metal being harder.

In 1961, I. M. Lifshitz and V. V. Slyozov published a paper that calculated equa-

tions governing phase separation in a dilute solution [2] such as duralumin. They

determined that the radius of the grains of the less predominant material grows

asymptotically in proportion to t
1
3 , where t is time and 1

3
is the growth exponent. In

early papers, simulations attempting to substantiate this grain growth law showed

that it was not valid, but that the growth exponent should be less than 0.25 [16–18].

However, these results were erroneous due to an insufficient number of particles in

the simulation and/or not running the simulation long enough to reach the asymp-

totic tendencies. In 1986, David A. Huse generalized Lifshitz’s results to show that

growth of domains in equal fractions of two substances follow the same growth law

(∝ t
1
3 ) [3]. Huse’s derivation applied to two-dimensional models as well as three-

dimensional models. Soon after Huse’s paper, simulations showed the domain growth

law was valid [4].

Recently, however, S. J. Mitchell and D. P. Landau published a paper where

they found the domain growth law was violated in size-mismatched systems. Their

model was a two-dimensional, spin-exchange Ising model with an equal number of

the two atoms and continuous particle positions and the two atomic species had

different sizes [1]. Their simulations exhibited asymptotic domain growth, so this
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inconsistency indicates a lack of understanding of domain growth. This paper explains

and replicates their model. Then, we convert the model to a hexagonal lattice. We

find that the hexagonal lattice model also violates the domain growth law when the

atoms have continuous particle positions and the two atomic species had different

sizes.
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Chapter 2

Background

2.1 Ising Model

As mentioned in Chapter 1, Mitchell and Landau used a two-dimensional, spin-

exchange Ising model with an equal ratio of two atoms to simulate domain growth.

The Ising model is a simplified model of a ferromagnet (or paramagnet). It is de-

scribed in Ernst Ising’s doctoral thesis in 1924 [5]. Ising proposed that a magnet

can be though of as a chain of dipoles. These dipoles could represent individual iron

atoms. He assumes that each dipole only had magnetic interactions with each of its

nearest neighbors. That is, he ignores long-range magnetic interactions. He further

assumes that all the individual dipoles had one axis of magnetization so these dipoles

could only have two possible orientations along this axis: parallel (up) or antiparallel

(down).

Each dipole (except for the end dipoles) has two nearest neighbores in Ising’s

model. We call J the interaction energy of two neighboring dipoles oriented parallel

to each other. Then, if two neighboring dipoles have opposite orientations, their

interaction energy would be −J . If J < 0, the Ising model simulates ferromagnetism.

5



6 Chapter 2 Background

Figure 2.1 A possible configuration of a chain of dipoles in the 1D Ising
Model. The dipoles oriented down are shaded blue and the dipoles oriented
up are shaded red for convenience. The green arrows represent the interac-
tions between neighboring dipoles. The energy of some interactions (±J) is
shown above the interaction.

This is because the state with lowest energy is when all the dipoles are aligned, as

in a ferromagnet. If J > 0, the Ising model simulates paramagnetism, since each

dipole prefers to be anti-aligned with its neighbors. A pictorial representation of

Ising’s model is shown in Figure 2.1. Here, colored arrows indicating the direction of

orientation represent individual dipoles. The interactions between dipoles and their

energies are shown in green. For example, since dipoles 1 and 2 are both oriented

down, their interaction energy is J . Since dipole j is oriented down and dipole j − 1

is oriented up, their interaction energy is −J .

The Ising model has applications beyond the realm of magnetization. By replacing

the dipoles with the occupation of sites, the Ising model represents the lattice gas

model of a fluid [7]. The Ising model can also describe the ordering or unmixing of

binary alloys (AB), as with Mitchell’s and Landau’s paper. This is accomplished by

assuming the two possible orientations of dipoles are actually two different chemical

species (A and B) and requiring that the number of each species is fixed. Then,

instead of just allowing dipoles to flip as in the magnetic model, we can only consider

the exchange of neighboring atoms. This method of exchanging neighbors in an Ising

model is called spin-exchange. If J < 0 in this binary alloy model, we model phase

separation. If J > 0, we model ordering, where the elements evenly mix.

One reason Ising proposed his model was to study the phase transition in a magnet.



2.2 Monte Carlo method 7

A phase transition is the process by which a system undergoes a discontinuous change

of its properties, such as a magnet abruptly changing from a magnetized state to

an unmagnetized state at a certain temperature. The temperature where this phase

transition occurs is called the Curie temperature TC. In his 1924 doctoral thesis, Ernst

Ising solved the one-dimensional Ising model and shows that it does not have a phase

transition, but smoothly changes from the magnetized state to the unmagnetized

state with increasing temperature [5]. Later, in 1943, Lars Onsager extended the

Ising model into two dimensions and solved it, showing that it does exhibit a phase

transition [6]. The Curie temperature was found to be the solution of the equation:

sinh2
(

2J

kBTC

)
= 1

with J being the interaction energy (as above) and kB the Boltzmann constant. Thus,

in units of J
kB

, TC ≈ 2.27. To obtain this result, Onsager assumed the system had

periodic boundary conditions. Thus every dipole, even on the edge of the simulation,

has four nearest-neighbors. A pictorial representation with only a few interactions

depicted is shown in Figure 2.2. The analytical solution to any three-dimensional

Ising model has eluded scientists thus far.

2.2 Monte Carlo method

Rather than analytically solving the Ising model, Mitchell and Landau use the Monte

Carlo method to perform their simulations. The Monte Carlo method is a compu-

tational, stochastic method for solving problems. Its name was proposed by early

implementers of the method, notably N. Metropolis and S. Ulam [10]. Since the

Monte Carlo method follows similar rules to the rules of chance found in gambling,

some claim this method was named after Monte Carlo, the city in Monaco famous

for gambling.
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Figure 2.2 A possible configuration of dipoles of a 2D Ising Model. The
dipoles oriented down are shaded blue and the dipoles oriented up are shaded
red for convenience. The green arrows represent a selection of the interac-
tions between neighboring dipoles. This model employs periodic boundary
conditions, which is indicated by the “repeated” (faded) dipoles all around.

The Monte Carlo method uses (pseudo-)random numbers to approximate solu-

tions to problems through stochastic simulation. Usually, these problems are difficult

or impossible to solve using other methods. These random numbers must follow a

specified distribution that depends on the problem being studied. This distribution

is usually obtained by generating random numbers within a uniform distribution and

then applying a function to these numbers to bring them to the appropriate distribu-

tion. For our simulations, a uniform distribution is sufficient.

For the most common application of the Monte Carlo method, Monte Carlo in-

tegration, the random numbers are used as “test” points for the integration. An

example of Monte Carlo integration is presented as the remainder of this section.

For deterministic simulations, such as those that follow the Metropolis Algorithm,

the random numbers advance the simulation to another state. See Section 2.3 for an

example of the Metropolis Algorithm.

As an example of the Monte Carlo method, we consider Monte Carlo Integration.
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Figure 2.3 Plot of x2 with two Monte Carlo “guesses.” The shaded part of
the graph is the area we are trying to find. Point one is a “hit” while point
two is not.

Normal numerical integration involves dividing the domain into many small regions,

then summing the value of the function over all the regions. Where this method works

quite well with some integrals, it works poorly for integrals involving multiple degrees

of freedom. For an integral with 100 degrees of freedom, dividing each dimension into

only 10 regions involves 10100 evaluations! This is not computationally feasible. The

Monte Carlo method of integration suits such complicated integrals much better.

To demonstrate Monte Carlo integration, we calculate the area under the curve

f(x) = x2 on the interval x ∈ [0, 1] (see Figure 2.3). To do this, we generate two

random numbers, x and y, each between 0 and 1. If the point (x, y) lies in the shaded

area of the graph, the point is a “hit.” This can be determined by checking if y ≤ x2.

We generate many points, counting how many “hits” we get. Then, it is easy to show

that

# of “hits”

total # of points
≈ area under x2

area of the 1× 1 square
= Area.

Using this method on a computer for 10,000 points yields Area ≈ 0.3282. This

problem was somewhat trivial, for we know that the solution to this problem is
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Area =
∫ 1

0
x2 dx =

1

3
.

We see how using the Monte Carlo method of integration gave an approximate solution

to the problem. Where other methods of integration work well in low-dimensional

integration, Monte Carlo integration is much more efficient as the dimensionality of

the problem increases.

2.3 Metropolis Algorithm

The Metropolis algorithm describes a computational Monte Carlo method of deter-

mining the probable states of a (thermodynamic) system. It was originally proposed

by Nicholas Metropolis, et al. in 1953 [9]. The algorithm is as follows:

1. Start the system in any state, with fixed temperature T .

2. Change the system into a “nearby” state. This might be accomplished by

exchanging one pair of neighboring atoms or moving one particle, as in our

models.

3. This change is tested using the Metropolis Acceptance rate as follows:

If the energy of the “new” state is lower than the energy of the former state,

keep the change—that is, use the new state for the next stage of the algorithm.

If the energy of the “new” state is greater than the energy of the former state,

determin whether to keep the change dependent on temperature with the fol-

lowing procedure:

� Generate a random number ρ in a uniform distribution between 0 and 1.
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Figure 2.4 The Metropolis Algorithm applied to a 2D Ising model. The
dipoles oriented down are shaded blue and the dipoles oriented up are shaded
red for convenience. The green arrows represent the interactions between
neighboring dipoles. The central dipole is flipped to change the system to a
“nearby state.”

� Calculate the the Boltzmann factor: e
−(Enew−Eold)

kBT .

� If ρ ≤ e
−(Enew−Eold)

kBT keep the change.

� If ρ > e
−(Enew−Eold)

kBT reject the change—that is, use the old state for the next

stage of the algorithm.

4. Repeat steps 2–3 for many changes.

How many times to repeat steps 2–3 and what data to record depends on the system

being studied. With our models, we repeat steps 2–3 5122 × 106 times and record

some internal data about every 5122 × 103 repetitions (see below).

As an example of the Metropolis Algorithm, we consider a two dimensional fer-

romagnetic Ising model. Step 1: We begin with a random configuration of dipoles

and set T = 0.6 |J |
kB

. Let part of the model look like that shown on the left in Figure

2.4. Step 2: We change our system to a “nearby” state by flipping the central dipole

in the figure to the configuration shown on the right of Figure 2.4. Step 3: Since

J < 0 (ferromagnetic), we see that Enew > Eold. So, we generate a random number ρ
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between 0 and 1. We will use the random number ρ = 0.582. We now consider the

Boltzmann factor:

e
−(Enew−Eold)

kBT = e
−(−4J)
0.6|J| = e−

20
3 ≈ 0.00127.

Since 0.582 > 0.00127, we reject change, and return our system to the previous

state, that is, flip the central dipole back to its original orientation (the configuration

shown on the left of Figure 2.4). Step 4: To continue the Metropolis algorithm, we

select another dipole (perhaps even the same one) and try this same procedure (of

flipping the dipole) again. Over multiple repetitions of steps 2–3, our system evolves,

simulating thermodynamic evolution of a magnet.

2.4 Lennard-Jones Potential

To better simulate atoms in a real system, Mitchell and Landau allow the particles to

move. They employ a Lennard-Jones potential to model how each atom interacts with

neighboring atoms to maintain a crystal structure. The Lennard-Jones potential (see

Figure 2.5) is an approximation of the interaction potential between two uncharged

molecules or atoms. It was proposed by John Lennard-Jones in his paper published

in 1931 [11]. It can be written either

V (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

or

V (r) = ε

[(
r0

r

)12

− 2
(

r0

r

)6
]

where r is the distance between particles, ε is the depth of the potential well, σ is

the (finite) distance where the potential energy is zero, and r0 = 21/6σ is the distance

where the inter-particle force is zero (the minimum of the potential well).
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Figure 2.5 The Lennard-Jones Potential. The x-axis is in units of r0. The
y-axis is in units of ε.

The first term in the Lennard-Jones potential (∝ r−12) models the repulsive force

arising from the Pauli Exclusion principle. This repulsion is caused by the wave

functions of each atom overlapping and repelling each other. The theoretical form of

this term is actually proportional to e−ar, but is chosen to be proportional to r−12 for

ease of calculation (r−12 = (r−6)
2
). The second term (∝ r−6) is attractive and arises

from a dispersion interaction which is the cause of van der Waals forces. As electron

density shifts (due to random fluctuations) to one side of an atom, a momentary

dipole is formed. This dipole induces a dipole in the other atom. These momentary

dipoles attract each other, causing the dispersion interaction.

2.5 Correlation Function

As we are checking the validity of the domain growth law, it seems appropriate to

define the size of a domain. For small amounts of one of species, Lifshitz and Slyozov

define the size of the grains of these atoms as the radius of the grains [2]. However,

when considering equal numbers of each atom, the two species form large domains.

One domain can extend through the entire substance. To measure the size of the
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domains, Huse uses the first zero crossing of the correlation function, which we call

the correlation length [3].

For the ferromagnetic Ising model, nearest-neighbor dipoles prefer to have the

same orientation. That is, they are correlated with each other. Since nearest-neighbor

dipoles prefer to be oriented the same way, next nearest-neighbors also prefer to

have the same orientation. The correlation function is a quantitative measure of this

clustering of like particles. The correlation function for the Ising model can be written

C(r) = 〈sisj〉 − 〈si〉2

where si and sj are numeric values of individual dipoles (1 = up and −1 = down)

with si and sj being separated by the distance r. For a typical correlation function,

at small distances (r), the correlation function is above zero, that is the atoms are

correlated. As r increases, the correlation function decreases, eventually crossing zero

into negative numbers. That is, as we go farther away from our starting dipole, the

dipoles aren’t as likely to be aligned the same orientation.

To calculate the correlation function, we begin by choosing one specific dipole si.

We consider the dipole oriented down represented in the middle of Figure 2.6a. At

the distance r = 1 (in terms of the atomic spacing) from the central dipole, there are

four dipoles: above, below, right and left, each of which we represent by sj. Each of

these dipoles are oriented down. Thus, for each dipole, sisj = (−1)× (−1) = 1. The

average value is therefore 〈sisj〉 = 1. When we go the distance r =
√

12 + 12 =
√

2

away, we again find four dipoles. Three are oriented down, but one is oriented up.

Then, the average value is 〈sisj〉 = 1+1+1+−1
4

= 0.5. We repeat this process of selecting

a distance and determining 〈sisj〉 for all distances where there are dipoles. For this

particular system state, this part of the correlation function (pertaining just to this

si) is graphed in Figure 2.6b. We see that the tendency to be correlated tends to
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(a) (b)

Figure 2.6 (a) Part of a configuration of dipoles of a 2D Ising Model.
The dipoles oriented down are shaded blue and the dipoles oriented up are
shaded red for convenience. The dipole in the middle is used as reference for
the description of the correlation function. (b) The part of the correlation
function added by the central dipole in (a). As this function is averaged over
many atoms, the function will become smoother. The average magnetization
for the entire system (not shown) is zero.

decrease over distance. We average each of these functions over every dipole si. We

then average each of the resulting functions over many possible states of the system to

obtain the 〈sisj〉 part of the correlation function. For the 〈si〉2 part of the correlation

function, we sum up the numerical value of each dipole in the system and divide that

by the total number of dipoles in the system. We average this over many possible

states also. The correlation function subtracts the 〈si〉2 term to remove the effect of

any overall magnetization. The “correlation function” produced over just one state

is shown in Figure 2.7a.

Also included in Figure 2.7a are some variations of the correlation function. In-

stead of calculating the full correlation function, we instead only consider dipoles lying

along one direction. Thus, if going along the (0, 1) or (1, 0) direction, our correlation

function only has a value at integer rs. So also, if going along (1, 1) or (1,−1), the
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(a) (b)

Figure 2.7 A plot of various correlation functions of a 2D Ising model. The
correlation functions are averaged over every dipole in the system (but not
averaged over “time”). (a) The black line is the full correlation function.
The red dashed lines are correlation functions along the cardinal directions
averaged over every dipole. The blue dotted lines are correlation functions
along the diagonal directions ((1,1) and (1,-1)) averaged over every dipole.
(b) A plot of the correlation function of a spin-exchange 2D Ising model.
One can approximately see how the correlation function intersects zero in an
oscillatory nature.
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correlation function only has values at integer multiples of
√

2. As shown in Figure

2.7a, these functions somewhat follow the full correlation function.

Figure 2.7b shows a correlation function for a spin-exchange Ising model with

equal fractions of each particle. We see how the correlation function drops below

zero then oscillates. Like Huse, we define the correlation length as the first zero of

the correlation function. The correlation length is calculated by fitting data near the

intersection point to a quadratic equation and determining the x-intercept of this fit.

A quadratic fit is chosen as it gives the closest fit of all fits up to a polynomial of

order ∼7 and is computationally easy.
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Chapter 3

Methods

We study the asymptotic domain growth of phase separation in a binary alloy. To

do this, we perform six sets of Monte Carlo simulations of a two-dimensional, spin-

exchange Ising model with an equal ratio of the two species. We set A atoms to

be “dipoles” oriented down and B atoms to be “dipoles” oriented up. We use the

Metropolis algorithm [9] to evolve our system as we study the formation of large

domains. We define a Monte Carlo move (MCM) to be one repetition of steps 2–3 in

the Metropolis algorithm. Each simulation uses periodic boundary conditions, which

can be thought of as the simulation modeling one cell in a crystal.

We perform three of our models on a square lattice. The other three models use a

hexagonal lattice. Two of our models (one square and one hexagonal) are normal, two-

dimensional, spin-exchange Ising models. We call these models the “rigid” models.

Our Hamiltonian for these models is given by that of the standard Ising Model:

H =
∑
si,sj

JRsisj (3.1)

with JR = −1. (If we set JR = +1, then we have an ordering model, rather than a

phase-separating model.) The sum is over each pair of nearest neighbor atoms (si and

19
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sj). The product sisj is the product of the numerical value of each atom (A = −1, B

= +1). One MCM consists of testing a randomly chosen nearest neighbor exchange.

The other models are also two-dimensional, spin-exchange Ising models, but we

allow our atoms to have continuous positions, with initial positions on lattice. This

allows the atoms in the system to respond to compressive forces. Thus, we call the

models that use this method compressible. To account for this compressibility, we use

a different Hamiltonian. We use a standard Lennard-Jones potential and a bond-angle

stiffness term:

H =
∑
si,sj

Jij

(`ij

rij

)12

− 2

(
`ij

rij

)6
+

∑
si

∑
sj ,sk

Jθ cos2 (ηθjik) (3.2)

We define Jij to be the depth of the potential well of the Lennard-Jones potential.

Jij can also be interpreted as the tendency for the atoms to stay the distance `ij

apart from each other. We define Jθ to be the bond-angle stiffness. As the value

of Jθ increases, the bond angle deviates less from the desired angle (see below).

The Lennard-Jones potential tends to keep the atoms at their preferred spacing. If

including just the Lennard-Jones potential for the special case where `ij = 1, the

atoms would eventually try to form a hexagonal lattice because that is the most

efficient way of placing atoms that are equally spaced in two dimensions. To prevent

our atoms from forming this hexagonal lattice, we include the bond-angle stiffness

term. By making the energy cost of changing the angle high (Jθ is comparable to

Jij), the atoms tend to maintain the desired lattice. For notation, if si is an atom of

type B, and if sj is an atom of type A, then rij = rBA, `ij = `BA, etc.

For the first (Lennard-Jones) component of the Hamiltonian, the sum runs over

each nearest-neighbor pair (si and sj). rij is the distance between each of these

nearest-neighbor pairs. We define `ij to be the preferred distance between each type

pair. (`ij is the distance where the Lennard-Jones potential is at a minimum.)
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For the second (bond angle) component of the Hamiltonian, the first sum runs

over each atom (si). For each atom, we sum over each pair of “closest” nearest-

neighbor atoms (sj and sk). Not all possible pairs of nearest-neighbors are included

in the second sum, only those which are “next” to each other. For example, if the

atoms are on a square lattice, there are only four pairs (not six), each ∼90° apart.

For a hexagonal lattice, there are only six pairs, each ∼60° apart. The angle from

sj to si to sk is defined as θjik. To account for the difference in bond angle between

different lattices, we include a bond-angle correction factor η inside the cos term. If

η = 1, then the atoms will form a square lattice. If η = 3
2
, then the atoms will form

a hexagonal lattice.

If we set JAA = JBB = ∞, JAB = JBA = JAA − 2, `ij = 1, and start the

atoms on a square lattice, our model reduces to the square, “rigid” model. So also

if we set Jθ = ∞, η = 1 and start the atoms on a square lattice, we reduce to

the square, “rigid” model. We obtain similar results for the hexagonal lattice with

η = 3
2
. Thus, by setting JAB = JBA = JAA − 2, `ij = 1 and η = 1, we can compare

our compressible model to the standard two-dimensional, spin-exchange Ising model.

Similarly, if we set JAB = JBA = JAA − 2, `ij = 1 and η = 3
2
, the compressible,

hexagonal models compare with the hexagonal “rigid” model. In particular, following

these requirements keeps the Curie temperature of the compressible models close to

that of the “rigid” models [19].

For each MCM in the compressible models, we test either a randomly chosen

nearest neighbor exchange or a small random move of a randomly chosen atom. If

moving an atom, one of the cardinal directions is chosen and the atom is displaced

a small, random amount. We test this displacement using the standard Metropolis

acceptance rate.
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Chapter 4

The Simulation

We perform six sets of Monte Carlo simulations modeling binary alloys with a two-

dimensional, spin-exchange Ising model with an equal ratio of the two species. We

perform half of our simulations on a square lattice, with the other half on a hexagonal

lattice. For each lattice, we perform three sets of simulations: “rigid”, “matched”,

and “mismatched.” The “rigid” models run with the atoms on lattice, as described

above. The “matched” simulations are compressible, as described above, with equal

preferred inter-particle distances (`AA = `BB). The “mismatched” simulations are also

compressible, but the A and B atoms have different preferred inter-particle distances

(`AA 6= `BB, see below).

We use a lattice of 512Ö512 atoms in our simulations. We define one Monte-Carlo

Sweep (MCS) as 5122 Monte Carlo moves. With our lattice size, we did not observe

(qualitatively) finite size effects below 106 MCS. We found that our models began to

exhibit asymptotic growth tendencies before 105 MCS. So, we allow each simulation

to run for 106 MCS to observe asymptotic growth while obtaining a sufficient amount

of data.

For the compressible simulations, we set JAA = JBB = 30, JAB = JBA = JAA−2 =

23
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28, and Jθ = 50. These constants are chosen to allow the models to behave similar

to the “rigid” model (see above). The specific values are chosen to compare to the

work of Mitchell and Landau [1]. As appropriate, we set η = 1 for the square lattice

and η = 3
2

for the hexagonal lattice. As expected, for the hexagonal lattice, some

significant differences in the nature of the model are found, but the behavior of domain

growth is the same.

For the “matched” models, `ij = 1 for all combinations of i and j. For the “mis-

matched” models, we put `AA = 1.02, `BB = 0.98, and `AB = `BA = 1. The difference

in preferred inter-particle distances is chosen to represent the phase separation in

SiGe [13–15] as also to compare our results with the work of Mitchell and Landau [1].

The small variation of ` in the “mismatched” models does not seem to change the

Curie temperature significantly [19], though it does change some aspects of the model

as will be shown.

For each of the compressible models, after each MCS we attempt a small, random

total volume adjustment, with the same Metropolis acceptance rate. This volume

adjustment requires terms not mentioned in the previous Hamiltonian. The formula

for the effective Hamiltonian dependent on volume is:

HV = PV −NkBT ln(V ). (4.1)

We set our pressure (P ) equal to zero in each simulation.

For each simulation, we start out with a random configuration of atoms placed

on lattice with an equal ratio of the two species. Then, we equilibrate the simulation

at kBT = 7 for the square lattice and kBT = 14 for the hexagonal lattice. After

equilibrating, we set the temperature to kBT = 1.5 for the square lattice and kBT =

2.7 for the hexagonal lattice for the remainder of the simulation. These values are

selected so that the bulk of the simulation is performed at T ≈ 2
3
TC for the “rigid”
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models, where TC is the Curie temperature. Curie temperatures for square lattice

models are TC ≈ 2.25 and the hexagonal lattice models have TC ≈ 4.5. (Units are in

terms of JR for the “rigid” models and JAA−JAB

2
for the other models.) Making the

model compressible does not seem to change the Curie temperatures too significantly,

though no accurate quantitative results could be produced [19].

To measure the rate of domain growth, we calculate the effective correlation length

every 103 MCS or less. For ease of computation, we only compute the correlation

function in the principle directions ((0, 1) and (1, 0) for the square lattice and (0, 1),

(1
2
,
√

3
2

) and (−1
2
,
√

3
2

) for the hexagonal lattice) over one system state. We calculate

a correlation length for each correlation function an average them over four single-

system states. We generate these different states by running the simulation for one

MCS between each calculation. As seen in Figure 2.7, the correlation lengths are

not the same in the principle directions. To compensate for the difference in correla-

tion lengths, the effective correlation length ξ is calculated by averaging the average

correlation lengths over the primary directions. After running several simulations,

the effective correlation lengthes are averaged over all the simulations in each specific

model, then fit to the equation:

ξ = A + Btn (4.2)

to extrapolate the growth exponent n. MatLab’s fitter is used to calculate these fits.

As expected, the domain growth of each model does not follow logarithmic growth or

other growth, but follows tn very well.
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Chapter 5

Results

Qualitatively, all of the models behaved similarly: the width of the domains grow

over time. Some snapshots of each model at times (in terms of MCS) 104, 105, 106

are shown in Figure 5.1. The domains grow over time, narrower domains diffusing

into and connecting with the larger domains. The diagonal stripe domain growth

in the square, “mismatched” simulation is interesting, but not uncommon [12]. The

grain creation in the hexagonal, “mismatched” simulation is also interesting, but

understandable. As the smaller atoms come together, they tend to take up less space

than the larger atoms. Then, from a spatial perspective, the two substances occupy a

different ratio of the whole, with the smaller atoms taking up <50%. Thus, the smaller

atoms form grains within the “substrate” of the larger atoms. Why the hexagonal

lattice forms grains while the square lattice forms diagonal stripes is believed to be

an effect of the choice of Jij and Jθ, though no attempt to substantiate this claim was

made. Orlikowski, et al. performed many simulations where they obtained different

growth patterns for different stresses [12]. I believe the two effects are related.

As mentioned above, the method used to calculate the size of the domains is the

effective correlation length. A plot of the effective correlation length for one of the

27
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Figure 5.1 Snapshots at different times (MCS) for each model. N = 5122.
A atoms are represented by blue points, and B atoms are represented by
red points. Each model was run at kBT = 1.5 for the square lattice and
kBT = 2.7 for the hexagonal lattice.

“rigid” simulations on a square lattice is shown in Figure 5.2. The x-axis is time

in terms of MCS. The y-axis is the effective correlation length ξ. This particular

set of data follows the domain growth law very well, with n = 0.332. Also on this

plot is the curve fit to this data. Shown in Figure 5.2b is a log-log plot of the

same data. Comparing the average over the cardinal directions with the best fit, we

can see the data closely follows the n = 1
3

law. We can also see how the primary

directions fluctuate, while the average remains mostly steady. It is common that

at approximately 105 MCS, the separation of the primary directions becomes larger.

This trend (of the primary directions separating at ∼105 MCS) is observed in each

model. It is believed that this is due to some spontaneous symmetry breaking at

this point in the simulation. Which direction domain growth prefer is random and

can even change later in the simulation. No discussion of the cause of this effect is
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(a) (b)

Figure 5.2 Growth plot of a rigid simulation. The axis are MCS and ξ.
Plotted are ξ in each of the cardinal directions, the average of these two, and
data fit to the average. The run temperature was kBT = 1.5.

presented in this paper.

To determine the growth exponent for the data, we average all the effective cor-

relation lengths over the number of simulations performed for each model. We then

fit the data to Equation 4.2 for t > 104 MCS. Selections of these data are plotted in

Figure 5.3. Also included in Figure 5.3 are several lines which are the fit to the data.

Figure 5.3a contains the data for each of the square models. Figure 5.3b contains the

data for each of the hexagonal models. We see how close the data matches our fit for

t > 104 MCS. The error bars for these calculations are smaller than the sizes of the

symbols used.

From the fits shown in Figure 5.3, we found the following growth exponents:

Model Square Lattices Hexagonal Lattices

“rigid” n = 0.3340±0.0004 n = 0.3329±0.0008

“matched” n = 0.3294±0.0002 n = 0.3156±0.0007

“mismatched” n = 0.2347±0.0003 n = 0.2672±0.0010
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(a) (b)

Figure 5.3 ξ−A averaged over multiple runs. A non-linear fit (ξ = A+Btn)
was used to extrapolate A. The data for (a) came from the square lattice
models. The data for (b) came from the hexagonal lattice models.

The calculated n for the “rigid” models are close to n = 1
3
. The ns found for the

“matched” models are also close to n = 1
3
, though they are a little below the expected

value. It is believed by the author that the smaller ns found for the “matched” models

are an indication of an aspect not currently understood by the conventional theories.

The term added by a correction should be small in comparison to 1
3
, but should be

present in the asymptotic domain growth equation.

In both “mismatched” simulations, the calculated n is noticeably far from the

expected n = 1
3

growth law. These simulations are of sufficient precision and duration

that it seems the asymptotic effects have been reached from the fitting to the data.

This indicates a lack of complete understanding of the physics involved. I believe

that this deviation is caused by the different preferred sizes affecting the nature of

the surface of the domains because both Lifshitz and Huse assumed no abnormality

on the surfaces of domains. The significant deviation from n = 1
3

could indicate

significant deviations in other equations governing domain and grain growth. Since
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most real-world substances have different atomic sizes, these deviations suggests that

we still do not understand the precipitate hardening process. With the development

of a more accurate theory, we could potentially better control precipitate formation

and create better alloys.



32 Chapter 5 Results



Bibliography

[1] S. J. Mitchell and D. P. Landau, “Phase Separation in a Compressible 2D Ising

Model,” Phys. Rev. Lett. 97, 025701-1–4 (2006).

[2] I. M. Lifshitz and V. V. Slyozov, “The Kinetics of Precipitation from Supersat-

urated SolidSolutions,” J. Phys. Chem. Solids 19, 35–50 (1961).

[3] David A. Huse, “Corrections to late-stage behavior in spinodal decomposition:

Lifshitz-Slyozov scaling and Monte-Carlo simulations,” Phys. Rev. B 34, 7845–

7850 (1986)

[4] Jacques G. Amar, Francis E. Sullivan, Raymond D. Mountain, “Monte Carlo

study of growth in the two-dimensional spin-exchange kinetic Ising model,”

Phys. Rev. B 37, 196–208 (1988)

[5] E. Ising, “Beitrag zur Theorie des Ferro- und Paramagnetismus” (The-

sis, Hamburg, 1924), (see: http://www.fh-augsburg.de/∼harsch/germanica/

Chronologie/20Jh/Ising/isi intr.html), in German.

[6] Lars Onsager, “Crystal Statistics3: 1. A Two-Dimensional Model with and

Order-Disorder Transition,” Phys. Rev. 65, 117–149 (1944)

[7] T. D. Lee, C. N. Yang, “Statistical Theory of Equations of State and Phase

Transitions. II. Lattice Gas and Ising Model,” Phys. Rev. 87, 410–419 (1952)

33

http://www.fh-augsburg.de/~harsch/germanica/Chronologie/20Jh/Ising/isi_intr.html
http://www.fh-augsburg.de/~harsch/germanica/Chronologie/20Jh/Ising/isi_intr.html


34 BIBLIOGRAPHY

[8] Daniel V. Schroeder, An Introduction to Thermal Physics, 339–353 (Addison

Wesley Longman, San Francisco, California, 2000).

[9] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

“Equations of State Calculations by Fast Computing Machines,” J. Chem. Phys.,

21, 1087–1092 (1953)

[10] N. Metropolis, S. Ulam, “The Monte Carlo Method,” J. Am. Stat. Assoc., 44,

335–341 (1949)

[11] J. E. Lennard-Jones, “Cohesion,” Proc. Phys. Soc., 43, 461–482 (1931)

[12] D. Orlikowski, C. Sagui, A. M. Somoza, and C. Roland, “Two- and three-

dimensional simulations of the phase separation of elastically coherent binary

alloys subject to external stresses,” Phys. Rev. B 62, 3160–3168 (2000).

[13] B. Dünweg and D. P. Landau, “Phase diagram and critical behavior of the Si-Ge

unmixing transition: A Monte Carlo study of a model with elastic degrees of

freedom,” Phys. Rev. B 48, 14182–14197 (1993).

[14] M. Laradji, D. P. Landau, and B. Dünweg, “Structural properties of Si1−xGex

alloys: A Monte Carlo simulation with the Stillinger-Weber potential,”

Phys. Rev. B 51, 4894–4902 (1995). [ISI]

[15] F. Tavazza, D. P. Landau, and J. Adler, “ Phase diagram and structural proper-

ties for a compressible Ising ferromagnet at constant volume,”Phys. Rev. B 70,

184103-1–11 (2004).

[16] M. Rao, M. H Kalos, J. L. Lebowitz, and J. Marro, “Time evolution of a

quenched binary alloy. III. Computer simulation of a two-dimensional model

system,” Phys. Rev. B 13, 4328–4335 (1976).



BIBLIOGRAPHY 35

[17] J. L. Lebowitz, J. Marro, and M. H. Kalos, “Dynamical scaling of structure

function in quenched binary alloys,” Acta Metall. 30, 297–310 (1982).

[18] G. S. Crest, D. J. Srolovitz, “Structure and evolution of quenched Ising clusters,”

Phys. Rev. B 30, 5150–?? (1984).

[19] There are no known articles proving these statements. These statements are

found from qualitative observation of each model.



36 BIBLIOGRAPHY


	Title Page
	Copyright
	Department Approval
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	2 Background
	2.1 Ising Model
	2.2 Monte Carlo method
	2.3 Metropolis Algorithm
	2.4 Lennard-Jones Potential
	2.5 Correlation Function

	3 Methods
	4 The Simulation
	5 Results
	Bibliography

